TU/

One-and-a-halfth-order Logic

Aad Mathijssen Murdoch J. Gabbay

22th June 2006

/department of mathematics and computer science

Motivation

Consider the following valid assertions in first-order logic:

- $\bullet \ \phi \supset \psi \supset \phi$
- if $a \not\in fn(\phi)$ then $\phi \supset \forall a.\phi$
- if $a \not\in fn(\phi)$ then $\phi \supset \phi[\![a \mapsto t]\!]$
- if $b \not\in fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi[\![a \mapsto b]\!]$

Motivation

Consider the following valid assertions in first-order logic:

- $\bullet \ \phi \supset \psi \supset \phi$
- $\bullet \text{ if } a \not\in \mathit{fn}(\phi) \text{ then } \phi \supset \forall a.\phi$
- if $a \not\in fn(\phi)$ then $\phi \supset \phi[\![a \mapsto t]\!]$
- if $b \not\in fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket$

These are not valid syntax in first-order logic, because of meta-level concepts:

- meta-variables *varying* over syntax: ϕ , ψ , a, b, t
- properties of syntax: $a \not\in fn(\phi)$, $\phi[\![a \mapsto t]\!]$, α -equivalence

Motivation

Consider the following valid assertions in first-order logic:

- $\bullet \ \phi \supset \psi \supset \phi$
- if $a \not\in fn(\phi)$ then $\phi \supset \forall a.\phi$
- if $a \not\in fn(\phi)$ then $\phi \supset \phi[\![a \mapsto t]\!]$
- if $b \not\in fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket$

These are not valid syntax in first-order logic, because of meta-level concepts:

- meta-variables *varying* over syntax: ϕ , ψ , a, b, t
- properties of syntax: $a \not\in fn(\phi)$, $\phi[\![a \mapsto t]\!]$, α -equivalence

Is there a logic in which the above assertions can be expressed directly in the syntax?

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

$$\frac{\overline{\psi,\phi\vdash\phi}\left(\mathbf{A}\mathbf{x}\right)}{\overline{\phi\vdash\psi\supset\phi}\left(\supset\mathbf{R}\right)}_{\vdash\phi\supset\psi\supset\phi}\left(\supset\mathbf{R}\right)$$

$$\begin{array}{c} \frac{\overline{\mathsf{p}(d),\mathsf{p}(c)\vdash\mathsf{p}(c)}\left(\mathbf{A}\mathbf{x}\right)}{\mathbf{p}(c)\vdash\mathsf{p}(d)\supset\mathsf{p}(c)}\left(\supset\mathbf{R}\right)\\ \overline{\mathsf{p}(c)\succ\mathsf{p}(d)\supset\mathsf{p}(c)}\left(\supset\mathbf{R}\right) \end{array} \\ \end{array}$$

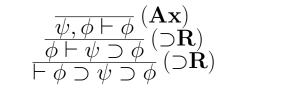
And for $b \not\in fn(\phi)$:

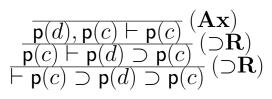
$$\frac{\overline{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket} (\mathbf{A}\mathbf{x})}{\vdash \forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\supset \mathbf{R})$$

$$\frac{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\supset \mathbf{R})$$

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:





And for $b \not\in fn(\phi)$:

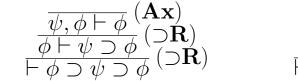
$$\frac{\overline{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket} (\mathbf{A}\mathbf{x})}{\vdash \forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\supset \mathbf{R})$$

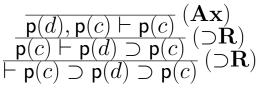
$$\frac{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \\ (\supset \mathbf{R})$$

The left ones are not derivations, they are *schemas* of derivations. When p is a *specific* atomic predicate and c and d are *specific* variables, the right ones are derivations; they are *instances* of the schemas on the left.

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:





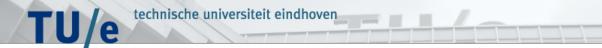
And for $b \not\in fn(\phi)$:

$$\frac{\overline{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket} (\mathbf{A}\mathbf{x})}{\vdash \forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\supset \mathbf{R})$$

$$\frac{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \\ (\supset \mathbf{R})$$

The left ones are not derivations, they are *schemas* of derivations. When p is a *specific* atomic predicate and c and d are *specific* variables, the right ones are derivations; they are *instances* of the schemas on the left.

Is there a logic in which the derivation on the left is a derivation too?

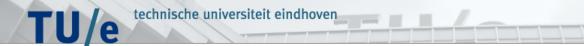


Motivation (3)

First-order logic and its proof systems formalise *reasoning*.

But also a lot of reasoning is *about* first-order logic.

So why shouldn't that be formalised?



Motivation (3)

First-order logic and its proof systems formalise *reasoning*.

But also a lot of reasoning is *about* first-order logic.

So why shouldn't that be formalised?

One-and-a-halfth-order logic does this by means of formalising:

- meta-variables
- properties of syntax

Overview

TU/e

• Introduction to one-and-a-halfth-order logic

technische universiteit eindhoven

- Syntax of one-and-a-halfth-order logic
- Sequent calculus for one-and-a-halfth-order logic
- Axiomatisation of one-and-a-halfth-order logic
- Relation to first-order logic
- Semantics of one-and-a-halfth-order logic
- Conclusions, related and future work

Introduction

In the syntax of one-and-a-halfth-order logic:

- Unknowns P , Q and T represent meta-variables ϕ , ψ and t.
- Atoms *a* and *b* represent meta-variables *a* and *b*.
- Freshness a # P represents $a \notin fn(\phi)$.
- Explicit substitution $P[a \mapsto T]$ represents $\phi[\![a \mapsto t]\!]$.

Introduction (2)

The meta-level assertions in first-order logic

 $\bullet \ \phi \supset \psi \supset \phi$

TU

- if $a \not\in fn(\phi)$ then $\phi \supset \forall a.\phi$
- if $a \not\in fn(\phi)$ then $\phi \supset \phi[\![a \mapsto t]\!]$
- if $b \not\in fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket$

correspond to valid assertions in the syntax of one-and-a-halfth-order logic:

- $\bullet \ P \supset Q \supset P$
- $\bullet \ a \# P \to P \supset \forall [a] P$
- $a \# P \to P \supset P[a \mapsto T]$
- $b \# P \to \forall [a] P \supset \forall [b] P[a \mapsto b]$

Introduction (3)

TU/

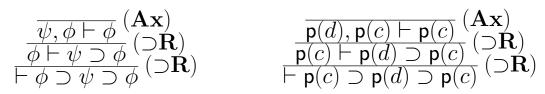
In sequent derivations of one-and-a-halfth-order logic:

- Contexts of freshnesses are added to the sequents.
- *Derivability of freshnesses* are added as side-conditions.
- Substitutional equivalence on terms is added as two derivation rules, taking care of α -equivalence and substitution.

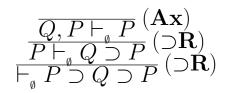
Introduction (4)

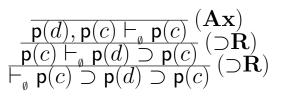
TU/e

The (schematic) derivations in first-order logic



correspond to valid derivations in one-and-a-halfth-order logic:





Introduction (5)

TU/e

The (schematic) derivations in first-order logic, where $b \not\in f\!n(\phi)$,

$$\frac{\overline{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket}}{\neg \forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{\Box}\mathbf{R})$$

correspond to valid derivations in one-and-a-halfth-order logic:

$$\begin{array}{l} & \frac{\forall [a]P \vdash_{_{b\#P}} \forall [a]P}{\forall [a]P \vdash_{_{b\#P}} \forall [b]P[a \mapsto b]} \left(\mathbf{StructR} \right) \\ \hline \forall [a]P \vdash_{_{b\#P}} \forall [b]P[a \mapsto b] \left(\supset \mathbf{R} \right) \end{array} & (b\#P \vdash_{_{\mathsf{SUB}}} \forall [a]P = \forall [b]P[a \mapsto b] \right) \\ \hline \vdash_{_{b\#P}} \forall [a]P \supset \forall [b]P[a \mapsto b] \left(\supset \mathbf{R} \right) \end{aligned} \\ & \frac{\forall [c]\mathbf{p}(c) \vdash_{_{\emptyset}} \forall [c]\mathbf{p}(c)}{\forall [c]\mathbf{p}(c) \vdash_{_{\emptyset}} \forall [d]\mathbf{p}(d)} \left(\mathbf{StructR} \right) \\ \hline \forall [c]\mathbf{p}(c) \vdash_{_{\emptyset}} \forall [d]\mathbf{p}(d)} \left((\supset \mathbf{R}) \right) \end{aligned} \quad (\emptyset \vdash_{_{\mathsf{SUB}}} \forall [c]\mathbf{p}(c) = \forall [d]\mathbf{p}(d)) \end{aligned}$$

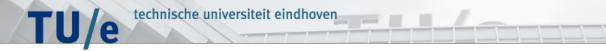
Syntax of one-and-a-halfth-order logic

We use **Nominal Terms** to specify the syntax, since they have built-in support for:

- meta-variables
- binding
- freshness

Nominal terms allow for a *direct* and *natural* representation of systems with binding.

Nominal terms are *first-order*, not higher-order.



Sorts

Base sorts $\mathbb P$ for 'predicates' and $\mathbb T$ for 'terms'.

Atomic sort \mathbb{A} for the object-level variables.

Sorts τ :

$$\tau ::= \mathbb{P} \mid \mathbb{T} \mid \mathbb{A} \mid [\mathbb{A}]\tau$$

Terms

TU

Atoms a, b, c, \ldots have sort \mathbb{A} ; they represent *object-level* variable symbols.

Unknowns X, Y, Z, \ldots have sort τ ; they represent *meta-level* variable symbols. Let P, Q, R be unknowns of sort \mathbb{P} , and T, U of sort \mathbb{T} .

We call $\pi \cdot X$ a **moderated unknown**. This represents the **permutation of atoms** π acting on an unknown term.

Term-formers f_{ρ} have an associated **arity** $\rho = (\tau_1, \ldots, \tau_n)\tau$. f : ρ means 'f with arity ρ '.

Terms *t*, subscripts indicate sorting rules:

$$t ::= a_{\mathbb{A}} \mid (\pi \cdot X_{\tau})_{\tau} \mid ([a_{\mathbb{A}}]t_{\tau})_{[\mathbb{A}]\tau} \mid (\mathsf{f}_{(\tau_{1},...,\tau_{n})\tau}(t_{\tau_{1}}^{1},\ldots,t_{\tau_{n}}^{n}))_{\tau}$$

Write f for f() if n = 0.

Terms (2)

TU

Term-formers for one-and-a-halfth-order logic:

- \bot : () \mathbb{P} represents *falsity*
- \supset : $(\mathbb{P}, \mathbb{P})\mathbb{P}$ represents *implication*, write $\phi \supset \psi$ for $\supset (\phi, \psi)$;
- \forall : $([\mathbb{A}]\mathbb{P})\mathbb{P}$ represents universal quantification, write $\forall [a]\phi$ for $\forall ([a]\phi)$
- $\approx:(\mathbb{T},\mathbb{T})\mathbb{P}$ represents object-level equality, write $t\approx u$ for $\approx\!\!(t,u)$
- var : (A)T is *variable casting*, forced upon us by the sort system, write a for var(a)
- sub : $([\mathbb{A}]\tau, \mathbb{T})\tau$, where $\tau \in \{\mathbb{T}, [\mathbb{A}]\mathbb{T}, \mathbb{P}, [\mathbb{A}]\mathbb{P}\}$, is explicit substitution, write $v[a \mapsto t]$ for sub([a]v, t)
- \bullet $p_1,\ldots,p_n:(\mathbb{T},\ldots,\mathbb{T})\mathbb{P}$ are object-level predicate term-formers
- $\bullet~f_1,\ldots,f_m:(\mathbb{T},\ldots,\mathbb{T})\mathbb{T}$ are object-level term-formers

Terms (3)

We may call terms ϕ and ψ of sort \mathbb{P} **predicates**.

Sugar:

Descending order of operator precedence:

$$[a]_, \ _[_ \mapsto _], \ \approx, \ \{\neg, \forall, \exists\}, \ \{\land, \lor\}, \ \supset, \Leftrightarrow$$

 \land , \lor , \supset and \Leftrightarrow associate to the right.

Terms (3)

We may call terms ϕ and ψ of sort \mathbb{P} **predicates**.

Sugar:

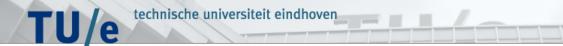
Descending order of operator precedence:

$$[a]_, \ _[_ \mapsto _], \ \approx, \ \{\neg, \forall, \exists\}, \ \{\land, \lor\}, \ \supset, \Leftrightarrow$$

 \land , \lor , \supset and \Leftrightarrow associate to the right.

Example terms of sort \mathbb{P} :

 $P\supset Q\supset P \qquad P\supset \forall [a]P \qquad P\supset P[a\mapsto T] \qquad \forall [a]P\supset \forall [b]P[a\mapsto b]$



Freshness

Freshness (assertions) a # t, which means 'a is fresh for t. If t is an unknown X, the freshness is called **primitive**.

A **freshness context** Δ is a set of *primitive* freshnesses.

Example freshness contexts:

$$\emptyset \quad a \# X \quad a \# P, b \# Q$$

Freshness

Freshness (assertions) a # t, which means 'a is fresh for t. If t is an unknown X, the freshness is called **primitive**.

A **freshness context** Δ is a set of *primitive* freshnesses.

Example freshness contexts:

$$\emptyset \qquad a \# X \qquad a \# P, b \# Q$$

We call $\Delta \rightarrow t$ a **term-in-context**. We may write t if $\Delta = \emptyset$.

Example terms-in-context of sort \mathbb{P} :

$$\begin{split} P \supset Q \supset P & a \# P \to P \supset \forall [a] P \\ a \# P \to P \supset P[a \mapsto T] & b \# P \to \forall [a] P \supset \forall [b] P[a \mapsto b] \end{split}$$

Derivability of freshness

TU/e

$$\frac{\overline{a\#b}}{a\#a} (\#\mathbf{ab}) \quad \frac{\pi^{-1}(a)\#X}{a\#\pi \cdot X} (\#\mathbf{X})$$

$$\frac{\overline{a\#b}}{a\#[a]t} (\#[]\mathbf{a}) \quad \frac{a\#t}{a\#[b]t} (\#[]\mathbf{b}) \quad \frac{a\#t_1 \cdots a\#t_n}{a\#f(t_1, \dots, t_n)} (\#\mathbf{f})$$

 \boldsymbol{a} and \boldsymbol{b} range over distinct atoms.

Write $\Delta \vdash a \# t$ when there exists a derivation of a # t using the elements of Δ as assumptions. Say that a # t is derivable from Δ .

Derivability of freshness

$$\overline{a\#b} (\#\mathbf{ab}) \quad \frac{\pi^{-1}(a)\#X}{a\#\pi \cdot X} (\#\mathbf{X})$$
$$\overline{a\#[a]t} (\#[]\mathbf{a}) \quad \frac{a\#t}{a\#[b]t} (\#[]\mathbf{b}) \quad \frac{a\#t_1 \cdots a\#t_n}{a\#f(t_1, \dots, t_n)} (\#\mathbf{f})$$

 \boldsymbol{a} and \boldsymbol{b} range over distinct atoms.

Write $\Delta \vdash a \# t$ when there exists a derivation of a # t using the elements of Δ as assumptions. Say that a # t is derivable from Δ .

Examples:

TU/

e

$$\vdash a \# b \qquad \vdash a \# \forall [a] P \qquad a \# P \vdash a \# \forall [b] P$$

Derivability of equality

Equality (assertions) t = u, where t and u are of the same sort.

Nominal Algebra is the logic of equality between nominal terms.

Derivability of equality

Equality (assertions) t = u, where t and u are of the same sort.

Nominal Algebra is the logic of equality between nominal terms.

Derivability:

TU/e

$$\begin{split} \overline{t = t} & (\mathbf{refl}) \quad \frac{t = u}{u = t} (\mathbf{symm}) \quad \frac{t = u \quad u = v}{t = v} (\mathbf{tran}) \\ \frac{t = u}{C[t] = C[u]} (\mathbf{cong}) \quad \frac{a \# t \quad b \# t}{(a \ b) \cdot t = t} (\mathbf{perm}) \\ \frac{\Delta^{\pi} \sigma}{t^{\pi} \sigma = u^{\pi} \sigma} (\mathbf{ax_A}) A \text{ is } \Delta \to t = u \quad \begin{bmatrix} a \# X_1, \dots, a \# X_n \end{bmatrix} \quad \Delta \\ \vdots \\ \frac{t = u}{t = u} (\mathbf{fr}) \quad (a \notin t, u, \Delta) \end{split}$$

Write $\Delta \vdash_{\tau} t = u$ when t = u is derivable from Δ using axioms A from T only.

Derivability of equality (2)

TU/e

Nominal algebraic theory SUB of explicit substitution:

$$\begin{array}{ll} (\mathbf{var} \mapsto) & a[a \mapsto T] = T \\ (\# \mapsto) & a\#X \to X[a \mapsto T] = X \\ (\mathbf{f} \mapsto) & \mathbf{f}(X_1, \dots, X_n)[a \mapsto T] = \mathbf{f}(X_1[a \mapsto T], \dots, X_n[a \mapsto T]) \\ (\mathbf{abs} \mapsto) & b\#T \to ([b]X)[a \mapsto T] = [b](X[a \mapsto T]) \\ (\mathbf{ren} \mapsto) & b\#X \to X[a \mapsto b] = (b \ a) \cdot X \end{array}$$

Derivability of equality (2)

Nominal algebraic theory SUB of explicit substitution:

$$\begin{array}{ll} (\mathbf{var} \mapsto) & a[a \mapsto T] = T \\ (\# \mapsto) & a\#X \to X[a \mapsto T] = X \\ (\mathbf{f} \mapsto) & \mathbf{f}(X_1, \dots, X_n)[a \mapsto T] = \mathbf{f}(X_1[a \mapsto T], \dots, X_n[a \mapsto T]) \\ (\mathbf{abs} \mapsto) & b\#T \to ([b]X)[a \mapsto T] = [b](X[a \mapsto T]) \\ (\mathbf{ren} \mapsto) & b\#X \to X[a \mapsto b] = (b \ a) \cdot X \end{array}$$

Examples:

TU/e

$$\begin{split} b \# P \vdash_{\text{sub}} \forall [a] P = \forall [b] P[a \mapsto b] \\ \vdash_{\text{sub}} X[a \mapsto a] = X \\ a \# Y \vdash_{\text{sub}} Z[a \mapsto X][b \mapsto Y] = Z[b \mapsto Y][a \mapsto X[b \mapsto Y]] \end{split}$$

technische universiteit eindhoven

Sequent calculus for one-and-a-halfth-order logic

Let **(predicate) contexts** Φ, Ψ be finite sets of predicates. Examples:

$$\emptyset \hspace{0.4cm} \phi \hspace{0.4cm} \phi, \Phi \hspace{0.4cm} \Phi, \Phi'$$

A **sequent** is a triple $\Phi \vdash_{\Delta} \Psi$. We may omit empty predicate contexts, e.g. writing \vdash_{Δ} for $\emptyset \vdash_{\Delta} \emptyset$.

Define derivability on sequents...

TU/

Sequent calculus (2)

TU/e

Rules resembling Gentzen's sequent calculus for first-order logic:

$$\begin{split} \overline{\phi, \Phi \vdash_{\Delta} \Psi, \phi} (\mathbf{A}\mathbf{x}) & \overline{\perp, \Phi \vdash_{\Delta} \Psi} (\bot \mathbf{L}) \\ \frac{\Phi \vdash_{\Delta} \Psi, \phi - \psi, \Phi \vdash_{\Delta} \Psi}{\phi \supset \psi, \Phi \vdash_{\Delta} \Psi} (\supset \mathbf{L}) & \frac{\phi, \Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \phi \supset \psi} (\supset \mathbf{R}) \\ \frac{\phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi}{\forall [a] \phi, \Phi \vdash_{\Delta} \Psi} (\forall \mathbf{L}) & \frac{\Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \forall [a] \psi} (\forall \mathbf{R}) \quad (\Delta \vdash a \# \Phi, \Psi) \\ \frac{\phi[a \mapsto t'], \Phi \vdash_{\Delta} \Psi}{t' \approx t, \phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi} (\approx \mathbf{L}) & \overline{\Phi \vdash_{\Delta} \Psi, t \approx t} (\approx \mathbf{R}) \end{split}$$

Sequent calculus (3)

Other rules:

TU/e

$$\begin{split} \frac{\phi', \Phi \vdash_{\Delta} \Psi}{\phi, \Phi \vdash_{\Delta} \Psi} \left(\mathbf{StructL} \right) & \left(\Delta \vdash_{\mathsf{SUB}} \phi' = \phi \right) \\ \frac{\Phi \vdash_{\Delta} \Psi, \psi'}{\Phi \vdash_{\Delta} \Psi, \psi} \left(\mathbf{StructR} \right) & \left(\Delta \vdash_{\mathsf{SUB}} \psi' = \psi \right) \\ \frac{\Phi \vdash_{\Delta \sqcup \{a \# X_1, \dots, a \# X_n\}} \Psi}{\Phi \vdash_{\Delta} \Psi} \left(\mathbf{Fresh} \right) & \left(a \not\in \Phi, \Psi, \Delta \right) \\ \frac{\Phi \vdash_{\Delta} \Psi, \phi - \phi', \Phi \vdash_{\Delta} \Psi}{\Phi \vdash_{\Delta} \Psi} \left(\mathbf{Cut} \right) & \left(\Delta \vdash_{\mathsf{SUB}} \phi = \phi' \right) \end{split}$$

Example derivations

TU/e

Derivation of $a \# P \to P \supset \forall [a] P$:

$$\frac{\overline{P \vdash_{a \# P} P}(\mathbf{A}\mathbf{x})}{\frac{P \vdash_{a \# P} \forall [a] P}{\vdash_{a \# P} \forall [a] P} (\forall \mathbf{R})} (a \# P \vdash a \# P) \xrightarrow{P \vdash_{a \# P} \forall [a] P} (\supset \mathbf{R})$$

Derivation of $a \# P \to P \supset P[a \mapsto T]$:

$$\frac{\overline{P \vdash_{a \# P} P}\left(\mathbf{Ax}\right)}{\frac{P \vdash_{a \# P} P\left[a \mapsto T\right]}{\vdash_{a \# P} P\left[a \mapsto T\right]}\left(\mathbf{StructR}\right) \quad (a \# P \vdash_{\mathsf{sub}} P = P[a \mapsto T])} \xrightarrow{\left[P \vdash_{a \# P} P \supset P[a \mapsto T\right]} (\supset \mathbf{R})$$

Properties of the sequent calculus

We may *permute* atoms and *instantiate* unknowns in derivations.

Theorem 1 If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$, then Π^{π} is a valid derivation of $\Phi^{\pi} \vdash_{\Delta^{\pi}} \Psi^{\pi}$.

Theorem 2 If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$ and $\Delta' \vdash \Delta \sigma$, then $\Pi(\sigma, \Delta')$ is a valid derivation of $\Phi \sigma \vdash_{\Delta'} \Psi \sigma$.

 $\Pi(\sigma,\Delta')$ is Π in which:

- \bullet each unknown X is replaced by $\sigma(X)$
- \bullet each freshness context Δ is replaced by Δ'

Properties of the sequent calculus (2)

For example, Π is the derivation of $a \# P \to P \supset P[a \mapsto T]$:

$$\frac{\overline{P \vdash_{a \# P} P} (\mathbf{Ax})}{\frac{P \vdash_{a \# P} P[a \mapsto T]}{-_{a \# P} P \supset P[a \mapsto T]} (\mathbf{StructR}) \quad (a \# P \vdash_{\mathsf{sub}} P = P[a \mapsto T])$$

Take $\sigma = [{\bf p}(c)/P, d/T]$ and $\Delta' = \emptyset$, then:

technische universiteit eindhoven

• $\Delta' \vdash \Delta \sigma$, i.e. $\emptyset \vdash a \# \mathbf{p}(c)$

TU/

• $\Pi(\sigma, \Delta')$ is the following valid derivation of $\mathbf{p}(c) \supset \mathbf{p}(c)[a \mapsto d]$:

$$\begin{array}{c} \displaystyle \frac{\overline{\mathsf{p}(c) \vdash_{\scriptscriptstyle \emptyset} \mathsf{p}(c)} \left(\mathbf{A} \mathbf{x} \right) }{ \frac{\mathsf{p}(c) \vdash_{\scriptscriptstyle \emptyset} \mathsf{p}(c) [a \mapsto d]}{\mathsf{p}(c) \vdash_{\scriptscriptstyle \emptyset} \mathsf{p}(c) [a \mapsto d]} \left(\mathbf{StructR} \right) & (\emptyset \vdash_{\mathsf{sub}} \mathsf{p}(c) = \mathsf{p}(c)[a \mapsto d]) \\ \displaystyle \vdash_{\scriptscriptstyle \emptyset} \mathsf{p}(c) \supset \mathsf{p}(c)[a \mapsto d] \left(\supset \mathbf{R} \right) \end{array}$$

TU/e

Properties of the sequent calculus (3)

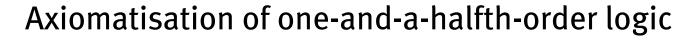
Theorem 3 [Cut elimination] The (Cut) rule is admissible in the system without it.

TU/

Properties of the sequent calculus (3)

Theorem 3 [Cut elimination] The (Cut) rule is admissible in the system without it.

Corollary 4 The sequent calculus is **consistent**, i.e. \vdash_{Δ} can never be derived.



Theory FOL extends theory SUB with the following axioms:

technische universiteit eindhoven

TU/e

$$P \supset Q \supset P = \top \quad \neg \neg P \supset P = \top \quad \text{(Props)}$$

$$(P \supset Q) \supset (Q \supset R) \supset (P \supset R) = \top \quad \bot \supset P = \top$$

$$\forall [a] P \supset P[a \mapsto T] = \top \quad \text{(Quants)}$$

$$\forall [a] (P \land Q) \Leftrightarrow \forall [a] P \land \forall [a] Q = \top$$

$$a \# P \rightarrow \forall [a] (P \supset Q) \Leftrightarrow P \supset \forall [a] Q = \top$$

$$T \approx T = \top \quad U \approx T \land P[a \mapsto T] \supset P[a \mapsto U] = \top \quad \text{(Eq)}$$

Axioms are all of the form $\phi = \top$, which intuitively means ' ϕ is true'.

Note that this is a *finite* number of axioms.

Axiomatisation of one-and-a-halfth-order logic (2)

technische universiteit eindhoven

TU

The **conjunctive form** Φ^{\wedge} of a predicate contexts Φ is Φ where we put \wedge between its elements. Analogously, define its **disjunctive form** by putting \vee between its elements. For example:

$$\emptyset^{\wedge} = \top \qquad \{\phi,\psi\}^{\wedge} = \phi \wedge \psi \qquad \emptyset^{\vee} = \bot \qquad \{\phi,\psi\}^{\vee} = \phi \vee \psi$$

technische universiteit eindhoven

TU

Axiomatisation of one-and-a-halfth-order logic (2)

The **conjunctive form** Φ^{\wedge} of a predicate contexts Φ is Φ where we put \wedge between its elements. Analogously, define its **disjunctive form** by putting \vee between its elements. For example:

$$\emptyset^{\wedge} = \top \qquad \{\phi, \psi\}^{\wedge} = \phi \wedge \psi \qquad \emptyset^{\vee} = \bot \qquad \{\phi, \psi\}^{\vee} = \phi \vee \psi$$

Theorem 5 For all predicate contexts Φ , Ψ and freshness contexts Δ :

 $\Phi \vdash_{\scriptscriptstyle \Delta} \Psi \text{ is derivable } \quad \text{iff } \quad \Delta \vdash_{\scriptscriptstyle \mathsf{FOL}} \Phi^{\wedge} \,\supset\, \Psi^{\vee} \,=\, \top.$

So sequent and equational derivability are equivalent.

technische universiteit eindhoven

TU

Axiomatisation of one-and-a-halfth-order logic (2)

The **conjunctive form** Φ^{\wedge} of a predicate contexts Φ is Φ where we put \wedge between its elements. Analogously, define its **disjunctive form** by putting \vee between its elements. For example:

$$\emptyset^{\wedge} = \top \qquad \{\phi,\psi\}^{\wedge} = \phi \wedge \psi \qquad \emptyset^{\vee} = \bot \qquad \{\phi,\psi\}^{\vee} = \phi \vee \psi$$

Theorem 5 For all predicate contexts Φ , Ψ and freshness contexts Δ :

 $\Phi \vdash_{\scriptscriptstyle \Delta} \Psi \text{ is derivable } \quad \text{iff } \quad \Delta \vdash_{\scriptscriptstyle \mathsf{FOL}} \Phi^{\wedge} \supset \Psi^{\vee} = \top.$

So sequent and equational derivability are equivalent.

Corollary 6 Theory FOL is consistent, i.e. $\Delta \vdash_{FOL} \top = \bot$ does not hold.

Relation to First-order Logic

TU/

Call a term or a predicate context **ground** if it does not contain unknowns or explicit substitutions.

Call $\Phi \vdash \Psi$ a **first-order sequent**, when Φ and Ψ are ground predicate contexts.

Gentzen's sequent calculus for first-order logic:

$$\begin{array}{ccc} \overline{\phi, \ \Phi \vdash \Psi, \ \phi} \ (\mathbf{A}\mathbf{x}) & \overline{\perp, \ \Phi \vdash \Psi} \ (\bot \mathbf{L}) \\ \\ \underline{\Phi \vdash \Psi, \ \phi} \ \psi, \ \Phi \vdash \Psi \ (\supset \mathbf{L}) & \underline{\phi, \ \Phi \vdash \Psi, \ \psi} \\ \overline{\phi \supset \psi, \ \Phi \vdash \Psi} \ (\supset \mathbf{L}) & \underline{\phi, \ \Phi \vdash \Psi, \ \psi} \\ \overline{\Phi \vdash \Psi, \ \phi \supset \psi} \ (\supset \mathbf{R}) \\ \\ \underline{\phi \llbracket a \mapsto t \rrbracket, \ \Phi \vdash \Psi} \ (\forall \mathbf{L}) & \underline{\Phi \vdash \Psi, \ \phi} \\ \overline{\Phi \vdash \Psi, \ \forall a.\phi} \ (\forall \mathbf{R}) & (a \not\in fn(\Phi, \Psi)) \\ \\ \\ \underline{\phi \llbracket a \mapsto t' \rrbracket, \ \Phi \vdash \Psi} \\ \hline t' \approx t, \ \phi \llbracket a \mapsto t \rrbracket, \ \Phi \vdash \Psi \\ (\approx \mathbf{L}) & \overline{\Phi \vdash \Psi, \ t \approx t} \ (\approx \mathbf{R}) \end{array}$$

Relation to First-order Logic (2)

Note that:

TU/

e

- \bullet we write $\forall a.\phi$ for $\forall [a]\phi$
- $[\![a \mapsto t]\!]$ is capture-avoiding substitution
- $a \not\in fn(\phi)$ is 'a does not occur in the free names of ϕ '
- \bullet we take predicates up to $\alpha\text{-equivalence}$

Relation to First-order Logic (2)

Note that:

ΤU

- \bullet we write $\forall a.\phi$ for $\forall [a]\phi$
- $[\![a \mapsto t]\!]$ is capture-avoiding substitution
- $a \not\in fn(\phi)$ is 'a does not occur in the free names of ϕ '
- \bullet we take predicates up to $\alpha\text{-equivalence}$

Theorem 7 $\Phi \vdash \Psi$ is derivable in the sequent calculus for first-order logic, iff $\Phi \vdash_{\theta} \Psi$ is derivable in the sequent calculus for one-and-a-halfth-order logic.

So on ground terms, one-and-a-halfth-order logic *is* first-order logic.

TU

For closed terms t, its **ground form** t[[]] is t in which each explicit substitution $v[a \mapsto u]$ is replaced by $v[[a \mapsto u]]$ bottom-up in the syntax.

Theorem 8 For closed terms t, $\vdash_{SUB} t = t$

technische universiteit eindhoven

Call a substitution σ closing for a term t if $t\sigma$ is closed.

A term-in-context $\Delta \to \phi$ is **valid** iff for all closing substitutions σ (for ϕ) for which $\vdash \Delta \sigma$ holds, $\phi \sigma$ [] is valid in the semantics of first-order logic.

TU

For closed terms t, its **ground form** t[[]] is t in which each explicit substitution $v[a \mapsto u]$ is replaced by $v[[a \mapsto u]]$ bottom-up in the syntax.

Theorem 8 For closed terms t, $\vdash_{SUB} t = t[[]]$

technische universiteit eindhoven

Call a substitution σ closing for a term t if $t\sigma$ is closed.

A term-in-context $\Delta \to \phi$ is **valid** iff for all closing substitutions σ (for ϕ) for which $\vdash \Delta \sigma$ holds, $\phi \sigma$ [] is valid in the semantics of first-order logic.

The sequent calculus for one-and-a-halfth-order logic is **sound** for this semantics:

Theorem 9 If $\vdash_{\Delta} \phi$ is derivable then $\Delta \rightarrow \phi$ is valid.

TU

Using nominal terms, we can:

• *accurately* represent systems with binding: e.g. explicit substitution and first-order logic

technische universiteit eindhoven

• specify *novel* systems with their own mathematical interest: e.g. one-and-a-halfth-order logic

One-and-a-halfth-order logic:

- makes meta-level concepts of first-order logic *explicit*
- has a sequent calculus with *syntax-directed* rules
- has a *semantics* in first-order logic
- has a *finite* equational axiomatisation
- is the *result* of axiomatising first-order logic in nominal algebra

Related work

In **second-order logic (SOL)** we can quantify over predicates *anywhere*, which makes it more expressive than one-and-a-halfh-order logic.

On the other hand, we can easily extend theory FOL with *one* axiom to express the principle of induction on natural numbers:

$$P[a \mapsto 0] \land \forall [a] (P \supset P[a \mapsto succ(a)]) \supset \forall [a] P = \top A$$

Higher-order logic (HOL) is type raising, while our logic is *not*:

- $P[a \mapsto t]$ corresponds to f(t) in HOL, where $f: \mathbb{T} \to \mathbb{P}$
- $P[a \mapsto t][a' \mapsto t']$ corresponds to f'(t)(t') where $f' : \mathbb{T} \to \mathbb{T} \to \mathbb{P}$

• ...

One-and-a-halfth-order logic is not a subset of SOL or HOL because of freshnesses.

Future work

- Completeness of the sequent calculus with respect to the semantics.
- Let unknowns range over *sequent derivations*, and establish a Curry-Howard correspondence (term-in-contexts as types, derivations as terms).
- Two-and-a-halfth-order logic (where you can abstract X)?
- Implementation and automation?

Future work

- Completeness of the sequent calculus with respect to the semantics.
- Let unknowns range over *sequent derivations*, and establish a Curry-Howard correspondence (term-in-contexts as types, derivations as terms).
- Two-and-a-halfth-order logic (where you can abstract X)?
- Implementation and automation?

Current status

- M.J. Gabbay, A.H.J. Mathijssen, Nominal Algebra, submitted STACS'07.
- M.J. Gabbay, A.H.J. Mathijssen, Capture-avoiding Substitution as a Nominal Algebra, submitted ICTAC'06.
- M.J. Gabbay, A.H.J. Mathijssen, One-and-a-halfth-order Logic, PPDP'06.

Just to scare you

TU/e

$$\frac{P[b \mapsto c][a \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{\forall [a]P[b \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]} (\mathsf{Ax}) \\
\frac{\forall [a]P[b \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{(\forall Ia]P)[b \mapsto c] \vdash_{c \# P} P[b \mapsto a][a \mapsto c]} (\mathsf{StructL}) \quad (I.) \\
\frac{\forall [b]\forall [a]P \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{\forall [b]\forall [a]P \vdash_{c \# P} \forall [c]P[b \mapsto c][a \mapsto c]} (\forall R) \quad (2.) \\
\frac{\forall [b]\forall [a]P \vdash_{c \# P} \forall [a]P[b \mapsto a]}{\forall [b]\forall [a]P \vdash_{c \# P} \forall [a]P[b \mapsto a]} (\mathsf{Fresh}) \quad (4.)$$

a

Side-conditions:

I.
$$c \# P \vdash_{\mathsf{SUB}} \forall [a] P[b \mapsto c] = (\forall [a] P)[b \mapsto c]$$

2. $c \# P \vdash c \# \forall [b] \forall [a] P$
3. $c \# P \vdash_{\mathsf{SUB}} \forall [c] P[b \mapsto c][a \mapsto c] = \forall [a] P[b \mapsto c]$
4. $c \notin \forall [b] \forall [a] P, \forall [a] P[b \mapsto a]$