

Industrial verification of system behaviour
using the mCRL2 toolset

Aad Mathijssen

Design and Analysis of Systems group
Laboratory for Quality Software (LaQuSo)

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

Dutch Dependability Day
University of Twente

12th May 2009

1/21

Analysis techniques

Development of distributed systems is inherently complex:

Needed: assessment and improvement of quality

Means: analysis techniques

Analysis techniques used in distributed system development:

Structure: what things are in the system?

Behaviour: what happens in the system?

The two techniques complement each other because they
focus on different aspects of the system.

2/21

Analysis of system behaviour

What is analysis of system behaviour about?

Modelling: create an abstract model of the behaviour of
the system

gain insight in the behaviour
reduce complexity to allow for validation and verification

Validation: are we building the right product?

test requirements on the model for a number of paths
and configurations

Verification: are we building the product right?

verify requirements on the model for all possible paths
and configurations

3/21

Analysis of system behaviour in industry

Ingredients for successful application in industry:

Modelling language:

capable of expressing real-world systems

Tool support:

automation
scalability

Provide service:

share expertise and offer training
actually perform the analysis

4/21

Analysis of system behaviour in industry

Solution provided concerning the mCRL2 toolset:

Modelling language:

generic language
combines process algebra with functional programming

Tool support:

Supports automated validation and verification
Flexible tool chain

Service:

Laboratory for Quality Software (LaQuSo)

5/21

mCRL2 toolset: overview

Overview of the mCRL2 toolset:

20 years of history:

Late 1980s: Common Representation Language (CRL)
From 1990: µCRL
During 1990s: µCRL toolset
From 2004: mCRL2 and mCRL2 toolset

Collection of tools

External languages and tools are supported:
µCRL, CADP, χ, PNML, TorX, LySa, SystemC, LTSmin

Multi-platform: Windows, Mac and UNIX variants

Free software licence: Boost licence

Release policy: fixed release cycle (January and July)

6/21

mCRL2 toolset: modelling

Ingredients for modelling:

Actions (push button, place order, call f)

Non-deterministic choice
(either push button or place order)

Sequence (first push button, then place order)

Processes (Client, WebShop)

Parallelism (Client in parallel with WebShop)

Synchronous communication
(push button communicates with place order)

Data types
(push button(on), Client(1), call f({x|prime(x)}))

7/21

mCRL2 toolset: modelling

The toolset supports two kinds of modelling:

Textual:

init ∇{r1,s4,c2,c3,c5,c6,i}(Γ{r2|s2→c2,r3|s3→c3,r5|s5→c5,r6|s6→c6}(
S(true) ‖ K ‖ L ‖ R(true)

));

Graphical:

8/21

mCRL2 toolset: validation

Validation of models supported by the toolset:

Manual or semi-automated simulation

Automated testing using the TorX test tool

Different types of visualisation

9/21

mCRL2 toolset: visualisation

Visualisation as a directed graph using automatic positioning:

10/21

mCRL2 toolset: visualisation

Visualisation as a directed graph is limited to small models:

11/21

mCRL2 toolset: visualisation

Visualisation as a 3D tree of clusters of states:

12/21

mCRL2 toolset: verification

Toolset support for automated verification
of requirements on the complete model:

Occurrences of deadlocks

Occurrences of specific actions

Equivalence of models

Formula checking:

express requirements as temporal logic formulas
check these formulas on the model

13/21

Industrial case studies

Selection of industrial case studies with the mCRL2 toolset:

Error prevention:

Control software of a humanoid robot
Automated parking garage

Error detection:

Load balancer for document processors
I2C Linux driver

14/21

Industrial case studies
Control software of a humanoid robot

Humanoid robot:

Standalone and external control

Architectural design of the control software in UML:

structure as component diagrams
behaviour as state charts

Analysis:

UML → mCRL2

Verification:

Check for deadlocks
Corrected UML models

Size of the correct model:

6.792 states
29.242 transitions

15/21

Industrial case studies
Automated parking garage

An automated parking garage:

16/21

Industrial case studies
Automated parking garage (2)

Verified design of an automated parking garage:

Design of the control software

Verification of the safety layer of this design

Analysis:

Model: 991 lines of mCRL2

Verification: augmented with error actions (217 lines)

Size: 3,3 million states and 98 million transitions

Simulation using custom made visualisation plugin

17/21

Industrial case studies
Automated parking garage (3)

Design errors found using visualisation plugin:

18/21

Industrial case studies
I2C Linux driver

I2C Linux driver:

I2C: bi-directional 2-wire bus for inter-IC communication

Linux driver for specific I2C device

Analysis:

Focus: shared memory access

C source code → mCRL2

Verified mutual exclusion

Size:
62 million states
102 million transitions

Actual errors found: 2

Added multi-threading support
19/21

Industrial case studies
Load balancer for document processors

Intelligent Text Processing (ITP):

Distribution of print jobs over document processors

7.500 lines of C code

Analysis:

Focus: load balancing

C source code → mCRL2

Verification: formula checking

Size:

1,9 billion states
38,9 billion transitions

Actual errors found: 6

LaQuSo certification
20/21

Thank you for your attention

More information can be found on mcrl2.org.

21/21

