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Motivation
Capture-avoiding substitution in the λ-calculus

The λ-calculus with meta-variables:

t ::= x | tt | λx .t | X

Capture-avoiding substitution _[_ 7→ _]:

x [x 7→ X ] = X

y [x 7→ X ] = y
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(λy .Y )[x 7→ X ] = λz .(Y [y 7→ z ][x 7→ X ]) if y ∈ fv(X ), z 6∈ fv(X ,Y )

X , Y and Z represent unknown lambda terms.
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Capture-avoiding substitution is everywhere:
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Can we axiomatise capture-avoiding substitution with

meta-variables with the following properties:

I generic: parametric over the choice of term-formers

I close to informal practice: direct support for binding

Answer
Yes, using the new framework of Nominal Algebra:

I Nominal Algebra directly supports binding and meta-variables.

I Axiomatise capture-avoiding substitution as a theory that
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Nominal Algebra
Example properties/axioms

Meta-level properties expressed in nominal algebra:

• λ-calculus: (λ[a]X )Y = X [a 7→ Y ]

• First-order logic: a#Y ` ∀[a]X = ∀[a]X ∧ X [a 7→ Y ]

• Process algebra: a#X `
∑

[a]X =
∑
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And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: b#X ` ξ[a]X = ξ[b](X [a 7→ b])

• a#Y ` (ξ[a]X )[b 7→ Y ] = ξ[a](X [b 7→ Y ])

• a#Y ` Z [a 7→ X ][b 7→ Y ] = Z [b 7→ Y ][a 7→ X [b 7→ Y ]]

Substitution is a term-former: we write sub([a]t, u) as t[a 7→ u].



An axiomatisation of capture-avoiding substitution

An axiomatisation of capture-avoiding substitution:

(var 7→) a[a 7→ X ] = X

(# 7→) a#Y ` Y [a 7→ X ] = Y

(f 7→) f(Y1, . . . ,Yn)[a 7→ X ] = f(Y1[a 7→ X ], . . . ,Yn[a 7→ X ])
(abs7→) b#X ` ([b]Y )[a 7→ X ] = [b](Y [a 7→ X ])
(ren 7→) b#X ` X [a 7→ b] = (b a) · X

Here:
I f ranges over term-formers. . . including sub

I cases b[a 7→ X ] and ([a]Y )[a 7→ X ] are covered by (# 7→)

I (b a) · X swaps b and a when X is instantiated

I (ren 7→) links to the underlying theory of α-equivalence

I we call this axiomatisation SUB



Instantiation of axioms

(# 7→) a#Y ` Y [a 7→ X ] = Y

Instantiation Resulting property

a#Y ` Y [a 7→ X ] = Y

Y := b b[a 7→ X ] = b, since ` a#b

Y := a none, since 6` a#a

Y := [a]Z ([a]Z )[a 7→ X ] = [a]Z , since ` a#[a]Z

Y := [b]Z a#Z ` ([b]Z )[a 7→ X ] = [b]Z

Y := f(Y1, . . . ,Yn) a#Y1, . . . , a#Yn `
f(Y1, . . . ,Yn)[a 7→ X ] = f(Y1, . . . ,Yn)

Y := Z ,X := Y , a := b b#Z ` Z [b 7→ Y ] = Z



Equational proofs

Lemma
c#X , c#Y ` ([b]Y )[a 7→ X ] = [c](Y [b 7→ c][a 7→ X ]) is derivable.



Equational proofs

Lemma
c#X , c#Y ` ([b]Y )[a 7→ X ] = [c](Y [b 7→ c][a 7→ X ]) is derivable.

Proof.

([b]Y )[a 7→ X ]

= { [b]Y = [c](c b) · Y , since c#X , c#Y ` c#[b]Y , b#[b]Y }

([c](c b) · Y )[a 7→ X ]

= { axiom (abs7→), since c#X , c#Y ` c#X }

[c]((c b) · Y )[a 7→ X ]

= { axiom (ren 7→), since c#X , c#Y ` c#X }

[c]Y [b 7→ c][a 7→ X ]



Equational proofs

Lemma
c#X , c#Y ` ([b]Y )[a 7→ X ] = [c](Y [b 7→ c][a 7→ X ]) is derivable.

Corollary

The axiomatisation of substitution can mimic the usual de�nition of

capture-avoiding substitution (without unknowns):

x [x 7→ t] = t

y [x 7→ t] = y

f(u1, . . . , un)[x 7→ t] = f(u1[x 7→ t], . . . , un[x 7→ t])
(ξx .u)[x 7→ t] = ξx .u
(ξy .u)[x 7→ t] = ξy .u[x 7→ t] if y 6∈ fv(u)
(ξy .u)[x 7→ t] = ξz .(u[y 7→ z ][x 7→ t] if y ∈ fv(t), z 6∈ fv(t, u)



Equational proofs

Lemma
X [a 7→ a] = X is derivable.

(#[]a)
a#[a]X

[b#X ]1

(#[]b)
b#[a]X

(perm)
[b](b a) · X = [a]X

(symm)
[a]X = [b](b a) · X

(congf)
X [a 7→ a] = ((b a) · X )[b 7→ a]

[b#X ]1

(#X)
a#(b a) · X

(axren7→)
((b a) · X )[b 7→ a] = X

(tran)
X [a 7→ a] = X

(fr)1

X [a 7→ a] = X



α-conversion

α-conversion in nominal algebra is expressed by the proof rule:

a#t b#t
(perm)

(b a) · t = t

Why not replace this rule by the following axiom instead?

a#X , b#X ` X [a 7→ b] = X
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α-conversion

α-conversion in nominal algebra is expressed by the proof rule:

a#t b#t
(perm)

(b a) · t = t

Why not replace this rule by the following axiom instead?

a#X , b#X ` X [a 7→ b] = X

This destroys the proof theory:

I When proving properties by induction on the size of terms,
you often want to freshen up a term using α-conversion.

I Freshening using the axiom increases term size,
destroying the inductive hypothesis



α-conversion

α-conversion in nominal algebra is expressed by the proof rule:

a#t b#t
(perm)

(b a) · t = t

Why not replace this rule by the following axiom instead?

a#X , b#X ` X [a 7→ b] = X

Not all theories with binding use substitution of terms for atoms.
For example, the π-calculus has substitution of atoms for atoms.



Substitution as a rewrite system

Directing the equalities of our axiomatisation SUB we obtain a
nominal rewrite system SUBr.

Lemma (Equivalence of equality and rewriting)

SUB is equivalent to the transitive re�exive symmetric closure of

SUBr (assuming su�cient freshnesses).

So we can use nice properties from the world of rewriting such as
con�uence and termination.



Substitution as a rewrite system
Simultaneous substitutions

Problem: SUBr is not terminating because SUB has a simultaneous
character:

X [a 7→ a′][b 7→ b′][c 7→ c ′] →∗ X [c 7→ c ′][b 7→ b′][a 7→ a′]

X [c 7→ c ′][b 7→ b′][a 7→ a′] →∗ X [a 7→ a′][b 7→ b′][c 7→ c ′]



Substitution as a rewrite system
Simultaneous substitutions

Solution: introduce an equational theory SUBe of simultaneous
substitutions:

a#Y , b#X ` Z [a 7→ X ][b 7→ Y ] = Z [b 7→ Y ][a 7→ X ]
a#Y ` Y [a 7→ X ] = Y

Lemma
SUBr is terminating and con�uent up to SUBe.

Lemma
Each SUBe equivalence class has a representative to which each

term in that class rewrites.



Substitution as a rewrite system
Simultaneous substitutions

Solution: introduce an equational theory SUBe of simultaneous
substitutions:

a#Y , b#X ` Z [a 7→ X ][b 7→ Y ] = Z [b 7→ Y ][a 7→ X ]
a#Y ` Y [a 7→ X ] = Y

Lemma
SUBr is terminating and con�uent up to SUBe.

Lemma
Each SUBe equivalence class has a representative to which each

term in that class rewrites.
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Solution: introduce an equational theory SUBe of simultaneous
substitutions:

a#Y , b#X ` Z [a 7→ X ][b 7→ Y ] = Z [b 7→ Y ][a 7→ X ]
a#Y ` Y [a 7→ X ] = Y

Lemma
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Lemma
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Substitution as a rewrite system
Con�uence

Theorem (Con�uence)

SUBr is con�uent.

Proof (sketch).

Suppose t →∗ t1 and t →∗ t2.
By con�uence up to SUBe, t1 and t2 rewrite to terms u1 and u2,
such that u1 = u2 in SUBe. Then u1 and u2 have the same
representative u to which they rewrite.



Corollaries of con�uence

Some corollaries of con�uence:

I SUB is a conservative extension over the empty theory:

∆ `
SUB

t = u i� ∆ `∅ t = u

for all t and u not mentioning substitution.

I SUB is equivalent to the usual de�nition of capture-avoiding
substitution, on terms not mentioning unknowns X ,Y ,Z .



Decidability

Lemma
∆ `

SUBe
t = u is decidable.

Theorem
∆ `

SUB
t = u is decidable.

Proof (sketch).

1. Rewrite t and u to normal forms up to SUBe t ′ and u′.

2. Check whether ∆ `
SUBe

t ′ = u′ is decidable.



ω-completeness
De�nition

Some terminology:

I Call a term t closed if it does not mention unknowns.

I Write σ for an instantiation of unknowns to closed terms.

SUB is sound and complete with respect to the closed term model.
This is also called ω-completeness.

Theorem (ω-completeness)

∆ `
SUB

t = u i� `
SUB

tσ = uσ for all σ such that ` ∆σ



ω-completeness
Proof

Theorem (ω-completeness)

∆ `
SUB

t = u i� `
SUB

tσ = uσ for all σ such that ` ∆σ

Proof (sketch).



ω-completeness
Proof

Theorem (ω-completeness)

∆ `
SUB

t = u i� `
SUB

tσ = uσ for all σ such that ` ∆σ

Proof (sketch).

Left-to-right: property of any theory in nominal algebra.



ω-completeness
Proof

Theorem (ω-completeness)

∆ `
SUB

t = u i� `
SUB

tσ = uσ for all σ such that ` ∆σ

Proof (sketch).

Right-to-left: by contraposition.

1. Suppose 6`
SUB

t = u.

2. By con�uence, then also 6`
SUBe

t = u.

3. Then we can su�ce by showing that there exists a σ such that
` ∆σ and 6`

SUB
tσ = uσ.

4. Work by induction on the size of t and u.



Conclusions

Nominal algebra allows us to:

I axiomatise capture-avoiding substitution with meta-variables

I parametric over the choice of term-formers

I supporting binding and freshness directly

The axiomatisation has strong properties:

I equivalent to `ordinary' capture-avoiding substitution
on terms without unknowns

I conservative extension of the empty theory

I decidability of equality

I ω-completeness



Related work
axiomatisations of substitution

Related axiomatisations of substitutions:

I Logos (Crabbé):
I also uses atoms and freshness conditions
I does not treat binding
I works in �rst-order logic

I Polynomial substitution algebras (Feldman):
I closer to Cylindric Algebras and Lambda Abstraction Algebras
I ∀a,∀b, . . . are encoded as an in�nite family of unary operators
I less expressive on open terms

I Explicit substitutions:
I implementation vs axiomatisation
I variables are often encoded as de Bruijn indices



Related work
Applications of our work

Applications of our axiomatisation of substitution:

I the basic notion of equality in one-and-a-halfth-order logic:
a theory of �rst-order logic with meta-variables
(Gabbay, Mathijssen)

I abstract (non-term-based) models: substitution sets
(Gabbay, Marin, Bulò)

I basic notion of capture-avoiding substitution
in nominal equational logic (Pitts, Clouston)



Future work

Future work on capture-avoiding substitution:

I uni�cation up to SUB

I take SUB over itself:
I express X [a 7→ Y ][t/X ] as X [a 7→ Y ][X 7→ T ] in a stronger

axiom system where T is a `stronger' meta-variable
I related to the NEW calculus of contexts and hierarchical

nominal rewriting (Gabbay)

I develop logics and λ-calculi with a new way of treating
meta-variables, binding and substitution



Further reading

Murdoch J. Gabbay, Aad Mathijssen:
Nominal Algebra.
Submitted STACS'07.

Murdoch J. Gabbay, Andrea Marin, Samuel Rota Bulò:
A nominal semantics for simple types.
Submitted STACS'07.

Murdoch J. Gabbay, Aad Mathijssen:
One-and-a-halfth-order Logic.
PPDP'06.

Papers and slides of talks can be found on my web page:
http://www.win.tue.nl/∼amathijs


