
Capture-Avoiding Substitution
as a Nominal Algebra

Murdoch J. Gabbay1 and Aad Mathijssen2

1 School of Mathematical and Computer Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, Scotland, Great Britain

murdoch.gabbay@gmail.com
2 Department of Mathematics and Computer Science, Eindhoven University of

Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
A.H.J.Mathijssen@tue.nl

Abstract. Substitution is fundamental to computer science, underly-
ing for example quantifiers in predicate logic and beta-reduction in the
lambda-calculus. So is substitution something we define on syntax on a
case-by-case basis, or can we turn the idea of ‘substitution’ into a math-
ematical object?

We exploit the new framework of Nominal Algebra to axiomatise sub-
stitution. We prove our axioms sound and complete with respect to a
canonical model; this turns out to be quite hard, involving subtle use of
results of rewriting and algebra.

1 Introduction

Substitution is intuitively the operation v[a �→ t] meaning:

Replace the variable a by t in v.

Is there an algebra which describes exactly the properties of v[a �→ t] indepen-
dently of what v and t are (λ-terms, formulae of a logic, or any mixture or
variation thereof)?

Consider by way of analogy the notion of ‘a field’. This has an algebraic
characterisation which tells us what properties ‘a field’ must have, independently
of which field it is, or how it may be implemented (if we are programming). This
is useful; for example the definition of ‘vector space’ is parametric over fields,
and this step requires a characterisation of what fields are [1].

When we begin to algebraically axiomatise substitution some unusual difficul-
ties present themselves. Consider the following informally expressed candidate
property of substitution:

v[a �→ t][b �→ u] = v[b �→ u][a �→ t[b �→ u]] provided a �∈ fv(u).

This is not algebraic, because of the side-condition a �∈ fv(u). Here fv (u) is ‘the
free variables of u’, which is a property of the syntax of u.

So is it the case that substitution cannot be axiomatised, and only exists as
an incidental property of syntax used to talk about ‘real’ mathematical objects?

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 198–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Capture-Avoiding Substitution as a Nominal Algebra 199

But in that case, what is the status of the intuition which makes us agree that
the property above should be satisfied by any self-respecting substitution action?

We shall argue that the following properties axiomatise substitution, all of
substitution, and nothing but substitution. We express them in Nominal Algebra
(given formal meaning in the rest of this paper):

(var �→) � var(a)[a �→ T] = T
(# �→) a#X � X[a �→ T] = X
(f �→) � f(X1, . . . , Xn)[a �→ T] = f(X1[a �→ T], . . . , Xn[a �→ T]) (f �= var)

(abs �→) b#T � ([b]X)[a �→ T] = [b](X[a �→ T])
(ren �→) b#X � X[a �→ var(b)] = (b a) · X

Fig. 1. Axioms of SUB

For convenience we now give an informal reading:

(var �→): If a is a variable then a with a replaced by T , is T .
(# �→): If a is fresh for X then X with a replaced by T is X .
(f �→): Substitution distributes through term-formers (we can have as many

as we like); f ranges over them.
(abs �→): Substitution distributes under abstraction, provided an ‘accidental

capture-avoidance’ condition holds (b is fresh for T).
(ren �→): If b is fresh for X then X with a replaced by b is identical to X with

a replaced by b and simultaneously b replaced by a.

Formally, Fig. 1 uses nominal terms [2] as a syntax, and nominal algebra [3] as
an algebraic framework.

A number of questions now arise: a) Is this substitution? In what sense; are the
axioms sound, and for what model? b) Are the axioms complete for that model?
c) Do other (perhaps unexpected) models exist of the same axioms? d) Can the
axioms be used to found theories of predicate logic, λ-calculus, unification, and
so on?

Sections 2 and 3 define nominal terms and nominal algebra. Section 4 defines
substitution as a nominal algebraic theory. Section 5 develops some highly non-
trivial technical results. Section 6 answers a) by showing that on a canonical
model, our axioms for substitution give rise to something which is recognisably
substitution as we might expect it to behave. Section 7 further shows the harder
property mentioned in b) that our axioms for substitution precisely characterise
what is true of that concrete model. The Conclusions then describes related and
future work. Questions c) and d) are answered positively in other papers [4, 5].

2 Nominal Terms

We define a syntax of nominal terms. For simplicity fix a sort of atoms A and
a (base) sort of terms T. Then sorts τ are inductively defined by:1

1 So sorts are just T, [A]T, [A][A]T, and so on, and similarly A, [A]A, and so on.

200 M.J. Gabbay and A. Mathijssen

τ ::= T | A | [A]τ

We could admit more sorts of atoms, and base sorts other than T, if we wished.
Our syntax has term-formers: Fix term-formers fρ to each of which is asso-

ciated some unique arity ρ = (τ1, . . . , τn)τ . We may write f : ρ for ‘f, which has
arity ρ’. We assume term-formers:

sub : ([A]τ, T)τ (τ ∈ {T, [A]T}) var : (A)T pair : (T, T)T binder : ([A]T)T

The two subs will be used to represent the substitutions from Fig. 1; the condition
on τ is for simplicity only.

var, pair, and binder define a sufficiently rich language for our axioms of sub-
stitution to have an interesting action, but as mentioned in the Introduction
almost anything else would do (e.g. see example signatures in [6]).

Finally, we can define the sorted syntax itself:
Fix some countably infinite set of atoms a, b, c, . . . ∈ A. These model object-

level variable symbols (the ones we axiomatise substitution for).
Fix a countably infinite collection of unknowns X, Y, Z, T, U,2 Intuitively

these represent unknown terms. We assume unknowns are inherently sorted and
infinitely many populate each sort: so X is shorthand for Xτ , and XA and XT

are two different unknowns with confusingly similar names.
Terms t, u, v are inductively defined by the following grammar:

t ::= aA | (π · Xτ)τ | ([aA]tτ)[A]τ | (f(τ1,...,τn)τ (t1τ1
, . . . , tnτn

))τ

Here we call (π · Xτ)τ a moderated unknown; π is described below. We have
indicated sorts with a subscript but we shall usually omit them; we repeat the
definition above without subscripts, for clarity:

t ::= a | π · X | [a]t | f(t1, . . . , tn).

A permutation π of atoms is a bijection on A with finite support meaning
that for some finite set of atoms π(a) �= a, and for all other atoms π(a) = a;
in other words, for ‘most’ atoms π is the identity. As usual write Id for the
identity permutation, π-1 for the inverse of π, and π ◦π′ for the composition
of π and π′, i.e. (π ◦ π′)(a) = π(π′(a)). Id is also the identity of composition,
i.e. Id ◦ π = π and π ◦ Id = π. We may abbreviate Id · X to X . Importantly,
we shall write (a b) for the permutation which maps a to b and vice versa, and
maps all other c to themselves.

In Fig. 1 we have sugared sub([a]u, t) to u[a �→t]. We suggestively name a term
of this form an explicit substitution.

A few more simple notations are useful for later: We call the size of t its
inductive rank.3 Write a ∈ t (or X ∈ t) for ‘a (or X) occurs in (the syntax
of) t’. Occurrence is literal, e.g. a ∈ [a]a and a ∈ π ·X when π(a) �= a. Similarly

2 Unknowns, atoms, and term-formers, are assumed disjoint.
3 In plain english: the depth of a proof that t is in the set of terms, using the inductive

definition above.

Capture-Avoiding Substitution as a Nominal Algebra 201

write a �∈ t and X �∈ t for ‘does not occur in the syntax of t’. Write syntactic
identity of terms t, u as t ≡ u to distinguish it from provable equality. Important:
we do not quotient terms in any way.

It may help to show how nominal terms relate to ‘ordinary’ syntax. For con-
venience identify atoms with variable symbols, then the syntax of the untyped
λ-calculus is inductively defined by e ::= a | ee | λa.e. We define a map (-)′ to
nominal terms by: a′ = var(a), (e1e2)′ = pair(e′1, e

′
2), (λa.e)′ = binder([a](e′)).

Even for this simple signature of var, pair, and binder, there are interesting things
to say. For example we shall see that binder([a]X) behaves much like the λ-
context λa.- where - is a ‘hole’, and of course sub will allow us to state (and
prove!) nontrivial properties of substitution in the presence of those holes. Ex-
ample 4.1 gives three such properties; there are many more and our main result
Theorem 7.5 asserts that we can prove all of them from our axioms.

3 Nominal Algebra

We can now do algebra. For us, algebra is the logic of equality (no implication, no
quantification). We consider a canonical syntax-based model later in Section 6
and find much of interest to say about it in Section 7 — other models of our
axioms are the topic of other work [4].

A freshness (assertion) is a pair a#t of an atom and a term. Call a freshness
of the form a#X (so t ≡ X) primitive. Write Δ for a (possibly infinite) set
of primitive freshnesses and call it a freshness context. We may drop set
brackets in freshness contexts, e.g. writing a#X, b#Y for {a#X, b#Y }. Also, we
may write a, b#X for a#X, b#X . Define derivability on freshnesses in natural
deduction style by:

(#ab)
a#b

a#t1 · · · a#tn

(#f)
a#f(t1, . . . , tn)

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

π-1(a)#X
(#X)

a#π · X

Here f ranges over term-formers,4 t and t1, . . . , tn range over terms, X ranges
over unknowns, and a and b permutatively range over atoms, i.e. a and b represent
any two distinct atoms. We use similar conventions henceforth.

Write Δ � a#t when a derivation of a#t exists using the elements of Δ as
assumptions. Say that Δ entails a#t or a#t is derivable from Δ; call this a
freshness judgement.

An equality (assertion) is a pair t = u where t and u are terms of the same
sort. Define derivability on equalities in natural deduction style by:

(refl)
t= t

t= u
(symm)

u = t

t =u u = v
(tran)

t= v

t1 = u1 · · · tn =un

(congf)
f(t1, . . . , tn) = f(u1, . . . , un)

t= u
(cong[])

[a]t = [a]u

a#t b#t
(perm)

(a b) · t= t

[a#X1, . . . , a#Xn] Δ
···

t= u
(fr) (a �∈ t, u, Δ)

t= u
4 More precisely, f is a meta-variable ranging over term-formers.

202 M.J. Gabbay and A. Mathijssen

We may call this the core theory and refer to it as CORE. We may write
Δ �CORE t = u for ‘t = u is derivable from assumptions Δ in the core theory’; call
this an equality judgement.

In (fr) square brackets denote discharge in the sense of natural deduction, as
in implication introduction [7]; Δ denotes the other assumptions of the derivation
of t = u.5 This is useful because unknowns in a derivation intuitively represent
unknown terms, but any finite collection of such terms can mention only finitely
many atoms; (fr) expresses that we can always find a fresh one.

In (perm) read (a b) · t as ‘swap a and b in t’. It is defined on syntax by:

π · a ≡ π(a) π · (π′ · X) ≡ (π ◦ π′) · X π · [a]t ≡ [π(a)](π · t)
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

So π propagates through the structure of t until it reaches an atom or a moder-
ated unknown. We can easily verify that (π ◦ π′) · t ≡ π · (π′ · t) and Id · t ≡ t.

Here is an example derivation, using the fact that [a]a ≡ (a b) · [b]b:

(#ab)
a#b

(#[]b)
a#[b]b

(#[]a)
b#[b]b

(perm)
[a]a = [b]b

Provable equality in CORE coincides with provable equality on nominal terms
in the sense of nominal unification [2], for details see elsewhere [3]. This corre-
sponds in a suitable sense to α-equivalence, though in a non-trivial way since
�CORE [a]X = [b]X does not hold — but b#X �CORE [a]X = [b](b a) · X does [2].

Nominal Algebra (NA) is the theory outlined above, along with the ability
to impose axioms. Call a triple Δ � t = u where Δ is finite an axiom. We may
write � t = u when Δ is empty (the empty set). Call an instance of an axiom
a step in a derivation where the conclusion is obtained from an axiom by instan-
tiating unknowns by terms,6 and permutatively renaming atoms, such that the
hypotheses are corresponding instances of freshness conditions of the axiom.

4 SUB: The Theory of Explicit Substitution

NA substitution allows the axioms in Fig. 1. Here (f �→) represents a schema
of axioms, one for each term-former other than var; one particular example is
(sub�→). We make concrete choices of atoms a and b, of an unknown T of sort
T, and of unknowns X, X1, . . . , Xn of appropriate sorts. We call the axioms and
the resulting equality a theory of substitution and write it SUB.

5 In sequent style, (fr) would be
Δ, a#X1, . . . , a#Xn � t = u

Δ � t = u
(a �∈ t, u, Δ).

6 Instantiation of unknowns is mostly what the reader would expect: textual replace-
ment of X by t. See Sect. 7.1 for the formal definition.

Capture-Avoiding Substitution as a Nominal Algebra 203

Example 4.1. The following judgements are derivable in SUB:

1. a#Y �SUB Z[a �→ X][b �→ Y] = Z[b �→ Y][a �→ X [b �→ Y]]
2. b#Z �SUB Z[a �→ X] = ((b a) · Z)[b �→ X]
3. �SUB X [a �→ var(a)] = X

We give only the first derivation in full. We write σ for [b �→ Y] and we use the
unsugared syntax for the other substitutions.

(f �→)
sub([a]Z, X)σ = sub(([a]Z)σ, Xσ)

a#Y
(abs �→)

([a]Z)σ = [a](Zσ)
(refl)

Xσ = Xσ
(congf)

sub(([a]Z)σ, Xσ)= sub([a](Zσ), Xσ)
(tran)

sub([a]Z, X)σ = sub([a](Zσ), Xσ)

For part 2: We must prove b#Z �SUB sub([a]Z, X) = sub([b](b a) · Z, X). By
(congf), (refl), and (symm), it suffices to derive [b](a b) · Z = [a]Z. Using
(perm) it suffices to derive a, b#[a]Z, which is easy.

For part 3: By (fr) we may assume b#X for some b �∈ X, X [a �→ var(a)],
i.e. b �= a. By (tran) it suffices to derive X [a �→ var(a)] = ((b a) · X)[b �→ var(a)]
and ((b a) · X)[b �→ var(a)] = X. The former is an instance of part 2 of this ex-
ample. For the latter it suffices to derive a#(b a) · X, by axiom (ren �→) and
X ≡ (a b) · (b a) · X . By (#X), this follows from the assumption b#X.

5 SUBfr: Explicit Substitution Rewritten

Equality has no algorithmic content so we have specified what is equal, but not
how to verify it. Rewriting is algorithmic in that sense, given confluence. It is
useful to give a rewrite system for SUB.

Nominal rewriting is like nominal algebra, but with a directed notion of equal-
ity; terms are taken up to equality in CORE. A rewrite rule ∇ � l → r may trigger
a rewrite in a term t when (an instance of) l is provably equal in CORE to some
subterm of t, and the corresponding instance of ∇ is derivable using the ambient
context of freshness assumptions Δ (so ∇ is freshness conditions on the rewrite
rule) [8, 9, 10]. Rewrite rules are given in Fig. 2. Write →Δ for the rewrite relation
induced by rewrites in CORE, given Δ.

Say a freshness context Δ′ freshly extends Δ when Δ′ = Δ ∪ Δ′′ where Δ′′

may be empty, but if a#X ∈ Δ′′ then a �∈ Δ. Note that the rule (fr) precisely
‘introduces a Δ′′’. So b#X, a#X freshly extends a#X but a#Y, a#X does not.

Lemma 5.1 (Rewriting is equality). Δ �SUB t = u is derivable if and only
if t is related to u by the symmetric transitive reflexive closure of →Δ′ for some
Δ′ freshly extending Δ.

Say a property holds of a triple (Δ, t, u) ‘provided Δ has sufficient fresh-
nesses’ when that property holds of some (Δ′, t, u) for Δ′ freshly extending Δ.
So for Δ, t, and u, equality between t and u SUB coincides with rewritability
between them in SUBfr, provided that Δ has sufficient freshnesses.

204 M.J. Gabbay and A. Mathijssen

(Rvar) � var(a)[a �→ X] → X
(R#) a#Z � Z[a �→ X] → Z
(Rf) � f(Z1, . . . , Zn)[a �→ X] → f(Z1[a �→ X], . . . , Zn[a �→ X]) (f �=var, sub)
(Rsub) a#Y � Z[a �→ X][b �→ Y] → Z[b �→ Y][a �→ X[b �→ Y]]
(Rabs) c#X � ([c]Z)[a �→ X] → [c](Z[a �→ X])
(Rren) b#Z � Z[a �→ var(b)] → (b a) · Z

Fig. 2. Substitution as a rewrite system SUBfr

5.1 SUBe and Strong Normalisation Up to SUBe

Substitution has the character of a computation and our re-casting SUB as a
rewrite system recognises this. However substitutions also have an awkward ‘si-
multaneous’ character. For example

�SUB X[a �→ var(a′)][b �→ var(b′)][c �→ var(c′)] = X[c �→ var(c′)][b �→ var(b′)][a �→ var(a′)]

is derivable but there is no obvious direction to the equality and SUBfr does not
strongly normalise on the terms.

Call a binary relation (by incredible coincidence write it →) strongly nor-
malising when if for t1, t2, . . . we have t1→t2→t3→ . . . then i exists such that
if j ≥ i then ti = tj . Clearly this is not the case of any →Δ from SUBfr.

Let SUBe be the NA theory with axioms in Fig. 3.

(Eswap) a#Y, b#X � Z[a �→ X][b �→ Y] = Z[b �→ Y][a �→ X]
(Egarbage) a#Z � Z[a �→ X] = Z

Fig. 3. The theory SUBe

Lemma 5.2. The rules obtained from directing the equalities from SUBe, are
admissible in SUBfr, i.e. every instance of the following can be obtained in SUBfr:

(Rswap) a#Y, b#X � Z[a �→ X][b �→ Y] → Z[b �→ Y][a �→ X]
(Rgarbage) a#Z � Z[a �→ X] → Z

As a corollary, provable equality in SUBe implies provable equality in SUB.

We will show that → of SUBfr is strongly normalising up to provable equality in
SUBe. Some auxiliary functions and notations are needed.

Fix Δ and write a#v for Δ � a#v and ¬a#v for Δ �� a#v. Let f range over all
term-formers excluding sub (but including var), and let . denote the arithmetic
product. Define |v|b by |v|b = 0 if b#v and only otherwise by:

|a|a = 1 |v[a �→ t]|a = |t|a + 1 |v[a �→ t]|b = |v|b (a#v)

|v[a �→ t]|b = |v|b (¬a#v, b#t) |v[a �→ t]|b = |v|b+|t|b.|v|a+1 (¬a#v, ¬b#t)

|f(v1, . . . , vn)|b = |v1|b + · · · + |vn|b + 1 |[a]v|b = |v|b + 1 |π · X|a = 1

Then the following inductive definition makes Theorem 5.3 a matter of easy
arithmetic:

Capture-Avoiding Substitution as a Nominal Algebra 205

|f(v1, . . . , vn)| = |v1| + · · · + |vn| (n > 0) |f()| = 1 |[a]v| = |v|
|π · X| = 1 |a| = 1 |v[a �→ t]| = |t|.|v|a + |v|

Theorem 5.3. If t →Δ t′ then either Δ �SUBe t = t′ or |t|Δ > |t′|Δ. As a result
SUBfr is strongly normalising up to provable equality in SUBe.

Write →∗
Δ

for the transitive reflexive (but not symmetric) closure of →Δ. We
note that Δ �SUBe t = u does not imply t →∗

Δ
u or u →∗

Δ
t. For a counterexample

consider t ≡ var(a)[b �→ var(c)] and u ≡ var(a)[b �→ var(c′)].

5.2 Garbage and Garbage-Collection

Call the pair Δ � t a (nominal) term-in-context. Equalities, and rewrites,
are on terms in context. Only if t is closed is context irrelevant.

Say that a term-in-context Δ � t has garbage when:

– for some subterm t′[a �→ u] it is the case that Δ � a#t′, or
– for some subterm of the form π · X and some a ∈ π · X , it is the case that

both Δ � a#X and Δ � π(a)#X hold.

Otherwise say Δ � t has no garbage.

Example 5.4. Terms in the top line have no garbage, the others do:

� var(a)[a �→X] � X[a �→Y] a#X � (a b)·X
� var(a)[b �→X] a#X � X[a �→Y] a, b#X � (a b)·X a, b#X � ((a b)·X)[c�→var(c′)].

Alas the rewrite rule (Rsub) in SUBfr may introduce garbage (the innermost
[b �→ Y] acting on X). Alas also, α-equivalence (provable equality in CORE) may
introduce garbage, for example a, b#X �CORE (a b) · X = X .7

Say that Δ � t is a SUBfr-normal form when Δ �SUBe t = t′ for all t′ with
t →Δ t′. So a SUBfr-normal form may still rewrite with a rule from SUBfr ((R#)
and (Rsub) to be precise) but that rewrite just has no effect up to provable
equality in SUBe.

Lemma 5.5 (Garbage collection). For any Δ � t there is some t′ a SUBfr-
normal form with no garbage such that t →∗

Δ
t′. Furthermore, if Δ �SUBe t = u

is derivable then there is some SUBfr-normal form v with no garbage such that
t →∗

Δ
v and u →∗

Δ
v.

5.3 Confluence

A standard way to prove confluence is to prove local confluence and strong nor-
malisation. But SUBfr is not strongly normalising, see the example of Sect. 5.1.
The interest of this proof is that we use SUBe to ‘cancel that out’.

Lemma 5.6. Rewrites of Δ � t in the nominal rewrite system SUBfr are locally
confluent in a context with sufficient freshnesses, up to provable equivalence in
CORE.
7 This is one reason SUB is a difficult beast to handle, and it took us quite a while

to decide to split it up as a rewrite system over a provable equality, and then which
provable equality to use.

206 M.J. Gabbay and A. Mathijssen

(Recall that the restriction on contexts is not a ‘real’ one, because we have (fr).)

Theorem 5.7. SUBfr is confluent in a context with sufficient freshnesses.

Proof. SUBfr is strongly normalising up to provable equality in SUBe by The-
orem 5.3. It is locally confluent (in a context with sufficient freshnesses) by
Lemma 5.6. By Newman’s Lemma [11] it is confluent up to provable equality in
SUBe. Finally, we use the second part of Lemma 5.5. �
From this follow:

Theorem 5.8. SUB is conservative over CORE. That is, Δ �SUB t = u if and
only if Δ �CORE t = u, assuming that neither t nor u mention explicit substitution.

Corollary 5.9 (Consistency). For all Δ there are t, u such that Δ ��SUB t = u.

6 Ground Terms

Call terms g and h ground terms when they do not mention unknowns or
explicit substitutions. These are inductively characterised by

g ::= a | f(g, . . . , g) | [a]g

where f ranges over all term-formers except for sub.
We consider the meaning of explicit substitution on ground terms (mak-

ing a connection between [a �→ t] and actual capture-avoiding substitution on
syntax).

Define a ‘free atoms of’ function fa(g) on ground terms inductively as follows:

fa(a) = {a} fa(f(g1, . . . , gn)) =
�

1≤i≤n

fa(gi) fa([a]g) = fa(g) \ {a}

Define the support of g by supp(g) = {a | �� a#g}.

Lemma 6.1. fa(g) = supp(g).
For each finite set of atoms arbitrarily choose some canonical ‘fresh’ atom not
in that finite set. Then define a ground substitution action g[h/a] on ground
terms of sort T and [A]T by

var(b)[h/a] ≡ var(b) var(a)[h/a] ≡ h f(g1, . . . , gn)[h/a] ≡ f(g1[h/a], . . . , gn[h/a])

([a]g)[h/a] ≡ [a]g ([b]g)[h/a] ≡ [b](g[h/a]) (b �∈ fa(h))

([b]g)[h/a] ≡ [c](g[var(c)/b][h/a]) (b ∈ fa(h), c fresh),

where f ranges over all term-formers excluding var (and sub of course), and ‘c
fresh’ means c is fresh for {a, b}∪ fa(g)∪ fa(h) according to our arbitrary choice.

Theorem 6.2. �SUB g[h/a] = g[a �→ h] is always derivable.

Proof. By straightforward induction on the structure of g, using Lemma 6.1. �
Define an α-equivalence relation g =α h inductively by:

a=αa
g1=αh1 · · · gn=αhn

f(g1, . . . , gn)=αf(h1, . . . , hn)

g=αh

[a]g=α[a]h

g[var(c)/a]=αh[var(c)/b]

[a]g=α[b]h
(c fresh)

Capture-Avoiding Substitution as a Nominal Algebra 207

Here ‘c fresh’ means c fresh for {a, b} ∪ fa(g) ∪ fa(h).

Theorem 6.3. g =α h if and only if �SUB g = h is derivable.

Proof. By Theorem 5.8 �SUB g = h is equivalent to �CORE g = h. By results about
nominal terms [2, 3] this happens precisely when g =α h. �

So intuitively: On ground terms �SUB g = h is α-equivalence and explicit substi-
tution is capture-avoiding substitution.

7 ω-Completeness

How do we know that SUB really is an axiomatisation of substitution? We now
give a soundness and completeness result. ω-completeness (notation from [12])
is ‘soundness and completeness with respect to the closed term model’.

We need a number of technical definitions and lemmas.

7.1 Meta-level Substitution

Call a substitution σ a finitely supported function from unknowns to terms of
the same sort. Here, finite support means that σ(X) ≡ Id · X for all but finitely
many unknowns X , i.e. for ‘most’ X .

Write [t/X] for σ defined by σ(X) ≡ t and σ(Y) ≡ Id · Y , for all Y �≡ X .
Let tσ (‘σ applied to t’) be inductively defined by:

aσ ≡ a (π · X)σ ≡ π · σ(X) ([a]t)σ ≡ [a](tσ) f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

We may call tσ an instance of t. The substitution action extends to freshness
assertions, equalities, and so on. We extend notations and terminologies silently.
Note that this does not avoid capture; ([a]X)[a/X] ≡ [a]a and in this formal
sense X is ‘meta’ and really does represent an unknown term.

Call σ nontrivial on X when σ(X) �≡ Id · X . By assumption σ is nontrivial
for only finitely many unknowns. Say that σ′ extends σ when σ′(X) ≡ σ(X)
whenever σ is nontrivial on X . Call σ closing for some collection of freshness
and equality assertions S when σ(X) is a closed term for every X ∈ S. We will
not mention S when it is clear from the context.

Say a closing σ is Δ-consistent when � a#σ(X) for all a#X ∈ Δ.

Lemma 7.1. Fix Δ, X, and closed term v. If � a#v for every a#X ∈ Δ then
there is a Δ-consistent closing σ which extends [v/X].

7.2 Suspended Explicit Substitutions

Suppose a term-in-context Δ � t ≡ (π · t′)[a1 �→ t1] . . . [am �→ tm] is such that
Δ � ai#tj for all 1 ≤ i, j ≤ m. Here m may equal 0, in which case t ≡ (π · t′).

Then call the partial syntax (π · -)[a1 �→ t1] . . . [am �→ tm] a suspended
substitution; we generally let α and β vary over suspended substitutions. β
will typically be (π′ · -)[b1 �→ u1] . . . [bn �→ un]. Suspended substitutions have a
natural action on terms t′α given by replacing - by t′.

208 M.J. Gabbay and A. Mathijssen

Lemma 7.2. Assuming sufficient freshnesses, if Δ � t is a SUBfr-normal form
with no garbage then every explicit substitution t mentions is in a subterm u
such that Δ �CORE u = Xα and Δ � Xα has no garbage.

Proof. Otherwise there is a rewrite such that Δ � t → t′ where Δ ��SUBe t = t′. �

Lemma 7.3. Suppose t and u are SUBfr-normal forms with no garbage. Then
Δ �SUBe t = u precisely when one of the following hold:

1. t ≡ a and u ≡ a.
2. t ≡ π · X and u ≡ π · X.
3. t ≡ [a]t′ and u ≡ [a]u′ and Δ �SUBe t′ = u′.
4. t ≡ [a]t′ and u ≡ [b]u′ and Δ �SUBe (b a) · t′ = u′ and Δ � b#t′.
5. t ≡ f(t1, . . . , tn) and u ≡ f(u1, . . . , un) and Δ �SUBe ti = ui for 1 ≤ i ≤ n

(f �= sub).
6. t ≡ t′α and u ≡ u′β and m = n > 0 and Δ �SUBe t′ = u′, and for every i there

is a unique j such that π-1(ai) = π′-1(bj) and Δ �SUBe ti = uj — and similarly
for every j.

Theorem 7.4. Equality in SUB is decidable.

Proof. Given Δ, t and u, we can calculate whether Δ �SUB t = u is derivable:

1. Rewrite t and u to SUBfr-normal forms t′ and u′, using Theorem 5.3.
2. Remove garbage from t′ and u′, using Lemma 5.5.
3. Check if the top-level term-formers of t′ and u′ satisfy the criteria stated

in Lemma 7.3; for each of the new proof obligations Δ �SUBe t′′ = u′′ go to
step 2.8

4. If all criteria checks were successful, return true; otherwise false. �

7.3 ω-Completeness

ω-completeness is soundness and completeness with respect to a model made
out of closed terms (terms which do not mention unknowns X); since syn-
tax is the canonical example on which substitution is defined, soundness and
completeness with respect to this model is a powerful argument that in the-
ory SUB, we got it right. An NA judgement Δ �SUB t = u has the flavour of
a universal quantification over the unknowns it mentions. Soundness for the
closed terms model means: if Δ �SUB t = u is derivable then all instances of
this equality (subject to Δ) on closed terms are derivable. Much harder to
prove is that furthermore if all instances are derivable (subject to Δ), then
so is Δ �SUB t = u.

Call SUB ω-complete when if �SUB tσ = uσ is derivable for all Δ-consistent
closing substitutions σ (for Δ, t and u), then Δ �SUB t = u is derivable.

8 Garbage could be introduced by case 4 of Lemma 7.3, so we must remove it.

Capture-Avoiding Substitution as a Nominal Algebra 209

Theorem 7.5. SUB is ω-complete.

Proof. By contraposition. Suppose not Δ �SUB t = u. We construct Δ-consistent
σ such that not �SUB tσ = uσ. It suffices to do this for some Δ′ which freshly
extends Δ; for convenience assume Δ = Δ′. By the first part of Lemma 5.5 and
by Lemma 5.1 we may suppose t and u are SUBfr-normal forms with no garbage.
By Lemma 7.2 further assume they have the particular form mentioned in that
result. By Lemma 5.2 also Δ �SUBe t = u is not derivable. So now we must prove

(
Δ ��SUBe t = u

)
implies

(
∃σ closing and Δ-consistent. ��SUB tσ = uσ

)
,

where t and u have the structure as described above.
We work by induction on the size of t and u. We proceed by case distinction

(we omit routine cases, and calculations concerning size):

– t ≡ a and u ≡ b. By Theorem 6.3.
– t ≡ f(t1, . . . , tm) and u ≡ g(u1, . . . , un) (f, g �= sub). Apply any closing Δ-

consistent σ (easy to manufacture), use Theorem 6.2 to remove all explicit
substitutions, and then use Theorem 6.3 to conclude ��SUB tσ = uσ.

– t ≡ f(t1, . . . , tm) and u ≡ f(u1, . . . , um) (f �= sub). By part 5 of Lemma 7.3
Δ ��SUBe ti = ui for some i. We use the inductive hypothesis and Theorems 6.2
and 6.3.

– t ≡ [a]t′ and u ≡ [b]u′. Using Lemma 7.3 Δ ��SUBe (b a) · t′ = u′ or Δ �� b#t′.
If Δ �� b#t′, then choose appropriate σ and use Theorems 6.2 and 6.3. If
Δ ��SUBe (b a) · t′ = u′ then we can remove possible garbage from (b a) · t′
without increasing size, apply the inductive hypothesis, and finally use The-
orems 6.2 and 6.3.

– t ≡ Xα and u ≡ Xβ and m = n > 0. Using Lemma 7.3 and notation from
that result, Δ �SUBe t = u precisely when Δ �SUBe ti = uj for every i, j such
that π-1(ai) = π′-1(bj). So suppose i and j are such that Δ ��SUBe ti = uj.
Now using pair, var, and binder, generate v such that ai ∈ supp(v) and
supp(v) is otherwise fresh (thus, disjoint from atoms mentioned in t and u).
Choose Δ-consistent closing σ extending [v/X] using Lemma 7.1. Then by
Theorems 6.2 and 6.3 we see that ��SUB tσ = uσ. �

8 Conclusions

Substitution underlies quantifiers in predicate logics, the λ-binder of the λ-
calculus, unification, and lots more besides. It is a central, not incidental, fea-
ture of these systems. This paper throws a new and unexpected light on this
profoundly important common denominator.

Future work on nominal techniques needs a nominal axiomatisation of sub-
stitution. This paper provides that and the work has already found application
in concurrent work; we use it to ‘power’ a nominal axiomatisation of first-order
logic [5], and we develop abstract (non-term-based) models of SUB in [4]. Such
enterprises would not be mathematically secure without Theorem 7.5 to tell us
that we got our foundations right.

210 M.J. Gabbay and A. Mathijssen

We have considered one substitution and Theorem 7.5 tells us it is capture-
avoiding substitution. We can think of other kinds of substitution, for example
context substitution which does not avoid capture; the basic principles are clear
in this paper and there are a great many possibilities for applying them elsewhere.

Note how we decompose an equational system into a rewrite system over a
simpler equational system, and we fully exploit results of nominal rewriting and
nominal algebra as well as detailed calculations on terms (such as the notion of
measure we use to prove confluence). Similar techniques may be useful for other
systems; they seemed to arise in our treatment of first-order logic [5].

We find the nominal terms treatment of binding pleasingly clean; a nominal
term such as λ[a]X or ∀[a]X corresponds exactly and syntax-for-syntax to what
we intend when we write λa.t and ∀a.φ, right down to the way in which t and φ
are instantiated. Other approaches to binding involve some degree of emulation
(index lifting in de Bruijn [13], type-raising in type-based techniques [14]). Thus
a nominal treatment of substitution is worthwhile to investigate in itself.

8.1 Related Work

Crabbé [15, 16] axiomatises substitution much like us and shares (in our termi-
nology) atoms and freshness conditions. Crabbé does not treat binding.9 So our
substitution is capture-avoiding. Also, for us atoms and freshness side-conditions
are parts of a broader nominal framework whereas Crabbé expresses them in
first-order logic; we feel that nominal techniques have given us a cleaner separa-
tion of the layers of complexity hidden in these deceptively simple ideas.

Feldman [17] gives an algebraic axiomatisation inspired by a concrete model
of functions/evaluations. His axioms are closer in spirit to Cylindric Algebras
[1] and Lambda Abstraction Algebras [18, 19]. The three approaches share an
infinity of term-formers which are ‘morally’ precisely λ[a], -[a �→ -], and ∃[a]. We
see the advantage of our treatment as systematising and formalising precisely
what rôle the atoms really have. In any case the approaches above cannot directly
express (ren�→), (#�→), and (abs �→), even though instantiations are derivable
for closed terms by calculations parametric over their specific structure.

Combinatory Algebra (CA) [20] and related systems implement substitution
by ‘pipes’ (e.g. the translation of λ-terms into CA [20]). General truths such as
(#�→) are only provable for fixed closed terms by calculations parametric over
its specific structure.

Lescanne’s classic survey [13] and the thesis of Bloo [21] chart a vast litera-
ture on λ-calculi with explicit substitutions. These decompose β-reduction as a
rule to introduce explicit substitution ((λa.u)t → u[a �→ t]), and explicit rules
for that substitution’s subsequent behaviour (which is to substitute, of course).
These calculi are designed to measure the cost of a β-reduction (in an imple-
mentation, which may be based on de Bruijn indexes [22] or on named variable
9 He declares as much: ‘. . . we are not concerned with the notion of bound variable’ [16,

page 2]. See also the axioms (there is no (abs �→)) and the soundness and complete-
ness result — Crabbé’s model is based on (in our notation) var and pair, whereas we
consider a model based on var, pair, binder, and sub.

Capture-Avoiding Substitution as a Nominal Algebra 211

symbols). They do not axiomatise substitution, they implement it. For example,
‘confluence’ is a typical correctness criterion for a calculus, and ‘ω-completeness’
is not.

8.2 Future Work

Nominal unification [2] is ‘merely’ unification of nominal terms up to CORE. Our
confluence results are a step towards unification up to SUB. Nominal Unification
is to be compared (in a sense we do not discuss here) with higher-order patterns
[23]; we now suggest that unification up to SUB is to be compared with higher-
order unification [24] — with the difference that SUB is weaker, because there
is no λ and application, only their combination as ‘substitution’.

There is no obstacle to taking SUB over itself — that is, to taking what
we write in this paper as, say, (X [a �→ Y])[t/X] and expressing it in a stronger
axiom system as (X [a �→ Y])[X �→ T] where T is a ‘stronger’ meta-variable. This
relates to the NEW calculus of contexts [25] and hierarchical nominal rewriting
[26] investigated by the first author, but much more is possible and there are
many substitutions out there which we could axiomatise.

Armed with SUB and the knowledge that it is correct in the sense of The-
orem 7.5 we hope to develop logics and λ-calculi with a fundamentally new,
beautiful, and mathematically advantageous, way of treating substitution and
more generally internalising the meta-level.

References

[1] Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Springer (1981)
Available online.

[2] Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoretical Computer
Science 323(1–3) (2004) 473–497

[3] Gabbay, M.J., Mathijssen, A.: Nominal algebra. Submitted STACS’07 (2006)
[4] Gabbay, M.J., Bulò, S.R., Marin, A.: Substitution as an abstract notion: holy

functions! Submitted STACS’07 (2006)
[5] Gabbay, M.J., Mathijssen, A.: One-and-a-halfth-order logic. In: PPDP ’06: Pro-

ceedings of the 8th ACM SIGPLAN symposium on Principles and practice of
declarative programming, New York, NY, USA, ACM Press (2006) 189–200

[6] Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable
binding. Formal Aspects of Computing 13(3–5) (2001) 341–363

[7] Hodges, W.: Elementary predicate logic. In Gabbay, D., Guenthner, F., eds.:
Handbook of Philosophical Logic, 2nd Edition. Volume 1. Kluwer (2001) 1–131

[8] Fernández, M., Gabbay, M.J., Mackie, I.: Nominal rewriting systems. In: Proc. 6th
Int. ACM SIGPLAN Conf. on Principles and Practice of Declarative Programming
(PPDP’2004), ACM (2004) 108–119

[9] Fernández, M., Gabbay, M.J.: Nominal rewriting. Journal version, submitted
Information and Computation (2005)

[10] Fernández, M., Gabbay, M.J.: Nominal rewriting with name generation: abstrac-
tion vs. locality. In: Proc. 7th Int. ACM SIGPLAN Conf. on Principles and
Practice of Declarative Programming (PPDP’2005), ACM (2005) 47–58

212 M.J. Gabbay and A. Mathijssen

[11] Newman, M.: On theories with a combinatorial definition of equivalence. Annals
of Mathematics 43(2) (1942) 223–243

[12] Groote, J.F.: A new strategy for proving omega-completeness applied to process
algebra. In Baeten, J., Klop, J., eds.: CONCUR ’90: Proceedings of the Theories
of Concurrency: Unification and Extension. Volume 458 of LNCS., London, UK,
Springer-Verlag (1990) 314–331

[13] Lescanne, P.: From lambda-sigma to lambda-upsilon a journey through calculi
of explicit substitutions. In: POPL ’94: Proc. 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM Press (1994) 60–69

[14] Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated
Reasoning 5(3) (1989) 363–397

[15] Crabbé, M.: Une axiomatisation de la substitution. Comptes rendus de l’Académie
des Sciences de Paris, Série I 338 (2004) 433–436

[16] Crabbé, M.: On the notion of substitution. Logic Journal of the IGPL 12 n.2
(2004) 111–124

[17] Feldman, N.: Axiomatization of polynomial substitution algebras. Journal of
Symbolic Logic 47(3) (1982) 481–492

[18] Lusin, S., Salibra, A.: The lattice of lambda theories. Journal of Logic and
Computation 14 n.3 (2004) 373–394

[19] Salibra, A.: On the algebraic models of lambda calculus. Theoretical Computer
Science 249(1) (2000) 197–240

[20] Barendregt, H.P.: The Lambda Calculus: its Syntax and Semantics (revised ed.).
Volume 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland (1984)

[21] Bloo, R.: Preservation of Termination for Explicit Substitution. PhD thesis,
Eindhoven University of Technology, Eindhoven (1997)

[22] de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem.
Indagationes Mathematicae 5(34) (1972) 381–392

[23] Miller, D.: A logic programming language with lambda-abstraction, function
variables, and simple unification. Extensions of Logic Programming 475 (1991)
253–281

[24] Huet, G.: Higher order unification 30 years later. In: TPHOL 2002. Number 2410
in LNCS (2002) 3–12

[25] Gabbay, M.J.: A new calculus of contexts. In: Proc. 7th Int. ACM SIGPLAN
Conf. on Principles and Practice of Declarative Programming (PPDP’2005), ACM
(2005)

[26] Gabbay, M.J.: Hierarchical nominal rewriting. In: LFMTP’2006. (2006) 32–47

	Introduction
	Nominal Terms
	Nominal Algebra
	SUB: The Theory of Explicit Substitution
	SUBfr: Explicit Substitution Rewritten
	Ground Terms
	ω-Completeness
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

