


Analysis of system behaviour
using the mCRL2 toolset

Aad Mathijssen

Design and Analysis of Systems group
Laboratory for Quality Software (LaQuSo)

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

Bits&Chips 2008 Embedded Systemen
Evoluon, Eindhoven

9th October 2008

1/23



Introduction
Software analysis techniques

Software is inherently complex and therefore expensive.

Analysis techniques help to get software under control.

Analysis techniques used in software development:

Structure: what things are in the system?

Behaviour: what happens in the system?

The two techniques complement each other because they
focus on different aspects of the system.

Behavioural analysis is less used in practice than structural
analysis.

2/23



Analysis of system behaviour
What is it about?

What is analysis of system behaviour about?

Modelling: create an abstract model of the behaviour of
the system

gain insight in the behaviour
reduce complexity to allow for validation and verification

Validation: are we building the right product?

simulate the model
test requirements on the model for a number of paths
and configurations

Verification: are we building the product right?

verify requirements on the model for all possible paths
and configurations

3/23



Analysis of system behaviour
Use

Analysis of system behaviour is used to assess and improve
the quality of software:

Error prevention: prove that the design does not have
fundamental flaws

Error detection: find errors and their causes in the
design or implementation of a system

4/23



Analysis of system behaviour
Tool support

For analysing system behaviour in industry,
tool support is essential.

Tools for analysing system behaviour:

I-Mathic (Imtech ICT, The Netherlands)

ASD (Verum, Waalre, The Netherlands)

FDR (Formal Systems Limited, Oxford, UK)

CADP (INRIA Rhone Alpes, France)

mCRL2 (OAS group, TU/e, The Netherlands)

Uppaal (Uppsala University, Sweden)

SPIN (Bell Labs, USA)

. . .
5/23



mCRL2 toolset
Goals

Goals of the mCRL2 toolset:

Generic basis for the analysis of system behaviour

Research and development of verification techniques

Industrial application of verification techniques

6/23



mCRL2 toolset
Overview

Overview of the mCRL2 toolset:

20 years of history:
Late 1980s: Common Representation Language (CRL)
From 1990: µCRL
During 1990s: µCRL toolset
From 2004: mCRL2 and mCRL2 toolset

Collection of tools for modelling, validation and
verification of system behaviour

External languages and tools are supported:
µCRL, CADP, χ, PNML, TorX, LySa, SystemC

Multi-platform: Windows, Mac and UNIX variants

Free software licence: Boost licence

Release policy: fixed release cycle (January and July)
7/23



mCRL2 toolset
Modelling: ingredients

Ingredients for modelling:

Actions (push button, place order, call f)

Non-deterministic choice
(either push button or place order)

Sequence (first push button, then place order)

Processes (Client, WebShop)

Parallelism (Client in parallel with WebShop)

Synchronous communication
(push button communicates with place order)

Data types
(push button(on), Client(1), call f({x|prime(x)}))

8/23



mCRL2 toolset
Modelling: textual and graphical

The toolset supports two kinds of modelling:

Textual:

init ∇{r1,s4,c2,c3,c5,c6,i}(Γ{r2|s2→c2,r3|s3→c3,r5|s5→c5,r6|s6→c6}(
S(true) ‖ K ‖ L ‖ R(true)

));

Graphical:

9/23



mCRL2 toolset
Validation

Validation of models supported by the toolset:

Manual or semi-automatic simulation

Automated testing using the TorX test tool

Different types of visualisation

10/23



mCRL2 toolset
Validation: simulation

Simulation:

11/23



mCRL2 toolset
Validation: visualisation

Visualisation as a directed graph using automatic positioning:

12/23



mCRL2 toolset
Validation: visualisation

Visualisation as a directed graph is limited to small models:

13/23



mCRL2 toolset
Validation: visualisation

Visualisation as a graph of clusters of states:

14/23



mCRL2 toolset
Validation: visualisation

Visualisation as a 3D tree of clusters of states:

15/23



mCRL2 toolset
Verification

Toolset support for automated verification
of requirements on the complete model:

Occurrences of deadlocks

Occurrences of specific actions

Equivalence of models

Formula checking:

express requirements as temporal logic formulas
check these formulas on the model

16/23



Industrial case studies

Selection of industrial case studies performed
using the µCRL and mCRL2 toolsets:

Error prevention:

Vitatron: artificial pacemaker

Error detection:

Add-controls: distributed system for lifting trucks
Océ: automatic document feeder
AIA: ITP load balancer

17/23



Industrial case studies
Vitatron: artificial pacemaker

Artificial pacemaker:

Must be able to deal with:

all possible heart rates
all possible arrhythmias

Design of the firmware

Analysis:

Model: mCRL2 (also Uppaal)

Verification: formula checking

Size:

full model: 500 million states
suspicious part: 714.464 states

Actual errors found: 1 (known)

18/23



Industrial case studies
Add-controls: distributed system for lifting trucks

Distributed lifting system for trucks:

Each lift has its own controller

Controllers are connected via a ring network

3 errors found after testing by the developers

Analysis:

Model: µCRL

Verification: formula checking

Actual errors found: 4

Lifts States Transitions

2 383 716
3 7.282 18.957
4 128.901 419.108
5 2.155.576 8.676.815

19/23



Industrial case studies
Océ: automatic document feeder

Automatic document feeder:

Feeds documents to the scanner automatically

1 sheet at a time

Prototype design

Analysis:

Model: µCRL

Verification: formula checking

Size:

350.000 states
1.100.000 transitions

Actual errors found: 2

20/23



Industrial case studies
AIA: ITP load balancer

Intelligent Text Processing (ITP):

Distribution of print jobs over document processors

7.500 lines of C code

Analysis:

Focus: load balancing

Model: mCRL2

Verification: formula checking

Actual errors found: 6

Size:

1,9 billion states
38,9 billion transitions

LaQuSo certification

21/23



Conclusions

Behavioural analysis complements structural analysis.

The mCRL2 toolset:

supports many aspects of the analysis of system
behaviour

can be used to:

detect errors in the design or implementation of software
prevent errors already in the design of software

Preventing errors in the design shortens time spent on
software development:

more time spent on design

less time spent on implementation and maintenance

22/23



Thank you for your attention

More information can be found on mcrl2.org.

23/23

