

One-and-a-halfth-order Logic

Aad Mathijssen

Murdoch J. Gabbay

6th June 2006

Motivation

Consider the following valid assertions in first-order logic:

- $\phi \supset \psi \supset \phi$
- if $a \notin fn(\phi)$ then $\phi \supset \forall a.\phi$
- if $a \notin fn(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- if $b \not\in fn(\phi)$ then $\forall a. \phi \supset \forall b. \phi \llbracket a \mapsto b \rrbracket \rrbracket$

These are *not valid syntax* in first-order logic, because of *meta-level concepts*:

- meta-variables varying over syntax: ϕ , ψ , a, b, t
- properties of syntax: $a \notin fn(\phi)$, $\phi \llbracket a \mapsto t \rrbracket$, α -equivalence

Is there a logic in which the above assertions can be expressed directly in the syntax?

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

$$\frac{\overline{\psi, \phi \vdash \phi}(\mathbf{A}\mathbf{x})}{\overline{\phi \vdash \psi \supset \phi}(\supset \mathbf{R})} (\supset \mathbf{R})$$
$$\vdash \phi \supset \psi \supset \phi} (\supset \mathbf{R})$$

$$\frac{\frac{\overline{\mathsf{p}}(d), \mathsf{p}(c) \vdash \mathsf{p}(c)}{\mathsf{p}(c) \vdash \mathsf{p}(d) \supset \mathsf{p}(c)} (\supset \mathbf{R})}{\vdash \mathsf{p}(c) \supset \mathsf{p}(d) \supset \mathsf{p}(c)} (\supset \mathbf{R})$$

And for $b \not\in fn(\phi)$:

$$\frac{\overline{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket} (\mathbf{A}\mathbf{x})}{\vdash \forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\supset \mathbf{R})$$

$$\frac{\forall c. \mathsf{p}(c) \vdash \forall d. \mathsf{p}(d)}{\vdash \forall c. \mathsf{p}(c) \supset \forall d. \mathsf{p}(d)} (\mathbf{A}\mathbf{x})$$

The left ones are not derivations, they are *schemas* of derivations. When p is a *specific* atomic predicate and c and d are *specific* variables, the right ones are derivations; they are *instances* of the schemas on the left.

Is there a logic in which the derivation on the left is a derivation too?

Motivation (3)

First-order logic and its proof systems formalise reasoning.

But also a lot of reasoning is *about* first-order logic.

So why shouldn't that be formalised?

One-and-a-halfth-order logic does this by means of:

- formalising meta-variables;
- making properties of syntax explicit.

Overview

- Introduction to one-and-a-halfth-order logic
- Syntax of one-and-a-halfth-order logic
- Sequent calculus for one-and-a-halfth-order logic
- Axiomatisation of one-and-a-halfth-order logic
- Relation to first-order logic
- Semantics of one-and-a-halfth-order logic
- Conclusions, related and future work

Introduction

In the syntax of one-and-a-halfth-order logic:

- Unknowns P, Q and T represent meta-variables ϕ , ψ and t.
- Atoms a and b represent meta-variables a and b.
- Freshness a # P represents $a \not\in fn(\phi)$.
- Explicit substitution $P[a \mapsto T]$ represents $\phi[a \mapsto t]$.

Introduction (2)

The meta-level assertions in first-order logic

- $\phi \supset \psi \supset \phi$
- if $a \notin fn(\phi)$ then $\phi \supset \forall a.\phi$
- if $a \notin fn(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- if $b \not\in fn(\phi)$ then $\forall a. \phi \supset \forall b. \phi \llbracket a \mapsto b \rrbracket$

correspond to valid assertions in the syntax of one-and-a-halfth-order logic:

- \bullet $P \supset Q \supset P$
- $a \# P \to P \supset \forall [a] P$
- $a\#P \to P \supset P[a \mapsto T]$
- $b \# P \to \forall [a] P \supset \forall [b] P [a \mapsto b]$

Introduction (3)

In sequent derivations of one-and-a-halfth-order logic:

- *Contexts of freshnesses* are added to the sequents.
- Derivability of freshnesses are added as side-conditions.
- Substitutional equivalence on terms is added as two derivation rules, taking care of α -equivalence and substitution.

Introduction (4)

The (schematic) derivations in first-order logic

$$\frac{\frac{\overline{\psi}, \phi \vdash \phi}{\phi \vdash \psi \supset \phi}(\mathbf{A}\mathbf{x})}{\vdash \phi \supset \psi \supset \phi}(\supset \mathbf{R})$$

$$\frac{\overline{\mathsf{p}(d)}, \mathsf{p}(c) \vdash \mathsf{p}(c)}{\overline{\mathsf{p}(c)} \vdash \mathsf{p}(d) \supset \mathsf{p}(c)} (\supset \mathbf{R}) \\ \vdash \mathsf{p}(c) \supset \mathsf{p}(d) \supset \mathsf{p}(c)} (\supset \mathbf{R})$$

correspond to valid derivations in one-and-a-halfth-order logic:

$$\frac{\overline{Q,P}\vdash_{_{\emptyset}}P}{P\vdash_{_{\emptyset}}Q\supset P}(\supset\mathbf{R})\\ \vdash_{_{\emptyset}}P\supset Q\supset P}(\supset\mathbf{R})$$

$$\frac{\frac{\mathsf{p}(d),\mathsf{p}(c)\vdash_{_{\emptyset}}\mathsf{p}(c)}{\mathsf{p}(c)\vdash_{_{\emptyset}}\mathsf{p}(d)\supset\mathsf{p}(c)}(\supset\mathbf{R})}{\vdash_{_{\emptyset}}\mathsf{p}(c)\supset\mathsf{p}(d)\supset\mathsf{p}(c)}(\supset\mathbf{R})$$

Introduction (5)

The (schematic) derivations in first-order logic, where $b \notin fn(\phi)$,

$$\frac{\overline{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket} (\mathbf{A}\mathbf{x})}{\vdash \forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\supset \mathbf{R}) \qquad \frac{\overline{\forall c.\mathsf{p}(c) \vdash \forall d.\mathsf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathsf{p}(c) \supset \forall d.\mathsf{p}(d)} (\supset \mathbf{R})$$

correspond to valid derivations in one-and-a-halfth-order logic:

$$\frac{\forall [a]P \vdash_{b\#P} \forall [a]P \stackrel{(\mathbf{A}\mathbf{x})}{}}{\forall [a]P \vdash_{b\#P} \forall [b]P[a \mapsto b]} (\mathbf{StructR}) \qquad (b\#P \vdash_{\mathsf{SUB}} \forall [a]P = \forall [b]P[a \mapsto b])$$

$$\frac{\forall [c]\mathsf{p}(c) \vdash_{\flat} \forall [c]\mathsf{p}(c)}{\forall [c]\mathsf{p}(c) \vdash_{\flat} \forall [d]\mathsf{p}(d)} (\mathbf{StructR}) \qquad (\emptyset \vdash_{\mathsf{SUB}} \forall [c]\mathsf{p}(c) = \forall [d]\mathsf{p}(d))$$

$$\frac{\forall [c]\mathsf{p}(c) \vdash_{\flat} \forall [d]\mathsf{p}(d)}{\vdash_{\flat} \forall [c]\mathsf{p}(c) \supset \forall [d]\mathsf{p}(d)} (\supset \mathbf{R})$$

Syntax of one-and-a-halfth-order logic

We use **Nominal Terms** to specify the syntax, since they have built-in support for: *meta-variables*, *freshness* and *binding*.

Nominal terms allow for a *direct* and *natural* representation of systems with binding.

Nominal terms are *first-order*, not higher-order.

Timeline of nominal terms:

- FM Set Theory (Gabbay, Pitts)
- Nominal Sets (Gabbay, Pitts)
- Nominal Terms (Urban, Pitts, Gabbay)
- Nominal Rewriting (Fernández, Gabbay)
- Nominal Algebra (Gabbay, Mathijssen)

Sorts

Base sorts \mathbb{P} for 'predicates' and \mathbb{T} for 'terms'.

Atomic sort \mathbb{A} for the object-level variables.

Sorts τ :

$$\tau ::= \mathbb{P} \mid \mathbb{T} \mid \mathbb{A} \mid [\mathbb{A}] \tau$$

Terms

Atoms a, b, c, ... have sort \mathbb{A} ; they represent *object-level* variable symbols.

Unknowns X, Y, Z, \ldots have sort τ ; they represent *meta-level* variable symbols. Let P, Q, R be unknowns of sort \mathbb{P} , and T, U of sort \mathbb{T} .

We call $\pi \cdot X$ a moderated unknown.

This represents the **permutation of atoms** π acting on an unknown term.

Term-formers f_{ρ} have an associated **arity** $\rho = (\tau_1, \dots, \tau_n)\tau$. $f : \rho$ means 'f with arity ρ '.

Terms *t*, subscripts indicate sorting rules:

$$t ::= a_{\mathbb{A}} \mid (\pi \cdot X_{\tau})_{\tau} \mid ([a_{\mathbb{A}}]t_{\tau})_{[\mathbb{A}]\tau} \mid (\mathsf{f}_{(\tau_{1}, \dots, \tau_{n})\tau}(t_{\tau_{1}}^{1}, \dots, t_{\tau_{n}}^{n}))_{\tau}$$

Write f for f() if n = 0.

Terms (2)

Term-formers for one-and-a-halfth-order logic:

- \bot : () \mathbb{P} represents *falsity*;
- \supset : $(\mathbb{P}, \mathbb{P})\mathbb{P}$ represents implication, write $\phi \supset \psi$ for $\supset (\phi, \psi)$;
- \forall : $([\mathbb{A}]\mathbb{P})\mathbb{P}$ represents universal quantification, write $\forall [a]\phi$ for $\forall ([a]\phi)$;
- \approx : $(\mathbb{T}, \mathbb{T})\mathbb{P}$ represents object-level equality, write $t \approx u$ for $\approx (t, u)$;
- var : $(\mathbb{A})\mathbb{T}$ is *variable casting*, forced upon us by the sort system, write a for var(a);
- sub : $([\mathbb{A}]\tau, \mathbb{T})\tau$, where $\tau \in \{\mathbb{T}, [\mathbb{A}]\mathbb{T}, \mathbb{P}, [\mathbb{A}]\mathbb{P}\}$, is *explicit substitution*, write $v[a \mapsto t]$ for sub([a]v, t);
- $p_1, \ldots, p_n : (\mathbb{T}, \ldots, \mathbb{T})\mathbb{P}$ are object-level predicate term-formers;
- $f_1, \ldots, f_m : (\mathbb{T}, \ldots, \mathbb{T})\mathbb{T}$ are object-level term-formers.

Terms (3)

Sugar:

Descending order of operator precedence:

$$[a]_{-}, \ _[_ \mapsto _], \approx, \{\neg, \forall, \exists\}, \{\land, \lor\}, \supset, \Leftrightarrow$$

 \land , \lor , \supset and \Leftrightarrow associate to the right.

Example terms of sort \mathbb{P} :

$$P\supset Q\supset P \qquad P\supset \forall [a]P \qquad P\supset P[a\mapsto T] \qquad \forall [a]P\supset \forall [b]P[a\mapsto b]$$

Freshness

Freshness (assertions) a#t, which means 'a is fresh for t. If t is an unknown X, the freshness is called **primitive**.

A **freshness context** Δ is a set of *primitive* freshnesses.

Example freshness contexts:

$$\emptyset$$
 $a\#X$ $a\#P,b\#Q$ $a\#P,Q$

We call $\Delta \to t$ a **term-in-context**. We may write t if $\Delta = \emptyset$.

Example terms-in-context of sort \mathbb{P} :

$$P \supset Q \supset P \qquad a\#P \to P \supset \forall [a]P$$

$$a\#P \to P \supset P[a \mapsto T] \qquad b\#P \to \forall [a]P \supset \forall [b]P[a \mapsto b]$$

Derivability of freshness

$$\frac{a\#b}{a\#b} (\#\mathbf{ab}) \quad \frac{\pi^{-1}(a)\#X}{a\#\pi \cdot X} (\#\mathbf{X})$$

$$\frac{a\#[a]t}{a\#[b]t} (\#[]\mathbf{b}) \quad \frac{a\#t_1 \cdots a\#t_n}{a\#f(t_1, \dots, t_n)} (\#\mathbf{f})$$

a and b range over distinct atoms.

Write $\Delta \vdash a \# t$ when there exists a derivation of a # t using the elements of Δ as assumptions. Say that a # t is derivable from Δ .

Examples:

$$\vdash a \# \forall [a] P \qquad a \# P \vdash a \# \forall [b] P \qquad a \# T, U \vdash a \# T \approx U$$

Derivability of equality

Equality (assertions) t = u, where t and u are of the same sort.

Nominal Algebra is the logic of equality between nominal terms.

Derivability:

$$\frac{t=u}{t=t} (\mathbf{refl}) \quad \frac{t=u}{u=t} (\mathbf{symm}) \quad \frac{t=u}{t=v} (\mathbf{tran})$$

$$\frac{t=u}{C[t]=C[u]} (\mathbf{cong}) \quad \frac{a\#t}{(a\;b)\cdot t=t} (\mathbf{perm})$$

$$\frac{\Delta^{\pi}\sigma}{t^{\pi}\sigma=u^{\pi}\sigma} (\mathbf{ax_A}) \; A \text{ is } \Delta \to t=u$$

$$\vdots$$

$$\frac{t=u}{t=u} (\mathbf{fr}) \quad (a \not\in t, u, \Delta)$$

Write $\Delta \vdash_{\tau} t = u$ when t = u is derivable from Δ using axioms A from T only.

Derivability of equality (2)

Nominal algebraic theory SUB of explicit substitution:

$$\begin{array}{ll} (\mathbf{var} \mapsto) & a[a \mapsto T] = T \\ (\# \mapsto) & a\#X \to X[a \mapsto T] = X \\ (\mathbf{f} \mapsto) & \mathsf{f}(X_1, \dots, X_n)[a \mapsto T] = \mathsf{f}(X_1[a \mapsto T], \dots, X_n[a \mapsto T]) \\ (\mathbf{abs} \mapsto) & b\#T \to ([b]X)[a \mapsto T] = [b](X[a \mapsto T]) \\ (\mathbf{ren} \mapsto) & b\#X \to X[a \mapsto b] = (b \ a) \cdot X \\ \end{array}$$

Examples:

$$\begin{split} b\#P \vdash_{\scriptscriptstyle{\mathsf{SUB}}} \forall [a]P = \forall [b]P[a \mapsto b] \\ \vdash_{\scriptscriptstyle{\mathsf{SUB}}} X[a \mapsto a] = X \\ a\#Y \vdash_{\scriptscriptstyle{\mathsf{SUB}}} Z[a \mapsto X][b \mapsto Y] = Z[b \mapsto Y][a \mapsto X[b \mapsto Y]] \end{split}$$

Sequent calculus for one-and-a-halfth-order logic

We may call terms of sort \mathbb{P} **predicates**, and denote them by ϕ and ψ .

Let **(predicate) contexts** Φ, Ψ be finite sets of predicates. Examples:

$$\emptyset$$
 ϕ ϕ, Φ Φ, Φ'

A **sequent** is a triple $\Phi \vdash_{\wedge} \Psi$.

We may omit empty predicate contexts, e.g. writing \vdash_{\wedge} for $\emptyset \vdash_{\wedge} \emptyset$.

Define derivability on sequents...

Sequent calculus (2)

Rules resembling Gentzen's sequent calculus for first-order logic:

$$\frac{\overline{\phi}, \overline{\Phi} \vdash_{\Delta} \Psi, \overline{\phi} (\mathbf{A}\mathbf{x})}{\overline{\phi}, \overline{\Phi} \vdash_{\Delta} \Psi, \overline{\phi} \vdash_{\Delta} \Psi} (\mathbf{\Delta}\mathbf{L}) \qquad \frac{\overline{\Phi} \vdash_{\Delta} \Psi, \overline{\phi} \psi, \overline{\Phi} \vdash_{\Delta} \Psi}{\overline{\Phi} \vdash_{\Delta} \Psi, \overline{\phi} \supset \psi} (\mathbf{D}\mathbf{R})$$

$$\frac{\overline{\phi}[a \mapsto t], \overline{\Phi} \vdash_{\Delta} \Psi}{\forall [a] \phi, \overline{\Phi} \vdash_{\Delta} \Psi} (\forall \mathbf{L}) \qquad \frac{\overline{\Phi} \vdash_{\Delta} \Psi, \psi}{\overline{\Phi} \vdash_{\Delta} \Psi, \forall [a] \psi} (\forall \mathbf{R}) \quad (\Delta \vdash a \# \Phi, \Psi)$$

$$\frac{\overline{\phi}[a \mapsto t'], \overline{\Phi} \vdash_{\Delta} \Psi}{t' \approx t, \overline{\phi}[a \mapsto t], \overline{\Phi} \vdash_{\Delta} \Psi} (\approx \mathbf{L}) \qquad \overline{\overline{\Phi} \vdash_{\Delta} \Psi, t \approx t} (\approx \mathbf{R})$$

Sequent calculus (3)

Other rules:

$$\frac{\phi', \Phi \vdash_{\Delta} \Psi}{\phi, \Phi \vdash_{\Delta} \Psi} (\mathbf{StructL}) \quad (\Delta \vdash_{\mathsf{SUB}} \phi' = \phi)$$

$$\frac{\Phi \vdash_{\Delta} \Psi, \psi'}{\Phi \vdash_{\Delta} \Psi, \psi} (\mathbf{StructR}) \quad (\Delta \vdash_{\mathsf{SUB}} \psi' = \psi)$$

$$\frac{\Phi \vdash_{\Delta \cup \{a\#X_1, \dots, a\#X_n\}} \Psi}{\Phi \vdash_{\Delta} \Psi} (\mathbf{Fresh}) \quad (a \not\in \Phi, \Psi, \Delta)$$

$$\frac{\Phi \vdash_{\Delta} \Psi, \phi \quad \phi', \Phi \vdash_{\Delta} \Psi}{\Phi \vdash_{\Delta} \Psi} (\mathbf{Cut}) \quad (\Delta \vdash_{\mathsf{SUB}} \phi = \phi')$$

Example derivations

Derivation of $a\#P \to P \supset \forall [a]P$:

$$\frac{\frac{\overline{P} \vdash_{a\#P} \overline{P} (\mathbf{A}\mathbf{x})}{P \vdash_{a\#P} \forall [a] P} (\forall \mathbf{R})}{\vdash_{a\#P} \overline{P} \supset \forall [a] P} (\supset \mathbf{R})} (a\#P \vdash a\#P)$$

Derivation of $a\#P \to P \supset P[a \mapsto T]$:

$$\frac{\frac{\overline{P} \vdash_{a^{\#P}} \overline{P} \left(\mathbf{A} \mathbf{x} \right)}{P \vdash_{a^{\#P}} P \left[a \mapsto T \right]} \left(\mathbf{StructR} \right) \quad (a \# P \vdash_{\mathsf{SUB}} P = P[a \mapsto T])}{\vdash_{a^{\#P}} P \supset P[a \mapsto T]} \left(\supset \mathbf{R} \right)$$

Properties of the sequent calculus

We may permute atoms and instantiate unknowns in derivations.

Theorem 1 If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$, then Π^{π} is a valid derivation of $\Phi^{\pi} \vdash_{\Delta^{\pi}} \Psi^{\pi}$.

Theorem 2 If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$ and $\Delta' \vdash \Delta \sigma$, then $\Pi(\sigma, \Delta')$ is a valid derivation of $\Phi \sigma \vdash_{\Delta'} \Psi \sigma$.

 $\Pi(\sigma, \Delta')$ is Π in which:

- each unknown X is replaced by $\sigma(X)$;
- ullet each freshness context Δ is replaced by Δ' .

Properties of the sequent calculus (2)

For example, Π is the derivation of $a\#P \to P \supset P[a \mapsto T]$:

$$\frac{\overline{P \vdash_{a^{\#P}} P} (\mathbf{A}\mathbf{x})}{P \vdash_{a^{\#P}} P[a \mapsto T]} (\mathbf{StructR}) \quad (a\#P \vdash_{\mathsf{SUB}} P = P[a \mapsto T]) \\ \vdash_{a^{\#P}} P \supset P[a \mapsto T] (\supset \mathbf{R})$$

Take $\sigma = [p(c)/P, d/T]$ and $\Delta' = \emptyset$, then:

- $\Delta' \vdash \Delta \sigma$, i.e. $\emptyset \vdash a \# p(c)$;
- $\Pi(\sigma, \Delta')$ is the following valid derivation of $p(c) \supset p(c)[a \mapsto d]$:

$$\frac{\frac{\overline{\mathbf{p}(c)} \vdash_{\emptyset} \mathbf{p}(c)}{(\mathbf{A}\mathbf{x})}}{\frac{\mathbf{p}(c) \vdash_{\emptyset} \mathbf{p}(c)[a \mapsto d]}{(\mathbf{Struct}\mathbf{R})}} (\mathbf{Struct}\mathbf{R}) \quad (\emptyset \vdash_{\mathsf{SUB}} \mathbf{p}(c) = \mathbf{p}(c)[a \mapsto d])$$

Properties of the sequent calculus (3)

Theorem 3 [Cut elimination] The (**Cut**) rule is admissible in the system without it.

Corollary 4 The sequent calculus is **consistent**, i.e. \vdash_{\land} can never be derived.

Axiomatisation of one-and-a-halfth-order logic

Theory FOL extends theory SUB with the following axioms:

$$P\supset Q\supset P=\top \quad \neg\neg P\supset P=\top \qquad \text{(Props)}$$

$$(P\supset Q)\supset (Q\supset R)\supset (P\supset R)=\top \quad \bot\supset P=\top \qquad \qquad \forall [a]P\supset P[a\mapsto T]=\top \qquad \qquad \text{(Quants)}$$

$$\forall [a](P\land Q)\Leftrightarrow \forall [a]P\land \forall [a]Q=\top \qquad \qquad a\#P \rightarrow \forall [a](P\supset Q)\Leftrightarrow P\supset \forall [a]Q=\top \qquad \qquad T\approx T=\top \qquad U\approx T\land P[a\mapsto T]\supset P[a\mapsto U]=\top \qquad \text{(Eq)}$$

Axioms are all of the form $\phi = \top$, which intuitively means ' ϕ is true'.

Note that this is a *finite* number of axioms.

Axiomatisation of one-and-a-halfth-order logic (2)

The **conjunctive form** Φ^{\wedge} of a predicate contexts Φ is Φ where we put \wedge between its elements. Analogously, define its **disjunctive form** by putting \vee between its elements. For example:

$$\emptyset^{\wedge} = \top$$
 $\{\phi, \psi\}^{\wedge} = \phi \wedge \psi$ $\emptyset^{\vee} = \bot$ $\{\phi, \psi\}^{\vee} = \phi \vee \psi$

Theorem 5 For all predicate contexts Φ , Ψ and freshness contexts Δ :

$$\Phi \vdash_{\wedge} \Psi \text{ is derivable} \quad \text{iff} \quad \Delta \vdash_{\mathsf{FOI}} \Phi^{\wedge} \supset \Psi^{\vee} = \top.$$

So sequent and equational derivability are equivalent.

Corollary 6 Theory FOL is consistent, i.e. $\Delta \vdash_{FOL} \top = \bot$ does not hold.

Relation to First-order Logic

Call a term or a predicate context **ground** if it does not contain unknowns or explicit substitutions.

Call $\Phi \vdash \Psi$ a **first-order sequent**, when Φ and Ψ are ground predicate contexts.

Gentzen's sequent calculus for first-order logic:

$$\frac{\overline{\phi}, \ \Phi \vdash \Psi, \ \overline{\phi} \ (\mathbf{A}\mathbf{x})}{\overline{\psi}, \ \Phi \vdash \Psi, \ \overline{\phi} \ \psi, \ \Phi \vdash \Psi} \ (\supset \mathbf{L}) \qquad \frac{\overline{\phi}, \ \Phi \vdash \Psi, \ \psi}{\overline{\Phi} \vdash \Psi, \ \overline{\phi} \supset \psi} \ (\supset \mathbf{R})$$

$$\frac{\overline{\phi} \llbracket a \mapsto t \rrbracket, \ \Phi \vdash \Psi}{\forall a.\phi, \ \Phi \vdash \Psi} \ (\forall \mathbf{L}) \qquad \frac{\overline{\Phi} \vdash \Psi, \ \phi}{\overline{\Phi} \vdash \Psi, \ \forall a.\phi} \ (\forall \mathbf{R}) \quad (a \not\in fn(\Phi, \Psi))$$

$$\frac{\overline{\phi} \llbracket a \mapsto t' \rrbracket, \ \Phi \vdash \Psi}{t' \approx t, \ \phi \llbracket a \mapsto t \rrbracket, \ \Phi \vdash \Psi} \ (\approx \mathbf{L}) \qquad \overline{\Phi} \vdash \Psi, \ t \approx t \ (\approx \mathbf{R})$$

Relation to First-order Logic (2)

Note that:

- we write $\forall a. \phi$ for $\forall [a] \phi$;
- $[a \mapsto t]$ is capture-avoiding substitution;
- $a \not\in fn(\phi)$ is 'a does not occur in the free names of ϕ ';
- we take predicates up to α -equivalence.

Theorem 7 $\Phi \vdash \Psi$ is derivable in the sequent calculus for first-order logic, iff $\Phi \vdash_{\scriptscriptstyle{\emptyset}} \Psi$ is derivable in the sequent calculus for one-and-a-halfth-order logic.

So on ground terms, one-and-a-halfth-order logic is first-order logic.

Semantics

For closed terms t, its **ground form** $t[\![]\!]$ is t in which each explicit substitution $v[a\mapsto u]$ is replaced by $v[\![a\mapsto u]\!]$ bottom-up in the syntax.

Theorem 8 For closed terms t, $\vdash_{SUB} t = t$

Call a substitution σ closing for a term t if $t\sigma$ is closed.

A term-in-context $\Delta \to \phi$ is **valid** iff for all closing substitutions σ (for ϕ) for which $\vdash \Delta \sigma$ holds, $\phi \sigma$ [] is valid in the semantics of first-order logic.

The sequent calculus for one-and-a-halfth-order logic is **sound** for this semantics:

Theorem 9 If $\vdash_{\wedge} \phi$ is derivable then $\Delta \to \phi$ is valid.

Conclusions

Using nominal terms, we can:

- *accurately* represent systems with binding: e.g. explicit substitution and first-order logic;
- specify *novel* systems with their own mathematical interest: e.g. one-and-a-halfth-order logic.

One-and-a-halfth-order logic:

- makes meta-level concepts of first-order logic *explicit*;
- has a sequent calculus with *syntax-directed* rules;
- has a *semantics* in first-order logic;
- has a *finite* equational axiomatisation;
- is the *result* of axiomatising first-order logic in nominal algebra.

Related work

Second-order logic (SOL):

- In this logic we can quantify over predicates *anywhere*, which makes it more expressive than one-and-a-halfh-order logic.
- On the other hand, we can easily extend theory FOL with *one* axiom to express the principle of induction on natural numbers:

$$P[a \mapsto 0] \land \forall [a](P \supset P[a \mapsto succ(a)]) \supset \forall [a]P = \top.$$

Higher-order logic (HOL) is type raising, while one-and-a-halfth-order logic is not: $P[a \mapsto t]$ corresponds to f(t) in HOL, where $f: \mathbb{T} \to \mathbb{P}$; $P[a \mapsto t][a' \mapsto t']$ corresponds to f'(t)(t') where $f': \mathbb{T} \to \mathbb{T} \to \mathbb{P}$, and so on...

One-and-a-halfth-order logic is not a subset of SOL or HOL because of freshnesses.

Future work

- Completeness of the sequent calculus with respect to the semantics.
- Let unknowns range over *sequent derivations*, and establish a Curry-Howard correspondence (term-in-contexts as types, derivations as terms).
- Two-and-a-halfth-order logic (where you can abstract X)?
- Implementation and automation?

Current status

- M.J. Gabbay, A.H.J. Mathijssen, Nominal Algebra, submitted CSL'06.
- M.J. Gabbay, A.H.J. Mathijssen, Capture-avoiding Substitution as a Nominal Algebra, submitted ICTAC'06.
- M.J. Gabbay, A.H.J. Mathijssen, One-and-a-halfth-order Logic, PPDP'06.

Just to scare you

Side-conditions:

I.
$$c\#P \vdash_{\text{SUB}} \forall [a]P[b \mapsto c] = (\forall [a]P)[b \mapsto c]$$

2.
$$c\#P \vdash c\#\forall [b]\forall [a]P$$

3.
$$c\#P \vdash_{\text{SUB}} \forall [c]P[b\mapsto c][a\mapsto c] = \forall [a]P[b\mapsto a]$$

4.
$$c \notin \forall [b] \forall [a] P, \forall [a] P[b \mapsto a]$$