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Motivation

Consider the following valid assertions in first-order logic:

• φ ⊃ ψ ⊃ φ

• if a 6∈ fn(φ) then φ ⊃ ∀a.φ
• if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
• if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK
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These are not valid syntax in first-order logic, because of meta-level concepts:

• meta-variables varying over syntax: φ, ψ, a, b, t

• properties of syntax: a 6∈ fn(φ), φJa 7→ tK, α-equivalence
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Consider the following valid assertions in first-order logic:

• φ ⊃ ψ ⊃ φ

• if a 6∈ fn(φ) then φ ⊃ ∀a.φ
• if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
• if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK

These are not valid syntax in first-order logic, because of meta-level concepts:

• meta-variables varying over syntax: φ, ψ, a, b, t

• properties of syntax: a 6∈ fn(φ), φJa 7→ tK, α-equivalence

Is there a logic in which the above assertions can be expressed directly in the
syntax?
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Motivation (2)

Consider the following derivations in Gentzen’s sequent calculus:

(Ax)ψ, φ ` φ (⊃R)φ ` ψ ⊃ φ (⊃R)` φ ⊃ ψ ⊃ φ

(Ax)p(d), p(c) ` p(c) (⊃R)p(c) ` p(d) ⊃ p(c) (⊃R)` p(c) ⊃ p(d) ⊃ p(c)

And for b 6∈ fn(φ):

(Ax)
∀a.φ ` ∀b.φJa 7→ bK (⊃R)
` ∀a.φ ⊃ ∀b.φJa 7→ bK

(Ax)∀c.p(c) ` ∀d.p(d) (⊃R)` ∀c.p(c) ⊃ ∀d.p(d)
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Consider the following derivations in Gentzen’s sequent calculus:

(Ax)ψ, φ ` φ (⊃R)φ ` ψ ⊃ φ (⊃R)` φ ⊃ ψ ⊃ φ

(Ax)p(d), p(c) ` p(c) (⊃R)p(c) ` p(d) ⊃ p(c) (⊃R)` p(c) ⊃ p(d) ⊃ p(c)

And for b 6∈ fn(φ):

(Ax)
∀a.φ ` ∀b.φJa 7→ bK (⊃R)
` ∀a.φ ⊃ ∀b.φJa 7→ bK

(Ax)∀c.p(c) ` ∀d.p(d) (⊃R)` ∀c.p(c) ⊃ ∀d.p(d)

The left ones are not derivations, they are schemas of derivations.
When p is a specific atomic predicate and c and d are specific variables, the right
ones are derivations; they are instances of the schemas on the left.
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Motivation (2)

Consider the following derivations in Gentzen’s sequent calculus:

(Ax)ψ, φ ` φ (⊃R)φ ` ψ ⊃ φ (⊃R)` φ ⊃ ψ ⊃ φ

(Ax)p(d), p(c) ` p(c) (⊃R)p(c) ` p(d) ⊃ p(c) (⊃R)` p(c) ⊃ p(d) ⊃ p(c)

And for b 6∈ fn(φ):

(Ax)
∀a.φ ` ∀b.φJa 7→ bK (⊃R)
` ∀a.φ ⊃ ∀b.φJa 7→ bK

(Ax)∀c.p(c) ` ∀d.p(d) (⊃R)` ∀c.p(c) ⊃ ∀d.p(d)

The left ones are not derivations, they are schemas of derivations.
When p is a specific atomic predicate and c and d are specific variables, the right
ones are derivations; they are instances of the schemas on the left.

Is there a logic in which the derivation on the left is a derivation too?
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Motivation (3)

First-order logic and its proof systems formalise reasoning.

But also a lot of reasoning is about first-order logic.

So why shouldn’t that be formalised?
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Motivation (3)

First-order logic and its proof systems formalise reasoning.

But also a lot of reasoning is about first-order logic.

So why shouldn’t that be formalised?

One-and-a-halfth-order logic does this by means of formalising:

• meta-variables

• properties of syntax
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Overview

• Introduction to one-and-a-halfth-order logic

• Syntax of one-and-a-halfth-order logic

• Sequent calculus for one-and-a-halfth-order logic

• Axiomatisation of one-and-a-halfth-order logic

• Relation to first-order logic

• Semantics of one-and-a-halfth-order logic

• Conclusions, related and future work
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Introduction

In the syntax of one-and-a-halfth-order logic:

• Unknowns P ,Q and T represent meta-variables φ, ψ and t.

• Atoms a and b represent meta-variables a and b.

• Freshness a#P represents a 6∈ fn(φ).

• Explicit substitution P [a 7→ T ] represents φJa 7→ tK.
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Introduction (2)

The meta-level assertions in first-order logic

• φ ⊃ ψ ⊃ φ

• if a 6∈ fn(φ) then φ ⊃ ∀a.φ
• if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
• if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK

correspond to valid assertions in the syntax of one-and-a-halfth-order logic:

• P ⊃ Q ⊃ P

• a#P → P ⊃ ∀[a]P

• a#P → P ⊃ P [a 7→ T ]

• b#P → ∀[a]P ⊃ ∀[b]P [a 7→ b]
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Introduction (3)

In sequent derivations of one-and-a-halfth-order logic:

• Contexts of freshnesses are added to the sequents.

• Derivability of freshnesses are added as side-conditions.

• Substitutional equivalence on terms is added as two derivation rules, taking
care of α-equivalence and substitution.
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Introduction (4)

The (schematic) derivations in first-order logic

(Ax)ψ, φ ` φ (⊃R)φ ` ψ ⊃ φ (⊃R)` φ ⊃ ψ ⊃ φ

(Ax)p(d), p(c) ` p(c) (⊃R)p(c) ` p(d) ⊃ p(c) (⊃R)` p(c) ⊃ p(d) ⊃ p(c)

correspond to valid derivations in one-and-a-halfth-order logic:

(Ax)Q,P `∅ P (⊃R)P `∅ Q ⊃ P (⊃R)`∅ P ⊃ Q ⊃ P

(Ax)p(d), p(c) `∅ p(c) (⊃R)p(c) `∅ p(d) ⊃ p(c) (⊃R)`∅ p(c) ⊃ p(d) ⊃ p(c)
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Introduction (5)

The (schematic) derivations in first-order logic, where b 6∈ fn(φ),

(Ax)
∀a.φ ` ∀b.φJa 7→ bK (⊃R)
` ∀a.φ ⊃ ∀b.φJa 7→ bK

(Ax)∀c.p(c) ` ∀d.p(d) (⊃R)` ∀c.p(c) ⊃ ∀d.p(d)

correspond to valid derivations in one-and-a-halfth-order logic:

(Ax)∀[a]P `
b#P

∀[a]P (StructR) (b#P `
SUB

∀[a]P = ∀[b]P [a 7→ b])∀[a]P `
b#P

∀[b]P [a 7→ b] (⊃R)`
b#P

∀[a]P ⊃ ∀[b]P [a 7→ b]

(Ax)∀[c]p(c) `∅ ∀[c]p(c) (StructR) (∅ `
SUB

∀[c]p(c) = ∀[d]p(d))∀[c]p(c) `∅ ∀[d]p(d) (⊃R)`∅ ∀[c]p(c) ⊃ ∀[d]p(d)
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Syntax of one-and-a-halfth-order logic

We use Nominal Terms to specify the syntax, since they have built-in support
for:

• meta-variables

• binding

• freshness

Nominal terms allow for a direct and natural representation of systems with bind-
ing.

Nominal terms are first-order, not higher-order.
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Sorts

Base sorts P for ‘predicates’ and T for ‘terms’.

Atomic sort A for the object-level variables.

Sorts τ :
τ ::= P | T | A | [A]τ
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Terms

Atoms a, b, c, . . . have sort A; they represent object-level variable symbols.

UnknownsX, Y, Z, . . . have sort τ ; they represent meta-level variable symbols.
Let P,Q,R be unknowns of sort P, and T, U of sort T.

We call π ·X amoderated unknown.
This represents the permutation of atoms π acting on an unknown term.

Term-formers fρ have an associated arity ρ = (τ1, . . . , τn)τ .
f : ρmeans ‘f with arity ρ’.

Terms t, subscripts indicate sorting rules:

t ::= aA | (π ·Xτ)τ | ([aA]tτ)[A]τ | (f(τ1,...,τn)τ(t
1
τ1
, . . . , tnτn

))τ

Write f for f() if n = 0.
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Terms (2)

Term-formers for one-and-a-halfth-order logic:

• ⊥ : ()P represents falsity

• ⊃: (P,P)P represents implication, write φ ⊃ ψ for⊃(φ, ψ);

• ∀ : ([A]P)P represents universal quantification, write ∀[a]φ for ∀([a]φ)

• ≈: (T,T)P represents object-level equality, write t ≈ u for≈(t, u)

• var : (A)T is variable casting, forced upon us by the sort system,
write a for var(a)

• sub : ([A]τ,T)τ , where τ ∈ {T, [A]T,P, [A]P}, is explicit substitution,
write v[a 7→ t] for sub([a]v, t)

• p1, . . . , pn : (T, . . . ,T)P are object-level predicate term-formers

• f1, . . . , fm : (T, . . . ,T)T are object-level term-formers
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Terms (3)

We may call terms φ and ψ of sort P predicates.

Sugar:

> is ⊥ ⊃ ⊥ ¬φ is φ ⊃ ⊥ φ ∧ ψ is ¬(φ ⊃ ¬ψ)

φ ∨ ψ is ¬φ ⊃ ψ φ⇔ ψ is (φ ⊃ ψ) ∧ (ψ ⊃ φ) ∃[a]φ is ¬∀[a]¬φ

Descending order of operator precedence:

[a]_, _[_ 7→ _], ≈, {¬,∀,∃}, {∧,∨}, ⊃, ⇔

∧, ∨,⊃ and⇔ associate to the right.
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Terms (3)

We may call terms φ and ψ of sort P predicates.

Sugar:

> is ⊥ ⊃ ⊥ ¬φ is φ ⊃ ⊥ φ ∧ ψ is ¬(φ ⊃ ¬ψ)

φ ∨ ψ is ¬φ ⊃ ψ φ⇔ ψ is (φ ⊃ ψ) ∧ (ψ ⊃ φ) ∃[a]φ is ¬∀[a]¬φ

Descending order of operator precedence:

[a]_, _[_ 7→ _], ≈, {¬,∀,∃}, {∧,∨}, ⊃, ⇔

∧, ∨,⊃ and⇔ associate to the right.

Example terms of sort P:

P ⊃ Q ⊃ P P ⊃ ∀[a]P P ⊃ P [a 7→ T ] ∀[a]P ⊃ ∀[b]P [a 7→ b]
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Freshness

Freshness (assertions) a#t, which means ‘a is fresh for t.
If t is an unknownX , the freshness is called primitive.

A freshness context ∆ is a set of primitive freshnesses.

Example freshness contexts:

∅ a#X a#P, b#Q
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Freshness

Freshness (assertions) a#t, which means ‘a is fresh for t.
If t is an unknownX , the freshness is called primitive.

A freshness context ∆ is a set of primitive freshnesses.

Example freshness contexts:

∅ a#X a#P, b#Q

We call ∆ → t a term-in-context.
We may write t if ∆ = ∅.

Example terms-in-context of sort P:

P ⊃ Q ⊃ P a#P → P ⊃ ∀[a]P

a#P → P ⊃ P [a 7→ T ] b#P → ∀[a]P ⊃ ∀[b]P [a 7→ b]



17/35

Derivability of freshness

(#ab)a#b
π-1(a)#X (#X)a#π ·X

(#[]a)a#[a]t
a#t (#[]b)a#[b]t

a#t1 · · · a#tn (#f)a#f(t1, . . . , tn)

a and b range over distinct atoms.

Write ∆ ` a#t when there exists a derivation of a#t using the elements of ∆
as assumptions. Say that a#t is derivable from ∆.
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Derivability of freshness

(#ab)a#b
π-1(a)#X (#X)a#π ·X

(#[]a)a#[a]t
a#t (#[]b)a#[b]t

a#t1 · · · a#tn (#f)a#f(t1, . . . , tn)

a and b range over distinct atoms.

Write ∆ ` a#t when there exists a derivation of a#t using the elements of ∆
as assumptions. Say that a#t is derivable from ∆.

Examples:

` a#b ` a#∀[a]P a#P ` a#∀[b]P
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Derivability of equality

Equality (assertions) t = u, where t and u are of the same sort.

Nominal Algebra is the logic of equality between nominal terms.
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Derivability of equality

Equality (assertions) t = u, where t and u are of the same sort.

Nominal Algebra is the logic of equality between nominal terms.

Derivability:

(refl)t = t
t = u (symm)u = t

t = u u = v (tran)t = v

t = u (cong)C[t] = C[u]
a#t b#t (perm)(a b) · t = t

∆πσ (axA)tπσ = uπσ
A is ∆ → t = u

[a#X1, . . . , a#Xn] ∆
···

t = u (fr) (a 6∈ t, u,∆)t = u

Write ∆ `
T
t = u when t = u is derivable from ∆ using axioms A from T only.



19/35

Derivability of equality (2)

Nominal algebraic theory SUB of explicit substitution:

(var 7→) a[a 7→ T ] = T
(# 7→) a#X → X [a 7→ T ] =X
(f 7→) f(X1, . . . , Xn)[a 7→ T ] = f(X1[a 7→ T ], . . . , Xn[a 7→ T ])

(abs 7→) b#T → ([b]X)[a 7→ T ] = [b](X [a 7→ T ])
(ren 7→) b#X → X [a 7→ b] = (b a) ·X
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Derivability of equality (2)

Nominal algebraic theory SUB of explicit substitution:

(var 7→) a[a 7→ T ] = T
(# 7→) a#X → X [a 7→ T ] =X
(f 7→) f(X1, . . . , Xn)[a 7→ T ] = f(X1[a 7→ T ], . . . , Xn[a 7→ T ])

(abs 7→) b#T → ([b]X)[a 7→ T ] = [b](X [a 7→ T ])
(ren 7→) b#X → X [a 7→ b] = (b a) ·X

Examples:

b#P `
SUB

∀[a]P = ∀[b]P [a 7→ b]

`
SUB

X [a 7→ a] = X

a#Y `
SUB

Z[a 7→ X ][b 7→ Y ] = Z[b 7→ Y ][a 7→ X [b 7→ Y ]]
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Sequent calculus for one-and-a-halfth-order logic

Let (predicate) contexts Φ,Ψ be finite sets of predicates.
Examples:

∅ φ φ,Φ Φ,Φ′

A sequent is a triple Φ `
∆

Ψ.
We may omit empty predicate contexts, e.g. writing `

∆
for ∅ `

∆
∅.

Define derivability on sequents...
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Sequent calculus (2)

Rules resembling Gentzen’s sequent calculus for first-order logic:

(Ax)φ, Φ `
∆

Ψ, φ (⊥L)⊥, Φ `
∆

Ψ

Φ `
∆

Ψ, φ ψ, Φ `
∆

Ψ (⊃L)φ ⊃ ψ, Φ `
∆

Ψ
φ, Φ `

∆
Ψ, ψ (⊃R)Φ `

∆
Ψ, φ ⊃ ψ

φ[a 7→ t], Φ `
∆

Ψ (∀L)∀[a]φ, Φ `
∆

Ψ
Φ `

∆
Ψ, ψ (∀R) (∆ ` a#Φ,Ψ)Φ `

∆
Ψ, ∀[a]ψ

φ[a 7→ t′], Φ `
∆

Ψ (≈L)
t′ ≈ t, φ[a 7→ t], Φ `

∆
Ψ

(≈R)Φ `
∆

Ψ, t ≈ t
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Sequent calculus (3)

Other rules:

φ′, Φ `
∆

Ψ (StructL)φ, Φ `
∆

Ψ
(∆ `

SUB
φ′ = φ)

Φ `
∆

Ψ, ψ′
(StructR)Φ `

∆
Ψ, ψ

(∆ `
SUB

ψ′ = ψ)

Φ `
∆∪{a#X1,...,a#Xn}

Ψ (Fresh) (a 6∈ Φ,Ψ,∆)Φ `
∆

Ψ

Φ `
∆

Ψ, φ φ′, Φ `
∆

Ψ (Cut)Φ `
∆

Ψ
(∆ `

SUB
φ = φ′)
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Example derivations

Derivation of a#P → P ⊃ ∀[a]P :

(Ax)P `
a#P

P (∀R) (a#P ` a#P )P `
a#P

∀[a]P (⊃R)`
a#P

P ⊃ ∀[a]P

Derivation of a#P → P ⊃ P [a 7→ T ]:

(Ax)P `
a#P

P (StructR) (a#P `
SUB

P = P [a 7→ T ])P `
a#P

P [a 7→ T ] (⊃R)`
a#P

P ⊃ P [a 7→ T ]
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Properties of the sequent calculus

We may permute atoms and instantiate unknowns in derivations.

Theorem 1 If Π is a valid derivation of Φ `
∆

Ψ,
then Ππ is a valid derivation of Φπ `

∆π Ψπ.

Theorem 2 If Π is a valid derivation of Φ `
∆

Ψ and ∆′ ` ∆σ,
then Π(σ,∆′) is a valid derivation of Φσ `

∆′ Ψσ.

Π(σ,∆′) is Π in which:

• each unknownX is replaced by σ(X)

• each freshness context ∆ is replaced by ∆′
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Properties of the sequent calculus (2)

For example, Π is the derivation of a#P → P ⊃ P [a 7→ T ]:

(Ax)P `
a#P

P (StructR) (a#P `
SUB

P = P [a 7→ T ])P `
a#P

P [a 7→ T ] (⊃R)`
a#P

P ⊃ P [a 7→ T ]

Take σ = [p(c)/P, d/T ] and ∆′ = ∅, then:
• ∆′ ` ∆σ, i.e. ∅ ` a#p(c)

• Π(σ,∆′) is the following valid derivation of p(c) ⊃ p(c)[a 7→ d]:

(Ax)p(c) `∅ p(c) (StructR) (∅ `
SUB

p(c) = p(c)[a 7→ d])p(c) `∅ p(c)[a 7→ d] (⊃R)`∅ p(c) ⊃ p(c)[a 7→ d]
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Properties of the sequent calculus (3)

Theorem 3 [Cut elimination]
The (Cut) rule is admissible in the system without it.
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Properties of the sequent calculus (3)

Theorem 3 [Cut elimination]
The (Cut) rule is admissible in the system without it.

Corollary 4 The sequent calculus is consistent, i.e. `
∆
can never be derived.
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Axiomatisation of one-and-a-halfth-order logic

Theory FOL extends theory SUB with the following axioms:

P ⊃ Q ⊃ P = > ¬¬P ⊃ P = > (Props)
(P ⊃ Q) ⊃ (Q ⊃ R) ⊃ (P ⊃ R) = > ⊥ ⊃ P = >

∀[a]P ⊃ P [a 7→ T ] = > (Quants)
∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

a#P → ∀[a](P ⊃ Q) ⇔ P ⊃ ∀[a]Q = >

T ≈ T = > U ≈ T ∧ P [a 7→ T ] ⊃ P [a 7→ U ] = > (Eq)

Axioms are all of the form φ = >, which intuitively means ‘φ is true’.

Note that this is a finite number of axioms.
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Axiomatisation of one-and-a-halfth-order logic (2)

The conjunctive form Φ∧ of a predicate contexts Φ is Φ where we put ∧ between
its elements. Analogously, define its disjunctive form by putting ∨ between its
elements. For example:

∅∧ = > {φ, ψ}∧ = φ ∧ ψ ∅∨ = ⊥ {φ, ψ}∨ = φ ∨ ψ
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Axiomatisation of one-and-a-halfth-order logic (2)

The conjunctive form Φ∧ of a predicate contexts Φ is Φ where we put ∧ between
its elements. Analogously, define its disjunctive form by putting ∨ between its
elements. For example:

∅∧ = > {φ, ψ}∧ = φ ∧ ψ ∅∨ = ⊥ {φ, ψ}∨ = φ ∨ ψ

Theorem 5 For all predicate contexts Φ,Ψ and freshness contexts ∆:

Φ `
∆

Ψ is derivable iff ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >.

So sequent and equational derivability are equivalent.
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Axiomatisation of one-and-a-halfth-order logic (2)

The conjunctive form Φ∧ of a predicate contexts Φ is Φ where we put ∧ between
its elements. Analogously, define its disjunctive form by putting ∨ between its
elements. For example:

∅∧ = > {φ, ψ}∧ = φ ∧ ψ ∅∨ = ⊥ {φ, ψ}∨ = φ ∨ ψ

Theorem 5 For all predicate contexts Φ,Ψ and freshness contexts ∆:

Φ `
∆

Ψ is derivable iff ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >.

So sequent and equational derivability are equivalent.

Corollary 6 Theory FOL is consistent, i.e. ∆ `
FOL

> = ⊥ does not hold.
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Relation to First-order Logic

Call a term or a predicate context ground if it does not contain unknowns or
explicit substitutions.

Call Φ ` Ψ a first-order sequent, when Φ and Ψ are ground predicate contexts.

Gentzen’s sequent calculus for first-order logic:

(Ax)φ, Φ ` Ψ, φ (⊥L)⊥, Φ ` Ψ

Φ ` Ψ, φ ψ, Φ ` Ψ (⊃L)φ ⊃ ψ, Φ ` Ψ
φ, Φ ` Ψ, ψ (⊃R)Φ ` Ψ, φ ⊃ ψ

φJa 7→ tK, Φ ` Ψ (∀L)∀a.φ, Φ ` Ψ
Φ ` Ψ, φ (∀R)Φ ` Ψ, ∀a.φ (a 6∈ fn(Φ,Ψ))

φJa 7→ t′K, Φ ` Ψ (≈ L)
t′ ≈ t, φJa 7→ tK, Φ ` Ψ

(≈ R)Φ ` Ψ, t ≈ t
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Relation to First-order Logic (2)

Note that:

• we write ∀a.φ for ∀[a]φ

• Ja 7→ tK is capture-avoiding substitution

• a 6∈ fn(φ) is ‘a does not occur in the free names of φ’

• we take predicates up to α-equivalence
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Relation to First-order Logic (2)

Note that:

• we write ∀a.φ for ∀[a]φ

• Ja 7→ tK is capture-avoiding substitution

• a 6∈ fn(φ) is ‘a does not occur in the free names of φ’

• we take predicates up to α-equivalence

Theorem 7 Φ ` Ψ is derivable in the sequent calculus for first-order logic, iff
Φ `∅ Ψ is derivable in the sequent calculus for one-and-a-halfth-order logic.

So on ground terms, one-and-a-halfth-order logic is first-order logic.
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Semantics

For closed terms t, its ground form tJK is t in which each explicit substitution
v[a 7→ u] is replaced by vJa 7→ uK bottom-up in the syntax.

Theorem 8 For closed terms t, `
SUB

t = tJK

Call a substitution σ closing for a term t if tσ is closed.

A term-in-context ∆ → φ is valid iff for all closing substitutions σ (for φ) for
which ` ∆σ holds, φσJK is valid in the semantics of first-order logic.
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Semantics

For closed terms t, its ground form tJK is t in which each explicit substitution
v[a 7→ u] is replaced by vJa 7→ uK bottom-up in the syntax.

Theorem 8 For closed terms t, `
SUB

t = tJK

Call a substitution σ closing for a term t if tσ is closed.

A term-in-context ∆ → φ is valid iff for all closing substitutions σ (for φ) for
which ` ∆σ holds, φσJK is valid in the semantics of first-order logic.

The sequent calculus for one-and-a-halfth-order logic is sound for this seman-
tics:

Theorem 9 If `
∆
φ is derivable then ∆ → φ is valid.
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Conclusions

Using nominal terms, we can:

• accurately represent systems with binding:
e.g. explicit substitution and first-order logic

• specify novel systems with their own mathematical interest:
e.g. one-and-a-halfth-order logic

One-and-a-halfth-order logic:

• makes meta-level concepts of first-order logic explicit

• has a sequent calculus with syntax-directed rules

• has a semantics in first-order logic

• has a finite equational axiomatisation

• is the result of axiomatising first-order logic in nominal algebra
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Related work

In second-order logic (SOL) we can quantify over predicates anywhere, which
makes it more expressive than one-and-a-halfh-order logic.

On the other hand, we can easily extend theory FOL with one axiom to express
the principle of induction on natural numbers:

P [a 7→ 0] ∧ ∀[a](P ⊃ P [a 7→ succ(a)]) ⊃ ∀[a]P = >.

Higher-order logic (HOL) is type raising, while our logic is not:

• P [a 7→ t] corresponds to f (t) in HOL, where f : T → P
• P [a 7→ t][a′ 7→ t′] corresponds to f ′(t)(t′) where f ′ : T → T → P
• ...

One-and-a-halfth-order logic is not a subset of SOL or HOL because of fresh-
nesses.
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Future work

• Completeness of the sequent calculus with respect to the semantics.

• Let unknowns range over sequent derivations, and establish a Curry-Howard
correspondence (term-in-contexts as types, derivations as terms).

• Two-and-a-halfth-order logic (where you can abstract X)?

• Implementation and automation?
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Just to scare you

(Ax)
P [b 7→ c][a 7→ c] `c#P P [b 7→ c][a 7→ c]

(∀L)
∀[a]P [b 7→ c] `c#P P [b 7→ c][a 7→ c]

(StructL) (1.)
(∀[a]P )[b 7→ c] `c#P P [b 7→ a][a 7→ c]

(∀L)
∀[b]∀[a]P `c#P P [b 7→ c][a 7→ c]

(∀R) (2.)
∀[b]∀[a]P `c#P ∀[c]P [b 7→ c][a 7→ c]

(StructR) (3.)
∀[b]∀[a]P `c#P ∀[a]P [b 7→ a]

(Fresh) (4.)
∀[b]∀[a]P `∅ ∀[a]P [b 7→ a]

Side-conditions:

1. c#P `SUB ∀[a]P [b 7→ c] = (∀[a]P )[b 7→ c]

2. c#P ` c#∀[b]∀[a]P

3. c#P `SUB ∀[c]P [b 7→ c][a 7→ c] = ∀[a]P [b 7→ a]

4. c 6∈ ∀[b]∀[a]P, ∀[a]P [b 7→ a]


