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Introduction
What is an automated parking garage?

In an automated parking garage, cars are parked fully automatically:

Doesn't work?
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Overview
The system at hand (1)

Given is the following hardware con�guration (�oorplan):

Complicating factors:

I awkward lift position: cars are able to move in half positions

I shuttles can be tilted
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Note that:

I arrows indicate movement of belts and shuttles

I there are 30 parking spots, maximum 29 occupied
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Proposed solution

Approach:

I create a high-level software design

I verify the design:
I model this design
I prove correctness of the model

After creating the design, do not start implementation immediately.
Instead, create a model:

I gain insight in the system

I detect errors in the proposed design

I foundation for implementation

Interactions are of primary concern: model behaviour.
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Hardware Abstraction Layer:

I abstract from hardware using instructions and events

I receive and execute instructions; provide feedback on results

I issue events to the other layers



Conceptual Design
Architecture

Split the system in three layers:

Logical Layer:

I the parking/retrieval algorithm

I issue the right instructions in the right order



Conceptual Design
Architecture

Split the system in three layers:

Safety Layer:

I pass messsages between the logical and hardware layer

I only if they are safe, deny otherwise



Conceptual Design
Data

The following data is communicated between the layers:

I Instruction: single instruction that the hardware should
execute:

I move_belts(bs, d ,ms)
I move_shuttles(shs, o, d)
I tilt_shuttle(p, o)
I move_lift(h)
I rotate_lift

I InstructionSet: instructions that are to be executed
concurrently by the HAL

I Result: indicates the result of executing of a set of instructions

I Event: addition/removal of cars to/from the system



Conceptual Design
Interactions

The following interactions facilitate communication between the
layers:

I req(s): request of an instruction set s

I ack_req(s): acknowledgement of a request of an instruction
set s

I deny_req(s): deny of a request of an instruction set s

I ack_exec(s, r): acknowledgement of execution of instruction
set s with result r

I occur(e): occurrence of an event e



Veri�ed Design
Focus and approach

We focus on the safety layer.

Our approach:
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Informal Requirements of the Safety Layer

Examples of safety requirements the safety layer should meet:

1. If a car is moved between belts, both belts should move in the
same direction.

2. Cars should not be able to move into walls.

3. When moving shuttles, cars may not be damaged.

4. When moving the lift, cars may not be damaged.



Behavioural speci�cation of the Safety Layer
Behaviour

Behaviour of the safety layer:

I message passing of events and instruction sets

I acknowledge when:
I a set of instructions is allowed
I based on the current state

deny otherwise



Behavioural speci�cation of the Safety Layer
Allowed instruction sets

A set of instructions s is allowed if:

1. s speci�es at least one instruction

2. the instructions in s do not overlap: the areas on which the
instructions operate are pairwise disjoint

3. each individual instruction in s is allowed



Behavioural speci�cation of the Safety Layer
Allowed instructions

Instruction move_belts(bs: BeltSet, d: Direction, ms: MoveSize)

is allowed if:

1. bs speci�es at least one conveyor belt.

2. All conveyor belts in bs directly border each other (this also
implies that they must be in the same row).

3. All conveyor belts in bs are available (in particular, this applies
to belts on the lift and on shuttles).

4. At least one position of size ms must be free at the end of the
set of belts speci�ed, this free position should be on the side
indicated by d.

5. In the case that the speci�ed belts are in row r1, there must be
no car suspended halfway between the two outer belts of bs
and their neighbours, if any.



Veri�cation of the Safety Layer
Pros and cons

In general, veri�cation:

I guarantees requirements are ful�lled for each possible system
state

I requirements need to be formalised

I model checking is space and time consuming

Problem with the current speci�cation: too many states and
transitions

Solution: apply reductions
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Veri�cation of the Safety Layer
Reductions (1)

Reductions we needed to apply:

I abstract from sets of instructions by focusing on single

instructions on only

I abstract from requests and acknowledgements; instead, it is
assumed that instructions are executed successfully by the HAL

Results:

I simulation becomes possible

I veri�cation still infeasible:
state space of the model consists of 640 billion states
(6, 4 ∗ 1011)
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Reductions (2)

Restrict the number of positions:

Result:

I 3,3 million (3, 3 ∗ 106) states and 98 million (9, 8 ∗ 107)
transitions

I veri�cation becomes feasible
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Veri�cation of the Safety Layer
Formalisation and application

Apply veri�cation:

I formalise requirements:
I express informal requirements as enabling conditions for illegal

interactions
I when an illegal interaction is possible, an error action is

triggered
I augment speci�cation with error actions

I check the state space on the existence of the error actions

Result: no error actions were found
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Visualization
Detecting errors

Veri�cation found no errors in the proposed design.
Errors were found:

I mostly during speci�cation and simulation

I the tricky ones using a custom built visualization plugin to the
simulator
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Visualization
Advantages

Advantages of the visualization plugin:

I revealed errors in the model

I speeds up simulation

I enhances communication

Doesn't work?



Tech Specs

The veri�cation tool we used is mCRL2:

I combines process algebra with higher-order abstract data types

I the successor of µCRL

Lines of code:

I speci�cation: 991 lines of mCRL2 code

I veri�cation: 217 lines of mCRL2 code

I visualization: 1583 lines of C++ code

Veri�cation time (real time):

I 5 hours on a cluster of 34 CPUs (3 GHz CPU, 2 GB RAM)

I 35 hours on a single PC (3 GHz CPU, 4 GB RAM)

Time spent: approximately 500 man hours
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Conclusions
Using formal methods

In general, the use of formal methods bridges the gap

between functional requirements and an actual implementation.

Model the system:

I gain insight in the system

I detect errors in the design

I foundation for implementation

Simulation: con�dence in our model

Veri�cation: prove correctness of our model



Conclusions
The automated parking garage case study

Positive results in this case study:

I layered system design where each layer has its own task

I the safety layer has been proven correct

I the model can be implemented in software almost directly

I e�ective use of vizualisation techniques

Negative �ndings:

I the current hardware setup is not optimal

I there lies a performance challenge in the real system
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Further reading

Mathijssen, A., Pretorius, A.J.:
Speci�cation, analysis, and veri�cation of an automated
parking garage.
Technical Report 05-25, Technische Universiteit Eindhoven
(2005)

www.mcrl2.org:
mCRL2 homepage.



What if the Movies do not work?
Screenshots (1)

In an automated parking garage, cars are parked fully automatically:

Back



What if the Movies do not work?
Screenshots (2)

The plugin speeds up simulation and enhances communication:

Back
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