One-and-a-halfth-order Logic

Aad Mathijssen
Murdoch J. Gabbay

22th June 2006

Motivation

Consider the following valid assertions in first-order logic:

- $\phi \supset \psi \supset \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \forall a . \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- if $b \notin f n(\phi)$ then $\forall a . \phi \supset \forall b . \phi \llbracket a \mapsto b \rrbracket$

These are not valid syntax in first-order logic, because of meta-level concepts:

- meta-variables varying over syntax: ϕ, ψ, a, b, t
- properties of syntax: $a \notin f n(\phi), \phi \llbracket a \mapsto t \rrbracket, \alpha$-equivalence

Is there a logic in which the above assertions can be expressed directly in the syntax?

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

And for $b \notin f n(\phi)$:

$$
\frac{\overline{\forall a . \phi \vdash \forall b . \phi \llbracket a \mapsto b \rrbracket}}{\vdash \forall a . \phi \supset \forall b . \phi \llbracket a \mapsto b \rrbracket}(\mathbf{A x})
$$

$$
\frac{\forall c . \mathbf{p}(c) \vdash \forall d . \mathbf{p}(d)}{\vdash \forall c \cdot \mathbf{p}(c) \supset \forall d \cdot \mathbf{p}(d)}(\stackrel{\mathbf{A x})}{(\supset \mathbf{R})}
$$

The left ones are not derivations, they are schemas of derivations. When p is a specific atomic predicate and c and d are specific variables, the right ones are derivations; they are instances of the schemas on the left.

Is there a logic in which the derivation on the left is a derivation too?

$$
\begin{aligned}
& \begin{array}{c}
\overline{\psi, \phi \vdash \phi}(\mathbf{A x}) \\
\frac{\phi \vdash \psi \supset \phi}{\digamma \phi \supset \psi)} \\
\vdash(\supset \mathbf{R})
\end{array} \\
& \begin{array}{c}
\frac{\overline{\mathrm{p}(d), \mathbf{p}(c) \vdash \mathrm{p}(c)}(\mathbf{A x})}{\substack{\mathrm{p}(c) \vdash \mathrm{p}(d) \supset \mathbf{p}(c)}} \begin{array}{c}
(\supset \mathbf{R}) \\
\vdash \mathrm{p}(c) \supset \mathbf{p}(d) \supset \mathbf{p}(c)
\end{array}(\supset \mathbf{R})
\end{array}
\end{aligned}
$$

Motivation (3)

First-order logic and its proof systems formalise reasoning.
But also a lot of reasoning is about first-order logic.
So why shouldn't that be formalised?

One-and-a-halfth-order logic does this by means of formalising:

- meta-variables
- properties of syntax

Overview

- Introduction to one-and-a-halfth-order logic
- Syntax of one-and-a-halfth-order logic
- Sequent calculus for one-and-a-halfth-order logic
- Axiomatisation of one-and-a-halfth-order logic
- Relation to first-order logic
- Semantics of one-and-a-halfth-order logic
- Conclusions, related and future work

Introduction

In the syntax of one-and-a-halfth-order logic:

- Unknowns P, Q and T represent meta-variables ϕ, ψ and t.
- Atoms a and b represent meta-variables a and b.
- Freshness $a \# P$ represents $a \notin f n(\phi)$.
- Explicit substitution $P[a \mapsto T]$ represents $\phi \llbracket a \mapsto t \rrbracket$.

Introduction (2)

The meta-level assertions in first-order logic

- $\phi \supset \psi \supset \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \forall a . \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- if $b \notin f n(\phi)$ then $\forall a . \phi \supset \forall b . \phi \llbracket a \mapsto b \rrbracket$
correspond to valid assertions in the syntax of one-and-a-halfth-order logic:
- $P \supset Q \supset P$
- $a \# P \rightarrow P \supset \forall[a] P$
- $a \# P \rightarrow P \supset P[a \mapsto T]$
- $b \# P \rightarrow \forall[a] P \supset \forall[b] P[a \mapsto b]$

Introduction (3)

In sequent derivations of one-and-a-halfth-order logic:

- Contexts of freshnesses are added to the sequents.
- Derivability of freshnesses are added as side-conditions.
- Substitutional equivalence on terms is added as two derivation rules, taking care of α-equivalence and substitution.

Introduction (4)

The (schematic) derivations in first-order logic

$$
\begin{array}{cc}
\frac{\overline{\psi, \phi \vdash \phi}(\mathbf{A x})}{(\supset \mathbf{R})} & \frac{\overline{\mathrm{p}(d), \mathrm{p}(c) \vdash \mathrm{p}(c)}(\mathbf{A} \mathbf{x})}{\mathrm{p}(c) \vdash \mathrm{p}(d) \supset \mathbf{p}(c)}(\supset \mathbf{R}) \\
\stackrel{\phi \vdash \psi \supset \phi}{\vdash \phi \supset \psi \supset \phi}(\supset \mathbf{R}) & \stackrel{\vdash \mathrm{p}(c) \supset \mathrm{p}(d) \supset \mathrm{p}(c)}{\vdash(\supset \mathbf{R})}
\end{array}
$$

correspond to valid derivations in one-and-a-halfth-order logic:

$$
\begin{gathered}
\overline{Q, P \vdash_{0} P}(\mathbf{A x}) \\
\frac{P \vdash_{0} Q \supset P}{F_{0} P \supset Q \supset P}(\supset \mathbf{R}) \\
\left.F_{0} \supset \mathbf{R}\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\overline{\mathbf{p}(d), \mathbf{p}(c) \vdash{ }_{0} \mathbf{p}(c)}}{\frac{\mathbf{A x})}{\mathbf{p}(c) \vdash^{\circ} \mathbf{p}(d) \supset \mathbf{p}(c)}} \underset{{ }_{\emptyset} \mathbf{p}(c) \supset \mathbf{p}(d) \supset \mathbf{p}(c)}{(\supset \mathbf{R})}(\supset \mathbf{R})
\end{gathered}
$$

Introduction (5)

The (schematic) derivations in first-order logic, where $b \notin f n(\phi)$,

$$
\frac{\overline{\forall a . \phi \vdash \forall b \cdot \phi \llbracket a \mapsto b \rrbracket}(\mathbf{A x})}{\stackrel{\forall a \cdot \phi \supset \forall b \cdot \phi \llbracket a \mapsto b \rrbracket}{\vdash}(\supset \mathbf{R})} \quad \frac{\forall c \cdot \mathbf{p}(c) \vdash \forall d . \mathbf{p}(d)}{\vdash \forall c \cdot \mathbf{p}(c) \supset \forall d \cdot \mathbf{p}(d)}(\supset \mathbf{A x})
$$

correspond to valid derivations in one-and-a-halfth-order logic:

Syntax of one-and-a-halfth-order logic

We use Nominal Terms to specify the syntax, since they have built-in support for:

- meta-variables
- binding
- freshness

Nominal terms allow for a direct and natural representation of systems with binding.

Nominal terms are first-order, not higher-order.

Sorts

Base sorts \mathbb{P} for 'predicates' and \mathbb{T} for 'terms'.
Atomic sort \mathbb{A} for the object-level variables.
Sorts τ :

$$
\tau::=\mathbb{P}|\mathbb{T}| \mathbb{A} \mid[\mathbb{A}] \tau
$$

Terms

Atoms a, b, c, \ldots have sort \mathbb{A}; they represent object-level variable symbols.
Unknowns X, Y, Z, \ldots have sort τ; they represent meta-level variable symbols. Let P, Q, R be unknowns of sort \mathbb{P}, and T, U of sort \mathbb{T}.

We call $\pi \cdot X$ a moderated unknown.
This represents the permutation of atoms π acting on an unknown term.
Term-formers f_{ρ} have an associated arity $\rho=\left(\tau_{1}, \ldots, \tau_{n}\right) \tau$.
$\mathrm{f}: \rho$ means ' f with arity ρ '.
Terms t, subscripts indicate sorting rules:

$$
t::=a_{\mathbb{A}}\left|\left(\pi \cdot X_{\tau}\right)_{\tau}\right|\left(\left[a_{\mathbb{A}}\right] t_{\tau}\right)_{[\mathbb{A}] \tau} \mid\left(f_{\left(\tau_{1}, \ldots, \tau_{n}\right) \tau}\left(t_{\tau_{1}}^{1}, \ldots, t_{\tau_{n}}^{n}\right)\right)_{\tau}
$$

Write f for f() if $n=0$.

Terms (2)

Term-formers for one-and-a-halfth-order logic:

- \perp : () \mathbb{P} represents falsity
- $\supset:(\mathbb{P}, \mathbb{P}) \mathbb{P}$ represents implication, write $\phi \supset \psi$ for $\supset(\phi, \psi)$;
- $\forall:([\mathbb{A}] \mathbb{P}) \mathbb{P}$ represents universal quantification, write $\forall[a] \phi$ for $\forall([a] \phi)$
- $\approx:(\mathbb{T}, \mathbb{T}) \mathbb{P}$ represents object-level equality, write $t \approx u$ for $\approx(t, u)$
- var : $(\mathbb{A}) \mathbb{T}$ is variable casting, forced upon us by the sort system, write a for $\operatorname{var}(a)$
- sub : $([\mathbb{A}] \tau, \mathbb{T}) \tau$, where $\tau \in\{\mathbb{T},[\mathbb{A}] \mathbb{T}, \mathbb{P},[\mathbb{A}] \mathbb{P}\}$, is explicit substitution, write $v[a \mapsto t]$ for $\operatorname{sub}([a] v, t)$
- $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}:(\mathbb{T}, \ldots, \mathbb{T}) \mathbb{P}$ are object-level predicate term-formers
- $f_{1}, \ldots, f_{m}:(\mathbb{T}, \ldots, \mathbb{T}) \mathbb{T}$ are object-level term-formers

Terms (3)

We may call terms ϕ and ψ of sort \mathbb{P} predicates.
Sugar:

$$
\begin{gathered}
\top \text { is } \perp \supset \perp \quad \neg \phi \text { is } \phi \supset \perp \quad \phi \wedge \psi \text { is } \neg(\phi \supset \neg \psi) \\
\phi \vee \psi \text { is } \neg \phi \supset \psi \quad \phi \Leftrightarrow \psi \text { is }(\phi \supset \psi) \wedge(\psi \supset \phi) \quad \exists[a] \phi \text { is } \neg \forall[a] \neg \phi
\end{gathered}
$$

Descending order of operator precedence:

$$
[a]_{-},-[-\mapsto-], \approx,\{\neg, \forall, \exists\},\{\wedge, \vee\}, \supset, \Leftrightarrow
$$

\wedge, \vee, \supset and \Leftrightarrow associate to the right.
Example terms of sort \mathbb{P} :

$$
P \supset Q \supset P \quad P \supset \forall[a] P \quad P \supset P[a \mapsto T] \quad \forall[a] P \supset \forall[b] P[a \mapsto b]
$$

Freshness

Freshness (assertions) $a \# t$, which means ' a is fresh for t. If t is an unknown X, the freshness is called primitive.

A freshness context Δ is a set of primitive freshnesses.
Example freshness contexts:

$$
\emptyset \quad a \# X \quad a \# P, b \# Q
$$

We call $\Delta \rightarrow t$ a term-in-context.
We may write t if $\Delta=\emptyset$.
Example terms-in-context of sort \mathbb{P} :

$$
\begin{array}{rlrl}
P \supset Q & \supset P & a \# P & \rightarrow P \supset \forall[a] P \\
a \# P \rightarrow P \supset P[a \mapsto T] & b \# P & \rightarrow \forall[a] P \supset \forall[b] P[a \mapsto b]
\end{array}
$$

Derivability of freshness

$$
\begin{gathered}
\overline{a \# b}(\# \mathbf{a b}) \frac{\pi^{-1}(a) \# X}{a \# \pi \cdot X}(\# \mathbf{X}) \\
\overline{a \#[a] t}(\#[] \mathbf{a}) \frac{a \# t}{a \#[b] t}(\#[] \mathbf{b}) \frac{a \# t_{1} \cdots a \# t_{n}}{a \# \mathrm{f}\left(t_{1}, \ldots, t_{n}\right)}(\# \mathbf{f})
\end{gathered}
$$

a and b range over distinct atoms.
Write $\Delta \vdash a \# t$ when there exists a derivation of $a \# t$ using the elements of Δ as assumptions. Say that $a \# t$ is derivable from Δ.

Examples:

$$
\vdash a \# b \quad \vdash a \# \forall[a] P \quad a \# P \vdash a \# \forall[b] P
$$

Derivability of equality

Equality (assertions) $t=u$, where t and u are of the same sort.
Nominal Algebra is the logic of equality between nominal terms.
Derivability:

$$
\begin{array}{cc}
\overline{t=t}(\mathbf{r e f l}) \quad \frac{t=u}{u=t}(\mathbf{s y m m}) \quad \frac{t=u \quad u=v}{t=v}(\mathbf{t r a n}) \\
\frac{t=u}{C[t]=C[u]}(\mathbf{c o n g}) & \frac{a \# t \quad b \# t}{(a b) \cdot t=t}(\mathbf{p e r m}) \\
& {\left[a \# X_{1}, \ldots, a \# X_{n}\right] \quad \Delta} \\
& \vdots \\
\frac{\Delta^{\pi} \sigma}{t^{\pi} \sigma=u^{\pi} \sigma}\left(\mathbf{a x}_{\mathbf{A}}\right) A \text { is } \Delta \rightarrow t=u & \frac{t=u}{t=u}(\mathbf{f r}) \quad(a \notin t, u, \Delta)
\end{array}
$$

Write $\Delta \vdash_{\mathrm{T}} t=u$ when $t=u$ is derivable from Δ using axioms A from T only.

Derivability of equality (2)

Nominal algebraic theory SUB of explicit substitution:

$$
\begin{aligned}
(\operatorname{var} \mapsto) & a[a \mapsto T] & =T \\
(\# \mapsto) & a \# X \rightarrow X[a \mapsto T] & =X \\
(\mathbf{f} \mapsto) & \mathrm{f}\left(X_{1}, \ldots, X_{n}\right)[a \mapsto T] & =\mathrm{f}\left(X_{1}[a \mapsto T], \ldots, X_{n}[a \mapsto T]\right) \\
(\mathbf{a b s} \mapsto) & b \# T \rightarrow(b b])[a \mapsto T] & =[b](X[a \mapsto T]) \\
(\mathbf{r e n} \mapsto) & b \# X \rightarrow X[a \mapsto b] & =(b a) \cdot X
\end{aligned}
$$

Examples:

$$
\begin{gathered}
b \# P \vdash_{\text {sUB }} \forall[a] P=\forall[b] P[a \mapsto b] \\
\vdash_{\text {SUB }} X[a \mapsto a]=X \\
a \# Y \vdash_{\text {SUB }} Z[a \mapsto X][b \mapsto Y]=Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]
\end{gathered}
$$

Sequent calculus for one-and-a-halfth-order logic

Let (predicate) contexts Φ, Ψ be finite sets of predicates. Examples:

$$
\emptyset \quad \phi \quad \phi, \Phi \quad \Phi, \Phi^{\prime}
$$

A sequent is a triple $\Phi \vdash_{\Delta} \Psi$. We may omit empty predicate contexts, e.g. writing \vdash_{Δ} for $\emptyset \vdash_{\Delta} \emptyset$.

Define derivability on sequents...

Sequent calculus (2)

Rules resembling Gentzen's sequent calculus for first-order logic:

$$
\left.\begin{array}{cc}
\phi, \Phi \vdash_{\Delta} \Psi, \phi \\
(\mathbf{A x}) & \perp, \Phi \vdash_{\Delta} \Psi(\perp \mathbf{L}) \\
\frac{\Phi \vdash_{\Delta} \Psi, \phi \psi, \Phi \vdash_{\Delta} \Psi}{\phi \supset \psi, \Phi \vdash_{\Delta} \Psi}(\supset \mathbf{L}) & \frac{\phi, \Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \phi \supset \psi}(\supset \mathbf{R}) \\
\frac{\phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi}{\forall[a] \phi, \Phi \vdash_{\Delta} \Psi}(\forall \mathbf{L}) \quad \frac{\Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \forall[a] \psi}(\forall \mathbf{R}) \quad(\Delta \vdash a \# \Phi, \Psi) \\
\frac{\phi\left[a \mapsto t^{\prime}\right], \Phi \vdash_{\Delta} \Psi}{t^{\prime} \approx t, \phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi}(\approx \mathbf{L}) & \Phi \vdash_{\Delta} \Psi, t \approx t
\end{array}(\approx \mathbf{R})\right)
$$

Sequent calculus (3)

Other rules:

$$
\begin{aligned}
& \frac{\phi^{\prime}, \Phi \vdash_{\Delta} \Psi}{\phi, \Phi \vdash_{\Delta} \Psi}(\text { StructL }) \quad\left(\Delta \vdash_{\text {SUB }} \phi^{\prime}=\phi\right) \\
& \underset{\Phi \vdash_{\Delta} \Psi, \psi^{\prime}}{\Phi, \psi}(\mathbf{S t r u c t R}) \quad\left(\Delta \vdash_{\text {SUB }} \psi^{\prime}=\psi\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Phi \vdash_{\Delta} \Psi, \phi \phi^{\prime}, \Phi \vdash_{\Delta} \Psi}{\Phi \vdash_{\Delta} \Psi}(\text { Cut }) \quad\left(\Delta \vdash_{\text {SUB }} \phi=\phi^{\prime}\right)
\end{aligned}
$$

Example derivations

Derivation of $a \# P \rightarrow P \supset \forall[a] P:$

$$
\frac{\overline{P \vdash_{a \# P} P}(\mathbf{A x})}{\frac{P \vdash_{a+P} \forall[a \mid P}{\digamma_{a \# P} P \supset \forall[a] P}(\forall \mathbf{R})}(\supset \mathbf{R}) \quad(a \# P \vdash a \# P)
$$

Derivation of $a \# P \rightarrow P \supset P[a \mapsto T]:$

$$
\left.\frac{\overline{P \vdash}_{\text {a\#P } P} P}{}(\mathbf{A x}) \text { StructR }\right) \quad\left(a \# P \vdash_{\text {suB }} P=P[a \mapsto T]\right)
$$

Properties of the sequent calculus

We may permute atoms and instantiate unknowns in derivations.

Theorem I If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$, then Π^{π} is a valid derivation of $\Phi^{\pi} \vdash_{\Delta^{\pi}} \Psi^{\pi}$.

Theorem 2 If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$ and $\Delta^{\prime} \vdash \Delta \sigma$, then $\Pi\left(\sigma, \Delta^{\prime}\right)$ is a valid derivation of $\Phi \sigma \vdash_{\Delta^{\prime}} \Psi \sigma$.
$\Pi\left(\sigma, \Delta^{\prime}\right)$ is Π in which:

- each unknown X is replaced by $\sigma(X)$
- each freshness context Δ is replaced by Δ^{\prime}

Properties of the sequent calculus (2)

For example, Π is the derivation of $a \# P \rightarrow P \supset P[a \mapsto T]$:

$$
\left.\frac{\overline{P \vdash}_{\text {a\#PP }} P}{}(\mathbf{A x}) \text { StructR }\right) \quad\left(a \# P \vdash_{\text {suB }} P=P[a \mapsto T]\right)
$$

Take $\sigma=[\mathrm{p}(c) / P, d / T]$ and $\Delta^{\prime}=\emptyset$, then:

- $\Delta^{\prime} \vdash \Delta \sigma$, i.e. $\emptyset \vdash a \# \mathrm{p}(c)$
- $\Pi\left(\sigma, \Delta^{\prime}\right)$ is the following valid derivation of $\mathfrak{p}(c) \supset \mathfrak{p}(c)[a \mapsto d]$:

Properties of the sequent calculus (3)

Theorem 3 [Cut elimination]
The (Cut) rule is admissible in the system without it.

Corollary 4 The sequent calculus is consistent, i.e. \vdash_{Δ} can never be derived.

Axiomatisation of one-and-a-halfth-order logic

Theory FOL extends theory SUB with the following axioms:

$$
\begin{gather*}
P \supset Q \supset P=\top \quad \neg \neg P \supset P=\top \tag{Props}\\
(P \supset Q) \supset(Q \supset R) \supset(P \supset R)=\top \quad \perp \supset P=\top \\
\forall[a] P \supset P[a \mapsto T]=\top \tag{Quants}\\
\forall[a](P \wedge Q) \Leftrightarrow \forall[a] P \wedge \forall[a] Q=\top \\
a \# P \rightarrow \forall[a](P \supset Q) \Leftrightarrow P \supset \forall[a] Q=\top \\
T \approx T=\top \quad U \approx T \wedge P[a \mapsto T] \supset P[a \mapsto U]=\top \tag{Eq}
\end{gather*}
$$

Axioms are all of the form $\phi=\top$, which intuitively means ' ϕ is true'.
Note that this is a finite number of axioms.

Axiomatisation of one-and-a-halfth-order logic (2)

The conjunctive form Φ^{\wedge} of a predicate contexts Φ is Φ where we put \wedge between its elements. Analogously, define its disjunctive form by putting \vee between its elements. For example:

$$
\emptyset^{\wedge}=\top \quad\{\phi, \psi\}^{\wedge}=\phi \wedge \psi \quad \emptyset^{\vee}=\perp \quad\{\phi, \psi\}^{\vee}=\phi \vee \psi
$$

Theorem 5 For all predicate contexts Φ, Ψ and freshness contexts Δ :

$$
\Phi \vdash_{\Delta} \Psi \text { is derivable iff } \Delta \vdash_{\text {FOL }} \Phi^{\wedge} \supset \Psi^{\vee}=\top .
$$

So sequent and equational derivability are equivalent.

Corollary 6 Theory FOL is consistent, i.e. $\Delta \vdash_{\text {FoL }} \top=\perp$ does not hold.

Relation to First-order Logic

Call a term or a predicate context ground if it does not contain unknowns or explicit substitutions.

Call $\Phi \vdash \Psi$ a first-order sequent, when Φ and Ψ are ground predicate contexts.
Gentzen's sequent calculus for first-order logic:

$$
\begin{array}{cc}
\overline{\phi, \Phi \vdash \Psi, \phi}(\mathbf{A x}) & \overline{\perp, \Phi \vdash \Psi}(\perp \mathbf{L}) \\
\frac{\Phi \vdash \Psi, \phi}{\phi \supset \psi, \Phi \vdash \Psi}(\supset \mathbf{L}) \quad & \frac{\phi, \Phi \vdash \Psi, \psi}{\Phi \vdash \Psi, \phi \supset \psi}(\supset \mathbf{R}) \\
\frac{\phi \llbracket a \mapsto t \rrbracket, \Phi \vdash \Psi}{\forall a \cdot \phi, \Phi \vdash \Psi}(\forall \mathbf{L}) \quad \frac{\Phi \vdash \Psi, \phi}{\Phi \vdash \Psi, \forall a \cdot \phi}(\forall \mathbf{R}) \quad(a \notin f n(\Phi, \Psi)) \\
\frac{\phi \llbracket a \mapsto t^{\prime} \rrbracket, \Phi \vdash \Psi}{t^{\prime} \approx t, \phi \llbracket a \mapsto t \rrbracket, \Phi \vdash \Psi}(\approx \mathbf{L}) \quad \overline{\Phi \vdash \Psi, t \approx t}(\approx \mathbf{R})
\end{array}
$$

Relation to First-order Logic (2)

Note that:

- we write $\forall a . \phi$ for $\forall[a] \phi$
- $\llbracket a \mapsto t \rrbracket$ is capture-avoiding substitution
- $a \notin f n(\phi)$ is ' a does not occur in the free names of ϕ '
- we take predicates up to α-equivalence

Theorem ${ }_{7} \Phi \vdash \Psi$ is derivable in the sequent calculus for first-order logic, iff $\Phi \vdash_{\emptyset} \Psi$ is derivable in the sequent calculus for one-and-a-halfth-order logic.

So on ground terms, one-and-a-halfth-order logic is first-order logic.

Semantics

For closed terms t, its ground form $t \llbracket \rrbracket$ is t in which each explicit substitution $v[a \mapsto u]$ is replaced by $v \llbracket a \mapsto u \rrbracket$ bottom-up in the syntax.

Theorem 8 For closed terms $t, \quad \vdash_{\text {SUB }} t=t \llbracket \rrbracket$

Call a substitution σ closing for a term t if $t \sigma$ is closed.
A term-in-context $\Delta \rightarrow \phi$ is valid iff for all closing substitutions σ (for ϕ) for which $\vdash \Delta \sigma$ holds, $\phi \sigma \llbracket$ is valid in the semantics of first-order logic.

The sequent calculus for one-and-a-halfth-order logic is sound for this semantics:

Theorem 9 If $\vdash_{\Delta} \phi$ is derivable then $\Delta \rightarrow \phi$ is valid.

Conclusions

Using nominal terms, we can:

- accurately represent systems with binding:
e.g. explicit substitution and first-order logic
- specify novel systems with their own mathematical interest: e.g. one-and-a-halfth-order logic

One-and-a-halfth-order logic:

- makes meta-level concepts of first-order logic explicit
- has a sequent calculus with syntax-directed rules
- has a semantics in first-order logic
- has a finite equational axiomatisation
- is the result of axiomatising first-order logic in nominal algebra

Related work

In second-order logic (SOL) we can quantify over predicates anywhere, which makes it more expressive than one-and-a-halfh-order logic.

On the other hand, we can easily extend theory FOL with one axiom to express the principle of induction on natural numbers:

$$
P[a \mapsto 0] \wedge \forall[a](P \supset P[a \mapsto \operatorname{succ}(a)]) \supset \forall[a] P=\top .
$$

Higher-order logic (HOL) is type raising, while our logic is not:

- $P[a \mapsto t]$ corresponds to $f(t)$ in HOL, where $f: \mathbb{T} \rightarrow \mathbb{P}$
- $P[a \mapsto t]\left[a^{\prime} \mapsto t^{\prime}\right]$ corresponds to $f^{\prime}(t)\left(t^{\prime}\right)$ where $f^{\prime}: \mathbb{T} \rightarrow \mathbb{T} \rightarrow \mathbb{P}$
- ...

One-and-a-halfth-order logic is not a subset of SOL or HOL because of freshnesses.

Future work

- Completeness of the sequent calculus with respect to the semantics.
- Let unknowns range over sequent derivations, and establish a Curry-Howard correspondence (term-in-contexts as types, derivations as terms).
- Two-and-a-halfth-order logic (where you can abstract X)?
- Implementation and automation?

Current status

- M.J. Gabbay, A.H.J. Mathijssen, Nominal Algebra, submitted STACS'o7.
- M.J. Gabbay, A.H.J. Mathijssen, Capture-avoiding Substitution as a Nominal Algebra, submitted ICTAC'o6.
- M.J. Gabbay, A.H.J. Mathijssen, One-and-a-halfth-order Logic, PPDP’o6.

Just to scare you

$$
\begin{align*}
& \frac{P[b \mapsto c][a \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{\forall[a] P[b \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]} \\
& \frac{(\mathbf{A x})}{(\forall[a] P)[b \mapsto c] \vdash_{c \# P} P[b \mapsto a][a \mapsto c]} \tag{土.}\\
& \frac{\forall[b] \forall[a] P \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{\forall[b] \forall[a] P \vdash_{c \# P} \forall[c] P[b \mapsto c][a \mapsto c]} \\
& \frac{\forall[b])}{}(\forall \mathbf{L}) \\
& \forall[b] \forall[a] \vdash_{c \# P} \forall[a] P[b \mapsto a]
\end{align*}(\text { Struct })
$$

Side-conditions:
I. $c \# P \vdash_{\text {sub }} \forall[a] P[b \mapsto c]=(\forall[a] P)[b \mapsto c]$
2. $c \# P \vdash c \# \forall[b] \forall[a] P$
3. $c \# P \vdash_{\text {sub }} \forall[c] P[b \mapsto c][a \mapsto c]=\forall[a] P[b \mapsto a]$
4. $c \notin \forall[b] \forall[a] P, \forall[a] P[b \mapsto a]$

