
From µCRL to mCRL2
Motivation and outline

Jan Friso Groote, Aad Mathijssen, Muck van Weerdenburg, Yaroslav Usenko
Department of Mathematics and Computer Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{J.F.Groote, A.H.J.Mathijssen, M.J.van.Weerdenburg, Y.S.Usenko }@tue.nl

Abstract

We sketch the languagemCRL2, the successor ofµCRL, which is a process algebra with data,
devised in 1990 to model and study the behaviour of interacting programs and systems. The
language is improved in several respects guided by the experience obtained from numerous appli-
cations where realistic systems have been modelled and analysed. Just as withµCRL, the leading
principle is to provide a minimal set of primitives that allow effective specifications, that conform
to standard mathematics and that allow standard mathematical manipulations and proof method-
ologies. In the first place the equational abstract datatypes have been enhanced with higher-order
constructs and standard data types, ranging from booleans, numbers and lists to sets, bags and
higher-order function types. In the second place multi-actions have been introduced to allow a
seamless integration with Petri nets. In the last place communication is made local to enable
compositionality.

1 The history of µCRL

In an attempt to construct a language to which all existing specification languages could be translated,
a common representation language (CRL) was constructed in an EC funded project called SPECS.
This language became a monstrum for which is was impossible to device a coherent semantics, let
alone to be used as a basis for further theory or tool building.

Upon these findings, in 1990 a minimal language calledµCRL (micro Common Representation
Language) came into being as the simplest conceivable language to model realistic systems. The
language is a process algebra with data. The data is specified using first-order equational logic which
was the norm at the time. Earlier developed languages such as LOTOS [2] and PSF [8] also contained
equational datatypes. However,µCRL was much simpler than these languages.

In the first research phase proof methodologies were developed to give mathematical proofs of dis-
tributed algorithms and protocols. A number of proof techniques have been uncovered such ascones
and foci, τ -confluenceandcoordinate transformations(see [6] for an overview). Many systems have
been verified using these techniques, but particularly noteworthy is the most complex sliding window
protocol in [9] (see [3]). Verification of this protocol led to the detection of an unknown deadlock in
the protocol, it showed that the external behaviour of the original protocol was prohibitively complex
and catalysed the development of many proof methodologies.

In the second research phase a toolset forµCRL was developed [1]. The primary motivation for
this was that industrial specifications quickly became far too large to be handled manually. Large
specifications, like ordinary programs, turned out to contain flaws such as deadlocks and tools were

1

required to ensure the absence of anomalies. For plain verifications, the tool can handle systems with
more than109 states. By using confluence, abstract interpretation and symbolic reasoning much larger
systems, containing hundreds of components have been verified. For half a decade the tool plays an
essential role in teaching the design of dependable systems at various universities.

2 Why must µCRL be changed?

It turns out to be impossible to design a complete specification language that is immediately right.
In [4] time was added to the language. Furthermore, constructors were added to the specification of
functions in the datatypes ofµCRL to make the available induction principles explicit. And finally,
the possibility to specify an initial state of a process had to be added. As time passed it became more
and more obvious that the language would benefit from some more changes.

First of all changes were required in the abstract data types, although their expressive power
was more than sufficient. A relatively minor problem was that inµCRL all basic datatypes, such
as the naturals and the booleans had to be explicitly encoded. Much more serious was the negative
effect on interhuman communication of specifications. Different persons could give widely different
specifications of for instance the naturals. This meant that before getting to the gist of a specification,
first the specification of the naturals had to be understood. Furthermore, because all functions in
µCRL are prefix functions, standard notation, such as an infix + for addition on natural numbers could
not be used. This is not a problem for small specifications but seriously decreases the readability of
large ones.

In practice first-order abstract datatypes also discourage the use of higher-order objects, such as
functions, sets, relations and quantifiers. For instance sets are often modelled as finite lists. This tends
to make specifications more complex than necessary.

A strong argument against the use of bare abstract data types came from manually proving the
correctness of specifications. Given a specification, many elementary facts about the data are not self
evident and proving them draws away energy from the main task, namely finding the core correctness
argument for the protocol or distributed system under study. For an abstractly specified sort Nat, it
is not self evident that it indeed represents natural numbers in a true way. Hence, the truth of simple
identities had to be established using axioms and induction principles. For instance commutativity of
addition must be established separately for each specification of natural numbers. For tools, properties
like x > y ∧ y > z → x > z turned out a hurdle that was hard to overcome. By having standard data
types, dedicated integer linear programming techniques can be employed with which we can prove or
disprove the validity of inequality based formulas that are many orders of magnitude larger than the
one above. Actually, theµCRL toolset already made a number of silent assumptions about certain
data types (esp. the booleans) and certain functions (esp. it assumed that a functioneq represented
equality). This enabled the development of a very effective equality BDD prover [5] but actually
violates the philosophy of abstract data types.

Despite these disadvantages, equational abstract data types were more than sufficiently expressive
for any data type that needed to be specified. As the structure of data is very simple, we could device
optimal algorithms to handle data with little effort. Repeated comparative experiments show that the
µCRL tool set contains the most efficient state exploration tools in terms of the number of states that
it can store in main memory. Comparing to for instance SPIN [7], theµCRL toolset is approximately
a factor 4 slower in dealing with abstractly specified bits and bytes, which are built-in data types in
SPIN.

Another issue that we ran into withµCRL is the relationship between different process specifi-

2

��
��

P1

- n2 -��
��

P2

Figure 1: A simple coloured Petri net

cation formalisms. We see three main streams. There are assertional specification formalisms, Petri
nets and process algebras. We would all benefit if these formalisms would be integrated. In the past
we did not find any difficulties relating assertional methods andµCRL. However with Petri nets we
ran into a problem. Consider the coloured Petri net in figure 1. There are two placesP1 andP2 and a
transition labeled withn2 in the middle. The tokens in this coloured Petri net contain natural numbers
and the transition squares the number in each token that it processes. The standard semantics of this
system is that a token atomically leavesP1, its value is squared and it is put inP2.

The natural structure preserving translation of this Petri net into process algebra is the parallel
processP1 ‖ T ‖ P2. Using a standard synchronous communication a token can be read fromP1 into
T , and in a subsequent step be forwarded fromT to P2. But now we have translated what was a single
atomic step into two atomic steps. This is bad for at least the two following reasons. In the first place
this innocent looking doubling of states increases the number of states worsening the severity of the
state explosion problem, which is one of the core problems we try to avoid. In the second place nice
properties about Petri nets, such as state invariants do not easily carry over when introducing such
intermediate states.

In order to avoid the introduction of such an intermediate state and still allow for direct structural
translations, we felt forced to introduce multi-actions. In a multi-action zero or more actions can occur
simultaneously. The typical notation isa|b|c for a multi-action in which actionsa, b andc happen at
the same time. Now we can describe the transition in figure 1 by a process that reads a token with
valuen and in the same multi-action delivers the token with a valuen2. There is no straightforward
way to do this inµCRL.

Another problem occurs when describing complex systems with non-uniform communication. In
µCRL there is a global communication operator that is not compositional. To make the new language
compositional, we need to define it locally.

3 The mCRL2 language

The mCRL2 language is a movement back from the bare minimum concept ofµCRL towards a
slightly richer language. Therefore, we propose to call it amilli Common Representation Language,
or mCRL. Experience has taught that though we have designed the language with utmost care, we may
still have made mistakes in its design and fundamentally new extensions such as stochastic or hybrid
behaviour may be added in the future. Hence, we added a version number to the name paving the
way for mCRL3, mCRL4, etc. to come. By the way, the nameµCRL is not really suited for internet
because of the initial Greek letter.

3

3.1 Data language

The mCRL2 data language useshigher-orderabstract data types as a core theory. To this theory,
standard data types are added. We list these data types without further ado as they are commonly
known. All the common operators on these are made available in normal mathematical notation. In
order to get a quick idea, an expression using this datatype is provided.

• The sortB with constantstrue, falseand all standard operators. It is also possible to use the
quantifiers∀ and∃ ranging over any datatype. E.g.b ∧ false ⇒ ∀n:N.n < 3.

• Unbounded positive, natural and integer numbers. Typical examples of expressions using num-
bers are1− 464748473698768976 div exp(3, n), succ(m) ≤ n− 1 or x == x ∗ x− 1.

• Function types. For two given sortsA andB the sortA→B contains all functions from domain
A to B. Function application and lambda abstraction are part of the language. E.g. letf =
λx:N, b:B.if (b, x, 2 ∗ x). Thenf(3, false) is equal to6.

• Following functional languages, it is possible to declare structured types. These are especially
useful for enumerated data types and complex data structures such as for instance trees. A sort
MSof machine states can be declared by

sort MS = struct off | standby | starting | running | broken;

The sort of binary trees with numbers as their leaves looks like

sort T = struct leaf (N) | node(T, T);

It is possible to specify projection and recognition functions simultaneously, e.g.:

sort T = struct leaf (getnumber :N)?isLeaf | node(left :T, right :T)?isNode;

• Because lists are very commonly used datatypes, there is a built-in type of lists with standard
operations. The list of natural numbers isList(N). The following list expressions are all equiv-
alent: [3, 4, 5], 3 . [4, 5], [3, 4] / 5 and[]++ [3, 4]++ [5].

• Sets are very commonly used in mathematical specification, and as bags are a basic concept in
Petri nets, both have been included in the language. Sets are denoted in the normal mathematical
way. Typically,{1, 2, 4}, {1, 2} ∪ {1, 4} are sets. The set of primes is

{n:N | ∀m:N.(1 < m ∧m < n ⇒ n mod m > 0) }.

• Bags are sets where the multiplicity of elements is recalled. For enumerations this count is
appended to each element, e.g.{0:0, 1:1, 2:4}. For comprehensions the boolean condition is
replaced by a natural number, e.g.{m:N | m2} is the bag in which each numberm occursm2

times.

Currently, there are discussions about the inclusion of real numbers. As functions are available, it
is possible to represent real numbers. Moreover, this opens the way towards stochastic and hybrid
systems where functions from reals to reals play an important role. Another interesting concept is the
selector functionsε. The expressionεx:S.c(x) equals a unique valuex that satisfies conditionc(x).
It satisfies the axiom∃x:S.c(x) ⇒ c(εx:S.c(x)). These extensions may show up in mCRL3.

4

3.2 Multi-actions and local communication

In order to facilitate the connection with Petri nets, multi-actions are introduced. A multi-action is
a collection of ordinary actions that happen at the same time. A few examples of multi-actions are
a, a|b, b|a, a|b|c, a|b|a anda(t)|b(u)|a(v).

In mCRL2 parallel composition does not communicate. Instead, it introduces multi-actions, e.g.
the compositiona ‖ b of actionsa, b is equal toa · b + b · a + a|b. As a result the number of multi-
actions can increase exponentially in the size of the number of parallel compositions. Hence, we also
need operators to restrict this behaviour. First of all we have theblockingoperator∂H (which was
called encapsulation inµCRL) that blocks all multi-actions of which a part occurs in the action set
H, e.g.∂{a}(a + b · (a |c)) = b · δ. On the other hand, we have the visibility operator∇V called
allow that specifies precisely which multi-actions are allowed, namely the ones inV . For instance
∇{ a,b }(a ‖ b) = a · b + b · a,∇{ a|b }(a ‖ b) = a|b, and∇{ a,b|c }(a ‖ b ‖ c) = a · (b|c) + (b|c) · a.

Communication of actions is defined using the concept of multi-actions. Thelocal communica-
tion operatorΓC realises communication of multi-actions with equal data arguments. UnlikeµCRL,
communication does not block. For instance, ift = u andt 6= v, thenΓ{ a|b→c }(a(t)|b(u)) = c(t),
Γ{ a|b→c }(a(t)|b(v)) = a(t)|b(v) andΓ{ a|b|c→d }(a|b|c|d) = d|d, but also

∑
d:D Γ{ a|a→a }(a(d)|a(t)) =∑

d:D d = t → a(t), a(d)|a(t), i.e. if d = t thena(t) and ifd 6= t thena(d)|a(t) for a certaind.

4 Epilogue

The language mCRL2 is an attempt to makeµCRL more applicable in practise and to facilitate hier-
archical Petri nets. The language is extended with higher-order datatypes, standard datatypes, multi-
actions and local communication. Because the new language has essentially the same structure as its
predecessor, all currentµCRL specifications can be easily expressed in the new language and all proof
methodologies, theorems and tools carry over with only minor modifications.

References

[1] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and J.C. van de Pol.µCRL:
A Toolset for Analysing Algebraic Specifications. In proceedings CAV’01. LNCS 2102, pages
250–254, 2001.

[2] P.H.J. van Eijk, C.A. Vissers and M. Diaz, editors.The formal description technique LOTOS.
Elsevier Science Publishers B.V., 1989.

[3] W. Fokkink, J.F. Groote, J. Pang, B. Badban and J.C. van de Pol. Verifying a sliding window
protocol inµCRL. In C. Rattray, S. Maharaj and C. Shankland (eds), proceedings of the 10th In-
ternational Conference on Algebraic Methodology and Software Technology, Stirling, Scotland,
LNCS 3116, Springer-Verlag pp. 148-163, 2004.

[4] J.F. Groote. The syntax and semantics of timedµCRL. Technical report SEN-R9709, CWI,
Amsterdam, 1997.

[5] J.F. Groote and J.C. van de Pol. Equational Binary Decision Diagrams. In M. Parigot and A.
Voronkov,Logic for Programming and Reasoning, LPAR2000, Lecture Notes in Artificial Intel-
ligence, volume 1955, Springer Verlag, pages 161-178, 2000.

5

[6] J.F. Groote and M. Reniers. Algebraic process verification. In J.A. Bergstra, A. Ponse and
S.A. Smolka. Handbook of Process Algebra, pages 1151-1208, Elsevier, Amsterdam, 2001.

[7] G.J. Holzmann. The spin model checker: Primer and reference manual. Addison-Wesley, 2003.

[8] S. Mauw and G.J. Veltink. A process specification formalism.Fundamenta Informaticae,
XIII:85–139, 1990.

[9] A.S. Tanenbaum.Computer Networks. Prentice Hall, 1981.

6

