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Abstract. We present an analysis of the behaviour of an I2C Linux
driver, by means of model checking with the mCRL2 toolset and static
analysis with UNO. We have reverse engineered the source code to obtain
the structure and interactions of the driver. Based on these results, we
have semi-automatically created an mCRL2 model of the behaviour of
the driver, on which we have checked mutual exclusion properties. This
revealed non-trivial potential errors, like unprotected usage of shared
memory variables due to inconsistent locking and disabling/enabling of
interrupts. We also applied UNO on the instrumented source code and
were able to find the same errors. These defects were confirmed by the
developers.

1 Introduction

Formal methods for the analysis of system behaviour offer solutions to problems
with concurrency, such as race conditions and deadlocks. In this paper we em-
ploy two such methods that are presently most applied in industry [24]: model
checking [11,29] and static analysis [26]. We use these techniques to analyse the
behaviour of a Linux driver for an I2C (Inter-Integrated Circuit) device.

We present some experiences and results of the project that we carried out
within the Laboratory for Quality Software (LaQuSo), at the Computer Science
Department of the Technische Universiteit Eindhoven, for an industrial client.3

The goal of the project was to analyse the feasibility of the techniques used
within LaQuSo, like model checking and advanced static analysis, for industrial
size software. For that purpose, an I2C Linux device driver was chosen as a case
study. The client provided us with the source code of the driver for which it
was known that it contained defects. Based on the code, some documentation,
and feedback by the developers we extracted a model of the device driver. The
model was checked using the mCRL2 toolset [16] and some potential defects were
revealed which were later confirmed by the developers. The errors were caused
by inconsistent use of routines for interrupt enabling and disabling, resulting
in unprotected references to shared memory and function calls to lower-level
functions. In addition, we performed checks with UNO [19], a static analysis

3 Because of confidentiality, the references to the client are made anonymous and the
names of the components, functions, and variables are changed. However, this does
not affect the presented results.
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tool that works directly with the source code. Besides standard static analysis
checks, UNO allows the user to define custom properties, which we employed
to statically detect the errors that were found by the dynamic analysis in the
model checking phase. Based on our findings, we modified the source code to
avoid the discovered potential defects. Although some errors remained unsolved,
an improvement was observed in the standard tests that were carried out with
our fixed version.

Map of the paper. The next section introduces the I2C Linux driver. Section 3
describes the reverse engineering we applied to the source code. In Sections 4
and 5 the results of the model checking and static analysis, respectively, are
presented. The Conclusions (Section 6) evaluates the two techniques used, and
discusses related and future work.

2 The I2C Linux driver

In general, the Linux 2.6 kernel contains an I2C driver stack that is split up into
three layers [22,23]:

1. Chip driver: a device-dependent part which interacts between user space and
the core module.

2. Core module: a device-independent part containing an implementation of
the I2C protocol.

3. Bus driver: a device-dependent part which interacts between the core module
and the actual hardware.

The core module is part of the Linux kernel, as are a number of chip drivers and
bus drivers. This layered structure is depicted in Fig. 1.
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Fig. 1. High-level layer structure of the I2C Linux driver stack.
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In our case, an I2C bus driver was supplied by the client. The code mainly
performs two tasks:

– handle input/output control (ioctl) calls from user space, offered via the core
module;

– handle interrupts from the hardware.

By means of testing, the client had encountered race conditions in their driver,
but could not localise them. For this reason, the client was interested in discov-
ering such dynamic issues, preferrably by means of verification.

3 Reverse engineering the structure and behaviour

Since race conditions are typically caused by the interaction between parallel
components, we have chosen to focus on the interaction between the two parallel
components of the driver: the ioctl handler and the interrupt service routine.

In order to get insight into the structure of the I2C bus driver and the in-
teraction between its components, we have used the SQuAVisiT toolset [28] to
generate a call graph. From this graph, we could see how the ioctl handler and
the interrupt service routine communicated: via shared memory and via the
hardware. A high-level view of this is depicted in Fig. 2.

Shared memoryioctl handler

Core module

ISR

Hardware

kernel space

hardware

Fig. 2. High-level structure of the I2C Linux bus driver.

While studying the call graph in combination with the source code, we en-
countered a number of potential issues with regard to the enabling and disabling
of interrupts:

– The ioctl handler could sometimes access the shared memory without pre-
viously disabling interrupts.

– There was one place in the code where interrupts are disabled twice in a row
(without being enabled in the meantime) after which they are enabled twice.

– The usage of kernel wakeup functions was inconsistent and quite unclear.
– False timeouts could possibly be reported, due to interleaving inbetween two

subsequent statements.
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We considered the possible non-exclusive accesses to the shared memory to
be most important. Therefore, we have chosen to focus on this aspect for the
mCRL2 and UNO analysis.

4 mCRL2 analysis

The mCRL2 language [17] and toolset [16] allows users to model, validate and
automatically verify the behaviour of distributed systems. Systems can be mod-
elled using a process algebra enriched with data and time. Validation can be
performed by means of simulation, automated testing and visualisation. Auto-
mated verification is supported by dedicated checks for deadlocks or occurrences
of specific actions, by model equivalence checks, and by full model checking using
properties expressed as temporal logic formulae.

4.1 Modeling

Based on the source code of the I2C bus driver we have created an mCRL2 model
consisting of the following elements:

– A translation of the ioctl handler and the interrupt service routine.
– The environment in which these functions occur:

• repeated calls to these functions;
• shared memory;
• part of the Linux kernel that takes care of enabling/disabling interrupts,

and threading.

At the highest level, our model is composed of the components that make up the
environment, as depicted in Fig. 3. Here, the components (ioctl handler)∗ and
(ISR)∗ represent wrappers around the corresponding functions. Their purpose is
to call the ioctl handler and the interrupt service routines repeatedly with any
possible values as arguments.

Shared memory(ioctl handler)∗ (ISR)∗

Kernel

Fig. 3. Structure of the mCRL2 model of the I2C bus driver.

We will now sketch how these components and their interactions are specified
in mCRL2. For details of the mCRL2 constructs used, we refer the reader to [16]
for an informal explanation and to [17] for a formal definition. In a nutshell, the
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primary concept in mCRL2 is the action, which represents an elementary activ-
ity or communication. Actions can be composed into process expressions using
process algebraic constructs, such as sequential composition, non-deterministic
choice, references to process definitions, parallelism and synchronous commu-
nication. Furthermore, mCRL2 contains a functional programming language in
which data types can be represented. These data types can be used to form con-
ditional process expressions and parameterised actions and process definitions.

The translation of the ioctl handler and the interrupt service routine from
the C source code to mCRL2 was carried out manually, using the following
translation scheme:

– The declarations of the ioctl handler, the interrupt service routine and of
the local functions they call are modelled as process definitions.

– Statements in function bodies are modelled as process expressions, as follows:
• sequential statements are modelled as sequences of process expressions;
• conditions and switch statements are modelled as conditional process

expressions or as non-deterministic choice, depending on their relevance;
• calls to local functions are modelled as process references;
• calls to kernel functions are modelled as actions;
• entry and exit points of the ioctl handler, the interrupt service routine

and local functions are modelled as actions;
• access to shared memory variables is also modelled by actions.

– Data types are modelled by their mCRL2 counterpart.

Note that we tried to stay as close to the source code as possible. However, in
order to keep model checking within feasible bounds, we abstracted from details
irrelevant to the properties we wanted to check, and by restricting the range of
data types.

The behaviour of the Linux kernel and the shared memory are modelled
as process definitions representing the behaviour they are expected to exhibit
when interacting with the ioctl handler and the interrupt service routine. The
model is then put together by letting the parallel composition of the models of all
components (ioctl handler, interrupt service routine, kernel and shared memory)
synchronously communicate on the actions of the individual components.

4.2 Validation

We have validated the model by using simulation to replay scenarios. Fig. 4
shows the simulator tool of the mCRL2 toolset, just after startup. In this tool,
the user can inspect the following information:

– Current state (lower part): a combination of all states in which the environ-
ment can be in.

– Possible transitions (upper part): the actions that can be performed in the
current state, i.e., the calls to kernel functions, function entries and exits,
and shared memory accesses.



6

Fig. 4. Simulation of scenarios using the mCRL2 toolset.

4.3 Verification

For the verification of our model we focused on violation of mutual exclusion of
shared memory accesses. To this end, the model was extended with an auditing
processes that checks for violations of this property, and issues an error action
when one is found.

However, while creating this verification model, we encountered another re-
lated possible issue. A number of low-level functions that could be called by both
the ioctl handler and the interrupt service routine were marked as non reentrant.
For this property we have also created an auditing process.

The structure of the interaction of the two auditing processes with the rest
of the model is depicted in Fig. 5.

With the verification model, automated verification boils down to exploring
the state space while checking occurrences of the error actions. Exploration of all
62.725.197 states and 102.847.475 transitions revealed two types of violations.

The critical section observer for auditing the mutual exclusion property of
shared memory accesses triggered more than 100 violations. The structure of a
typical error trace of this violation is as follows:

begin_ioctl_handler(1, I2C_REQUEST_i)

begin_cs(1)

shm_write(1, shmem_var, val)

begin_isr(0)

error(0, CS_ERROR_ISR)
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Shared memory(ioctl handler)∗ (ISR)∗

Kernel

Observer critical sections

Observer low-level functions

Fig. 5. Structure of the mCRL2 verification model of the I2C bus driver.

Here, the ioctl handler is started (begin ioctl handler(1, I2C REQUEST i)),
enters its critical section (begin cs(1)), and modifies a shared memory variable
(shm write(1, shmem var, val)). At the same time the interrupt service rou-
tine is started (begin isr(0)). Since this could potentially modify the same
variable, an error is issued. Note that the actions are all parameterised by a
number to indicate the component to which they belong.

The other observer for auditing mutual exclusion of low-level function calls
revealed one violation. The following error trace was generated:

begin_ioctl_handler(1, I2C_LL_REQUEST_i)

begin_I2C_LL_REQUEST_i(1)

begin_isr(0)

shm_read(0, shmem_var_j, val_j)

begin_I2C_LL_REQUEST_k(0)

error(0, LL_REENTRANT_CALL)

Here the ioctl handler calls a low-level function (I2C LL REQUEST i). This call
is interrupted by a call from the interrupt service routine to another low-level
function (I2C LL REQUEST k).

4.4 Resolving the violations

Single ioctl thread We have identified the causes of the above mentioned
violations. They all had to do with misplaced or absent calls to functions that
disable and enable interrupts. We fixed this by making 23 small changes to the
source code, by moving or adding these functions to protect the usage of shared
memory and low-level functions.

We have also made these changes to our mCRL2 model. Verification of this
model showed us that these violations have been resolved, i.e., no mutual ex-
clusion access violations have been found. The state space of the fixed model
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comprises 24.875.779 states and 34.803.025 transitions, which is less than for
the previous model since some parallel behaviour has been blocked.

Multiple ioctl threads Both the original and the fixed model have only treated
one thread making calls to the ioctl handler. It is also possible to analyse the
driver in a multi-threaded setting. For this purpose, we have adapted the fixed
model by running two instances of the process that represents the ioctl handler.
In addition to interrupt disabling, in this model also spin locks are used to
establish mutual exclusion between these two processes (threads). Verification
of all 163.258.596 states and 231.643.626 transitions revealed no further errors.

On three instances, verification of the correctness using the techniques im-
plemented in the mCRL2 toolset turned out to be prohibitively large to fully
explore. To resolve this, we have employed symbolic techniques as implemented
in the LTSmin toolset [2]. As for the two instances, this revealed no further
errors.

5 Static Analysis Results

5.1 Static Analysis via Model Checking and UNO

The idea of static analysis by model checking, in [14] also called syntactic model
checking, can be traced back to [31]. Instead of checking the property on the
state space of the system, this approach works by exploring control flow and
function call graphs of the programs. In this way one avoids the problem of
state space explosion, which is the usual bottleneck in practical applications of
model checking. The basic principle is the same as in standard model checking:
the negation of the property is expressed as an automaton which accepts the
erroneous traces.

UNO [19] is a tool for source code analysis. Besides the standard static anal-
ysis checks for uninitialized variables, null pointer references and out of bound
array indices, UNO can perform some advanced checking for user defined prop-
erties (more information can be found on the tool’s web page [34]). Compared
to model checking, the advantage of UNO is that it works directly on the C
source code and therefore it does not require an explicit model. As added value
to the project we decided to try to recover all possible errors that were discov-
ered with mCRL2 and which were described in the previous sections. In what
follows we use advanced analysis via user defined properties to check for dynamic
behavioural defects, like race conditions and unsafe function calls.

5.2 Analysis of the I2C bus driver

Instrumentation of the original C code. Since UNO cannot deal with
assembler code and C extensions that are not according to the ANSI standard,
the original C source code had to be modified such that those problems were
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avoided. Thus, we first preprocessed the original C source code with our in-
house parser (which is part of the SQuAVisiT toolset) to eliminate some of the
non-ANSI C construct typeof. After that we had to manually eliminate the
remaining occurrences of typeof, add some typedef’s for the unknown types,
and also remove the assembler code. All these changes did not affect the validity
of the properties that we wanted to check.

Analysis. UNO was applied to the instrumented code and it was able to repro-
duce the possible defects that were discovered with mCRL2: the errors of access-
ing shared memory without previously disabling interrupts and unsafe function
calls. As mentioned above, to obtain the errors we had to use UNO with user
defined properties, which have to be encoded as property automata. The au-
tomaton monitors the traversal of the control flow graphs of the C functions.
When presented with the corresponding property automaton, UNO produces an
error trace, in case a violation of the property is found.

To capture references to shared memory with enabled interrupts we used the
monitor (property automaton) given in Fig. 6. The monitor has two states repre-

void uno_check(void)

{

if (uno_state == 0) { //interrupts enabled

if (select("shmem_var", USE|DEF|REF0, NONE)) //shared memory access

error("Shared memory reference with enabled interrupts");

if (select("int_disable", FCALL, NONE)) //interrupts disabled

uno_state = 1;

}

if (uno_state == 1){ //interrupts disabled

if (select("int_enable", FCALL, NONE)) //interrupts enabled

uno_state = 0;

}

}

Fig. 6. UNO monitor: checking for shared memory access with interrupts enabled.

sented with the variable uno state. State 0 denotes that interrupts are enabled,
and 1 that interrupts are disabled. In the C source code that is being checked
the property automaton monitors for each function the traversal of all possible
paths in its control flow graph (CFG). When along some of the paths of the CFG
the name of the shared memory variable shmem var is seen and the monitor is
in state 0, an error message is issued. Each node of the CFG is labelled with
symbol names extracted from the C program. Also, the node is marked with tags
that describe how the symbol name is used, e.g., declared, invoked as a function,
evaluated as variable, etc. Function select is a predefined query primitive that
tries to match the variable name shmem var with the symbol names in the CFG
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nodes. Besides the string corresponding to the variable name, select has two
other parameters corresponding to the set of tags that must be attached to the
symbol name and a set of tags that are forbidden, respectively. For example,
tag DEF means that shmem var is assigned a value in this occurrence and NONE
means an empty set of tags, i.e., no tags are forbidden. The switches between
states 0 and 1 happen when function calls to int disable and int enable, re-
spectively, are encountered. In a similar way select matches the function names
while using the tag FCALL to ensure that the concrete occurrence of the matched
substring corresponds to a function call.

An example of UNO output is the trace given in Fig. 7. It indicates an as-
signment to the shared memory variable shmem var without previously disabling
interrupts. The very first line of the output contains the name of the tool, the

uno: 46: i2c_ioctl_handler()

’Shared memory reference with enabled interrupts’ [shmem_var]

1: i2c_bus_driver_instr.c:7943:

<i2c_ioctl_handler(struct i2c_adapter *adapter,unsigned int cmd,

unsigned long arg)>;

2: i2c_bus_driver_instr.c:7947:

<i2c_phlm_bus_t *shmem_var=(i2c_phlm_bus_t *)adapter->algo_data;>;

3: i2c_bus_driver_instr.c:7948:

<int ret=0;>;

4: i2c_bus_driver_instr.c:7992:

<unsigned int timeout=(unsigned int )arg;>;

5: i2c_bus_driver_instr.c:7993:

<(timeout>=500)> == <_true_>;

6: i2c_bus_driver_instr.c:7994:

<shmem_var->slv_timeout=((timeout*HZ)/1000)>;

Fig. 7. UNO error trace: reference to shared memory with enabled interrupts.

number of the error trace, and the name of the function in which the error is
found. The next line contains the error message printed by the monitor with the
name of the matched symbol, in our case shmem var. The remaining lines of the
output are of the following form:

number: file name: program line number:

<program line text>;

The assignment to the member slv timeout of the variable shmem var takes
place on the last line (labelled by 6). The line labelled by 1 contains the header,
i.e., the entry point, of the function i2c ioctl handler in which the erroneous
execution happens. None of the statements in the lines labelled by 1 to 6 contain
a call to the interrupt disabling function int disable, so one can conclude that
the assignment on the last line is unprotected.

The error trace given above was obtained with the following command line:
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uno_local -prop shmem.prop -allerr -fullpaths i2c_bus_driver_instr.c

where the call to uno local means that only local properties are checked, i.e.,
intraprocedural analysis is performed, i2c bus driver instr.c is the name of
the C file which is checked, the property file is shmem.prop which is denoted by
the switch prop, and the options allerr and fullpaths, respectively, instruct
UNO to report all erroneous traces and that the traces should be fullpaths from
the entry point of the function to the erroneous statement.

UNO produced 41 error traces. For 20 of them it was clear that they contained
access to the shared memory without disabling interrupts. The other 21 traces
were from auxiliary static functions, i.e., not from the critical functions, like
i2c ioctl handler, and therefore an additional check was needed to establish
whether they were valid or not.

Another type of possible errors that can be discovered in a similar way is
a call to a nonreentrant low-level function with enabled interrupts. A property
automaton analogous to the above can be used for this check. The essential
difference is that the shared memory reference name shmem var is replaced with
the name of the function for which we try to detect unprotected calls.

6 Conclusions

In this paper we presented an analysis of the dynamics of an I2C bus driver
by means of model checking and static analysis. We were able to find possible
non-trivial defects that were later confirmed by the developers. Furthermore, we
have provided a verified fix for the found defects.

The time spent on this project is roughly 300 man hour. Most of it has been
put into reverse engineering the structure and behaviour of the code, and the
mCRL2 analysis.

6.1 Evaluating the two techniques

The results of the automated analysis using model checking with mCRL2 and
advanced static analysis with UNO were quite encouraging. Originally, we in-
tended to carry out the analysis of the driver only by using mCRL2. The use
of UNO was considered more as an added value and a feasibility study about
the usefulness of the advanced static analysis. However, since we were able to
achieve similar results, we could compare the two approaches.

Comparing model checking and static analysis When comparing model
checking and static analysis, it is important to note the differences in the coun-
terexamples that are produced by both techniques. A model checking counterex-
ample shows a precise path in the model, representing an interleaving of several
parallel components. On the other hand, a static analysis counterexample shows
a projection of such a path onto one component. So in general, model checking
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produces more precise counterexamples, but they correspond to the model, not
to the source code.

In this project, the models have been extracted from the source code. This
can be quite useful for checking existing source code. Although some general
domain knowledge and expertise about the concrete instance of the problem will
always be required, the overhead needed to integrate those in the verification
process decreases with each new application of a similar kind, such as other
device drivers.

We gained more confidence in the idea that the degree of parallelism in the
system and issues at hand are an important factor in deciding whether model
checking or advanced static analysis is the most effective choice. We think that
the main reason why we could effectively employ advanced static analysis to find
concurrency issues in this case study, is because the number of parallel compo-
nents involved in the properties we wanted to check was rather low. Potential
concurrency issues could be identified manually, and translated directly to an
UNO property automaton. However, when the number of parallel components
increases, and when issues are caused by the interplay of multiple components,
finding these potential issues may become much harder, if not impossible.

Combining model checking and static analysis Instead of choosing be-
tween model checking and static analysis, we can also use them in tandem. For
instance, one could first use advanced static analysis to find possible defects
that are traditionally its domain, like uninitialized variables, null pointers, out
of bound arrays, memory leaks, possible security flaws like tainted input, etc.
Since no model is required, this can be applied to the whole code base. Besides
that, advanced static analysis for dynamic properties, as presented in this pa-
per, can be employed as a kind of light-weight model checking to locate possible
problems. Then standard model checking techniques can be employed to weed
out spurious counterexamples and possibly discover additional errors. Once the
possible defects are located, one can restrict fully-fledged model checking only
to the critical modules in the code base. In this way one can avoid producing
a model of the whole system, which could be time and resource consuming,
and which, together with state space explosion, is usually the main obstacle in
practical applications of model checking.

Another way to combine the two techniques could be to use static analysis to
generate counterexamples as sequences of statements of the source code. One of
the classical problems in model checking is how to map the counterexamples of
the abstract model into the concrete code. By teaming up model checking and
static analysis in such a semi-automated manner we obtain a much easier way to
generate the counterexamples. We are not aware of these combined frameworks
being used before in the literature. It is an interesting research challenge to
couple these two techniques even tighter in the future.
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6.2 Related Work

The idea to perform static analysis via model checking, as we use it in this paper,
was considered for the first time in [30,31]. This has been later developed and
served as a framework for several tools. Probably the best known in that direc-
tion is the work of Engler et al.(e.g. [13]). In [19], which introduces the static
analysis tool UNO, case studies of verification of Linux device drivers with the
tool are mentioned, although no details of the results are presented. This work
uses only static analysis without traditional model checking. An important fea-
ture of the tool is that it allows user defined properties which can be used to
check dynamic (behavioural) characteristics of the system. The ideas and con-
cepts of UNO are further developed in the Orion tool [10], which puts emphasis
on eliminating spurious counterexamples. For the time being the tool does not
feature user defined properties and as such it cannot be used for the type of
analysis that we have in this paper. Goanna [14] is a C/C++ source code ana-
lyzer which employs the model checker NuSMV [6]. The model checking is used
only in the context of advanced static analysis and not in a traditional way as a
standalone technique. They use as a case study the Open Secure Sockets Layer
package. RacerX [12] is another static tool that can detect deadlocks and race
conditions. To this end it computes sets of locks that are used in the program.
One of the strengths of RacerX is that the locks are inferred using statistical
methods. In this way, at least in theory, the user is releaved of the task to in-
dicate the locks in the programs. In [12] several case studies are reported and
among them are checks of two versions of the Linux kernel, with confirmed er-
rors found. A predicate abstraction approach to concurrent Linux device drivers
analysis is presented in [36]. The tool DDVerify described there can generate
a driver harness from a driver source code, which can further be analysed by
a pre-/post condition checking tool SatAbs. There are other commercial tools,
like Coverity [8], KlockWork [21], and Sonnar [32], and academic tools, like Ca-
lysto [1] and MyGcc [35], that can use advanced static analysis methods. For a
more complete overview see [33].

It is interesting that Approver [18], probably the very first ever tool for
automated formal verification, written in the end of the 70s by J. Hajek at
the Technische Universiteit Eindhoven, used as input Algol programs instead of
some modeling language. Later this approach was abandoned and the verification
tools used as a rule some modeling language. Model checking directly source code
(“model checking without a model”) was pioneered by Godefroid with his tool
VeriSoft (e.g. [15]). Since then model checking of source code of languages like C,
C++, and Java became quite a fashionable trend in the verification community.
The most influential work was the one by Ball and Rajamani that resulted with
the SLAM model checker [3] which became an important part of Microsoft’s
Static Driver Verifier. Another tool derived from this line later is BLAST [4].
This tool was applied in [25] to check Linux kernel code, where also some of
its weaknesses were indicated (see [25] also for a comprehensive list of other
applications of BLAST). CMBC [7] is a tool for bounded model checking of C
code which uses SAT solvers. There exist also tools based on other techniques,
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like automated theorem proving (Eau Claire [5]) and abstract interpretation
(PolySpace [27], Astrée [9]) which also work directly with source code.

6.3 Future Work

In general, although there is ample room for improvement, one can conclude that
model checking and static analysis is sufficiently mature to cope with industrial
size problems and can contribute to the improvement of the software products.
This opens promising perspectives for future projects of this type.

Depending on the future collaboration with the client, we intend to extend
our analysis on the other layers of the protocol stack. Considering that some
defects remained unresolved, it could be interesting to see if they are caused
by erroneous behavioural patterns which do not fall in the categories that we
considered in this work. Then, hopefully one could generalize these patterns for
later use with other software systems. Another natural avenue for future work
would be to apply the combination of model checking and static analysis to other
types of software, which again can be an inspiration for improvements in both
techniques as well as their combination.

The most important thing our model checking part can benefit from is au-
tomating the extraction of models from source code. This consists of two tasks:
translating the source code to a model, and abstraction from irrelevant details.
Automated translation of the source code to a model would bring us most of
the benefits, since this translation can be specified for a large class of programs,
while abstraction needs to take place on a case-by-case basis. A good starting
point in that direction could be [20] which presents an attempt to combine these
two aspects.
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