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Logic

Logic studies reasoning.

Example
‘‘If I obtain my degree I will give a talk at the symposium.’’

Expressed in logic by the following formula:

obtain_degree ⇒ give_talk

‘‘If all human beings are mortal then Socrates is mortal.’’

Expressed in logic by the following formula:

∀x∈Humans mortal(x) ⇒ mortal(Socrates)
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Reasoning about logics

In many cases we reason about logics:

φ ⇒ (ψ ⇒ φ)

φ and ψ are meta-variables ranging over arbitrary formulas.

We have a schema of formulas, one for each instantiation of φ and ψ.

Example
Take obtain_degree for φ and give_talk for ψ:

obtain_degree ⇒ (give_talk ⇒ obtain_degree)
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Reasoning about logics with binders

In many cases we reason about logics with binders, such as ∀:

φ ⇒ ∀x.φ if x does not occur free in φ
∀x.φ ⇒ φ[t/x]

φ is a meta-variable ranging over formulas.
t is a meta-variable ranging over terms.

We need to define the following concepts:
• freshness conditions: if x does not occur free in φ
• substitution φ[t/x]
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Observation

If logic teaches us to study reasoning,
we should also study reasoning about logics.



Formalise reasoning about logics with binders

How can we formalise assertions like:
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• substitution of terms for object-variables is capture-avoiding
• representation of meta-variables depends on their context
• need unification up to substitution (and extensionality)
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• freshness information is encoded in the term structure
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How can we formalise assertions like:

φ ⇒ ∀x.φ if x does not occur free in φ
∀x.φ ⇒ φ[t/x]

Embrace the difference between object- and meta-variables
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a#P ` P ⇒ ∀[a]P
` ∀[a]P⇒ P[a 7→ T]

Drawback:
• relative new technique: logical frameworks were not available



Our contribution
Developed two logics to reason about logics with binders
based on nominal terms:

Equational logic with binders and meta-variables:
• natural deduction calculus
• axiomatisation of the lambda calculus
• axiomatisation of capture-avoiding substitution
• semantics in nominal sets

First-order logic with binders and meta-variables:
• sequent calculus
• axiomatisation of the sequent calculus



Nominal terms
Definition:

t ::= a | π · X | [a]t | f(t1, . . . , tn)

Here we fix:
• atoms a, b, c, . . . (to represent object-variables x, y)
• unknowns X,Y,Z, . . . (to represent meta-variables φ, ψ, t)
• term-formers f, g, h, . . . (for obtain_degree, mortal, ⇒, ∀, _[_ 7→ _])

We call [a]t an abstraction (for the x._).

π represents a permutation of atoms:
• needed for α-conversion
• we write id · X as X where id is the identity permutation



Freshness on nominal terms
Representation of ‘x does not occur free in φ’:
• primitive freshnesses a#X
• freshness contexts ∆: finite set of primitive freshnesses.

Decidability of freshness:
• freshness a#t, where t is a nominal term.
• natural deduction rules for freshness:

(#ab) (a , b)
a#b

π-1(a)#X
(#X) (π , id)

a#π · X

(#[]a)
a#[a]t

a#t
(#[]b) (a , b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Examples: ` a#b ` a#λ[a]X a#X ` a#λ[b]X
0 a#a 0 a#λ[b]X a#X 0 a#Y
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Natural deduction rules for equality between nominal terms.



Equational logic on nominal terms

Natural deduction rules for equality between nominal terms.

Equivalence and congruence:

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong[])

[a]t = [a]u

t = u
(congf)

f(t1, . . . , t, . . . , tn) = f(t1, . . . , u, . . . , tn)



Equational logic on nominal terms

Natural deduction rules for equality between nominal terms.

α-conversion:

a#t b#t
(perm) (a , b)

(a b) · t = t

Examples:

(#ab)
a#b

(#[]b)
a#[b]b

(#[]a)
b#[b]b

(perm)
[a]a = [b]b

a#X
(#[]b)

a#[b]X
(#[]a)

b#[b]X
(perm)

[a](b a) · X = [b]X



Equational logic on nominal terms

Natural deduction rules for equality between nominal terms.

Instantiation of axioms:

π · ∆σ
(ax∆ ` t = u)

π · tσ = π · uσ

Instantiation σ of unknowns is capturing,
but we need to verify the capture-avoiding constraints.

Examples:

(#ab)
c#b

(axa#X`[a]app(X,a)=X)
[c]app(b, c) = b

c#c
(axa#X`[a]app(X,a)=X)

[c](app(c, c)) = c

The left derivation is valid but the right one is not, since 0 c#c.



Equational logic on nominal terms

Natural deduction rules for equality between nominal terms.

Introduce fresh atoms:

[a#X1, . . . , a#Xn] ∆
·
·
·

t = u
(fr) (a < t, u,∆)

t = u
Example:

[a#X]1
(axa#X`X=a)

X = a

[a#Y]1
(axa#X`X=a)

Y = a
(symm)

a = Y
(tran)

X = Y
(fr)1

X = Y



Axiomatising the lambda calculus

Term-formers:
• binary application term-former app
• constant term-formers c1, . . . , cn

Five axioms:

(var7→) ` app([a]a,X) = X

(# 7→) a#Z ` app([a]Z,X) = Z

(app7→) ` app([a](app(Z′,Z),X) = app(app([a]Z′,X), app([a]Z,X))

(abs7→) b#X ` app([a][b]Z,X) = [b]app([a]Z,X)

(id 7→) ` app([a]Z, a) = Z

Derivability using these axioms is sound and complete
with respect to a model constructed out of
lambda-terms quotiented by αβ-equivalence.
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A semantics in nominal sets
Nominal sets (Gabbay & Pitts, 1999):
• A set-based model with built-in atoms
• Support for binding and freshness
• Inspired the development of nominal terms

Axiomatisations in the equational logic
have a semantics in nominal sets:
• Derivability of equality is sound and complete
• Derivability of freshness is sound but incomplete

a#app([a]b, a) is not derivable: independent of axioms
a#app([a]b, a) is valid: app([a]b, a) = b is derivable
Semantic freshness can be expressed using equalities
• The semantics satisfies a variant of Birkhoff’s theorem:

HSPA, where A stands for atoms-abstraction



First-order logic with meta-variables

Terms:

t ::= a | π · T | t[a 7→ u] | f(t1, . . . , tn)

Formulas:

φ ::= π · P | ⊥ | φ⇒ ψ | ∀[a]φ | φ[a 7→ t]
| t ≈ u | p(t1, . . . , tn)

Sequents: triples Φ `
∆

Ψ of finite sets of formulas Φ,Ψ

and a freshness context ∆



First-order logic with meta-variables

Sequent calculus for first-order logic with meta-variables.



First-order logic with meta-variables

Sequent calculus for first-order logic with meta-variables.

Basic rules:

(Ax)
φ, Φ `

∆
Ψ, φ

(⊥L)
⊥, Φ `

∆
Ψ

Φ `
∆

Ψ, φ ψ, Φ `
∆

Ψ
(⇒L)

φ⇒ ψ, Φ `
∆

Ψ

φ, Φ `
∆

Ψ, ψ
(⇒R)

Φ `
∆

Ψ, φ⇒ ψ

φ[a 7→ t], Φ `
∆

Ψ
(∀L)

∀[a]φ, Φ `
∆

Ψ

Φ `
∆

Ψ, ψ
(∀R)

Φ `
∆

Ψ, ∀[a]ψ
(∆ ` a#Φ,Ψ)

φ[a 7→ t′], Φ `
∆

Ψ
(≈L)

t′ ≈ t, φ[a 7→ t], Φ `
∆

Ψ
(≈R)

Φ `
∆

Ψ, t ≈ t



First-order logic with meta-variables

Sequent calculus for first-order logic with meta-variables.

Special rules:

φ′, Φ `
∆

Ψ
(StructL) (∆ `SUB φ

′ = φ)
φ, Φ `

∆
Ψ

Φ `
∆

Ψ, ψ′

(StructR)
Φ `

∆
Ψ, ψ

(∆ `SUB ψ
′ = ψ)

Φ `
∆

Ψ, φ φ′, Φ `
∆

Ψ
(Cut) (∆ `SUB φ = φ′)

Φ `
∆

Ψ

Φ `
∆,a#X1 ,...,a#Xn

Ψ
(Fr) (n ≥ 1, a < Φ,Ψ,∆)

Φ `
∆

Ψ



First-order logic with meta-variables

Sequent calculus for first-order logic with meta-variables.

Example
Meta-level sequent:

φ, ψ ` ∀x.φ, if x does not occur free in φ

Formal derivation:

(Ax)
P,Q `a#P,b#P,Q P

(∀R) (a#P, b#P, b#Q ` b#P,Q)
P,Q `a#P,b#P,b#Q ∀[b]P

(StructR) (a#P, b#P, b#Q `SUB ∀[b]P = ∀[a]P)
P,Q `a#P,b#P,b#Q ∀[a]P

(Fr) (b < P, Q, ∀[a]P, a#P)
P,Q `a#P ∀[a]P



First-order logic with meta-variables

Proof-theoretical results:
• In derivations we may permute atoms and instantiate unknowns
• The sequent calculus satisfies cut-elimination, and is consistent
• Without unknowns or explicit substitutions, the sequent calculus is

equivalent to Gentzen’s sequent calculus for first-order logic



An axiomatisation of first-order logic

Consider the following axioms:
• Substitution axioms: similar to those for the lambda calculus
• Propositional axioms, e.g. axioms of boolean algebra
• Quantifier axioms:

(Qinst) ` ∀[a]P⇒ P[a 7→ T] = >

(Qdist) ` ∀[a](P ∧Q)⇔ ∀[a]P ∧ ∀[a]Q = >

(Qextr) a#P ` ∀[a](P⇒ Q)⇔ P⇒ ∀[a]Q = >

• Equality axioms:

(Esubst) ` U ≈ T ∧ P[a 7→ T]⇒ P[a 7→ U] = >

(Erefl) ` T ≈ T = >

This is a sound and complete axiomatisation of the
sequent calculus for first-order logic with meta-variables.
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Conclusions

Using nominal terms we can formalise the meta-level of logics
with binding in a way that is close to informal practice:

• Developed calculi for equational logic and first-order logic
with binders and meta-variables.

• Established proof-theoretical and algebraic results.

We’re not there yet:

• Usability: extend the logics with more features to support reasoning

• Implementation: develop a theorem prover

• Methodology: apply the technique to other systems with binding



Conclusions

Using nominal terms we can formalise the meta-level of logics
with binding in a way that is close to informal practice:

• Developed calculi for equational logic and first-order logic
with binders and meta-variables.

• Established proof-theoretical and algebraic results.

We’re not there yet:

• Usability: extend the logics with more features to support reasoning

• Implementation: develop a theorem prover

• Methodology: apply the technique to other systems with binding



If your interested

Aad Mathĳssen:
Logical Calculi for Reasoning with Binding.
PhD Thesis.

Murdoch J. Gabbay, Aad Mathĳssen:
A Formal Calculus for Informal Equality with Binding.
In: Proc. WoLLIC’07.

Murdoch J. Gabbay, Aad Mathĳssen:
Capture-Avoiding Substitution as a Nominal Algebra.
In: Proc. ICTAC’06.
Extended version in: Formal Aspects of Computing (in print).

Murdoch J. Gabbay, Aad Mathĳssen:
One-and-a-halfth-order Logic.
In: Proc. PPDP’06.
Extended version in: Journal of Logic and Computation (in print).


