Capture-Avoiding Substitution as a Nominal Algebra

Murdoch J. Gabbay ${ }^{1}$ Aad Mathijssen ${ }^{2}$

${ }^{1}$ School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh, Scotland
${ }^{2}$ Department of Mathematics and Computer Science Eindhoven University of Technology, The Netherlands

3rd International Colloquium
on Theoretical Aspects of Computing (ICTAC 2006)
Tunis, Tunisia, 20-24 November 2006

Motivation

Capture-avoiding substitution in the λ-calculus

The λ-calculus:

$$
t::=x|t t| \lambda x . t
$$

Motivation

Capture-avoiding substitution in the λ-calculus
The λ-calculus:

$$
t::=x|t t| \lambda x . t
$$

Axioms:

$$
\begin{array}{lll}
(\alpha) & \lambda x . t & =\lambda y \cdot(t[x \mapsto y]) \\
(\beta) & \text { if } y \notin f v(t) \\
(\eta) & \lambda x . t) u=t[x \mapsto u] & =t
\end{array}
$$

Motivation

Capture-avoiding substitution in the λ-calculus
The λ-calculus:

$$
t::=x|t t| \lambda x . t
$$

Axioms:

$$
\left.\begin{array}{lll}
(\alpha) & \lambda x . t & =\lambda y .(t[x \mapsto y]) \\
(\beta) & \text { if } y \notin f v(t) \\
(\eta) & \lambda x .(t x)=t & =t[x \mapsto u]
\end{array}\right)
$$

Free variables function $f v$:

$$
f v(x)=\{x\} \quad f v(t u)=f v(t) \cup f v(u) \quad f v(\lambda x . t)=f v(t) \backslash\{x\}
$$

Motivation

Capture-avoiding substitution in the λ-calculus
The λ-calculus:

$$
t::=x|t t| \lambda x . t
$$

Capture-avoiding substitution _[_ $\mapsto]_{\text {] }}$

$$
\begin{array}{lll}
x[x \mapsto t] & =t & \\
y[x \mapsto t] & =y & \\
(u v)[x \mapsto t] & =(u[x \mapsto t])(v[x \mapsto t]) & \\
(\lambda x . u)[x \mapsto t] & =\lambda x \cdot u & \\
(\lambda y \cdot u)[x \mapsto t] & =\lambda y \cdot(u[x \mapsto t]) & \text { if } y \notin f v(t) \\
(\lambda y . u)[x \mapsto t] & =\lambda z \cdot(u[y \mapsto z][x \mapsto t]) & \text { if } y \in f v(t), z \notin f v(t, u)
\end{array}
$$

Motivation

Capture-avoiding substitution in the λ-calculus
The λ-calculus:

$$
t::=x|t t| \lambda x . t
$$

Capture-avoiding substitution _[_ $\mapsto]_{\text {: }}$

$$
\begin{array}{lll}
x[x \mapsto t] & =t & \\
y[x \mapsto t] & =y & \\
(u v)[x \mapsto t] & =(u[x \mapsto t])(v[x \mapsto t]) & \\
(\lambda x . u)[x \mapsto t] & =\lambda x \cdot u & \\
(\lambda y \cdot u)[x \mapsto t] & =\lambda y \cdot(u[x \mapsto t]) & \text { if } y \notin f v(t) \\
(\lambda y \cdot u)[x \mapsto t] & =\lambda z \cdot(u[y \mapsto z][x \mapsto t]) & \text { if } y \in f v(t), z \notin f v(t, u)
\end{array}
$$

t, u and v are meta-variables ranging over lambda terms.

Motivation

Capture-avoiding substitution in the λ-calculus
The λ-calculus with meta-variables:

$$
t::=x|t t| \lambda x . t \mid X
$$

Capture-avoiding substitution ${ }_{-} \mapsto_{-}$]:

$$
\begin{array}{ll}
x[x \mapsto X] & =X \\
y[x \mapsto X] & =y \\
(Y Z)[x \mapsto X] & =(Y[x \mapsto X])(Z[x \mapsto X]) \\
(\lambda x . Y)[x \mapsto X] & =\lambda x . Y \\
(\lambda y . Y)[x \mapsto X] & =\lambda y \cdot(Y[x \mapsto X]) \quad \text { if } y \notin f v(X) \\
(\lambda y . Y)[x \mapsto X] & =\lambda z .(Y[y \mapsto z][x \mapsto X]) \text { if } y \in f v(X), z \notin f v(X, Y)
\end{array}
$$

X, Y and Z represent unknown lambda terms.

Motivation

Capture-avoiding substitution in the λ-calculus
The λ-calculus with meta-variables:

$$
t::=x|t t| \lambda x . t \mid X
$$

Capture-avoiding substitution _[_ $\mapsto]_{\text {: }}$

$$
\begin{array}{ll}
x[x \mapsto X] \quad & =X \\
y[x \mapsto X] \quad & =y \\
(Y Z)[x \mapsto X] & =(Y[x \mapsto X])(Z[x \mapsto X]) \\
(\lambda x . Y)[x \mapsto X] & =\lambda x . Y \\
(\lambda y . Y)[x \mapsto X] & =\lambda y \cdot(Y[x \mapsto X]) \quad \text { if } y \notin f v(X) \\
(\lambda y . Y)[x \mapsto X] & =\lambda z .(Y[y \mapsto z][x \mapsto X]) \text { if } y \in f v(X), z \notin f v(X, Y) \\
& f v(X)=? \quad Y[x \mapsto X]=?
\end{array}
$$

Motivation

Frameworks using capture-avoiding substitution

Capture-avoiding substitution is everywhere:

- λ-calculus:

$$
(\lambda x . t) u \quad=t[x \mapsto u]
$$

- First-order logic: $\forall x . \phi$

$$
=\forall x . \phi \wedge \phi[x \mapsto t]
$$

- Process algebra: $\sum_{x} p \quad=\sum_{x} p+p[x \mapsto t]$

And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:

- α-equivalence: $\xi x . t \quad=\xi y \cdot(t[x \mapsto y])$ if $y \notin f v(t)$

$$
\begin{array}{r}
(\xi x . t)[y \mapsto u]=\xi x \cdot(t[y \mapsto u]) \quad \text { if } x \notin f v(u) \\
v[x \mapsto t][y \mapsto u]=v[y \mapsto u][x \mapsto t[y \mapsto u]] \text { if } x \notin f v(u)
\end{array}
$$

Motivation

Frameworks using capture-avoiding substitution

Capture-avoiding substitution is everywhere:

- λ-calculus: $(\lambda x . t) u \quad=t[x \mapsto u]$
- First-order logic: $\forall x . \phi \quad=\forall x . \phi \wedge \phi[x \mapsto t]$
- Process algebra: $\sum_{x} p \quad=\sum_{x} p+p[x \mapsto t]$

And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:

- α-equivalence: $\xi x . t \quad=\xi y \cdot(t[x \mapsto y])$ if $y \notin f v(t)$
- $\quad(\xi x . t)[y \mapsto u]=\xi x .(t[y \mapsto u]) \quad$ if $x \notin f v(u)$

$$
v[x \mapsto t][y \mapsto u]=v[y \mapsto u][x \mapsto t[y \mapsto u]] \text { if } x \notin f v(u)
$$

t, u, v, ϕ, ψ, p are meta-variables ranging over terms.

Motivation

Frameworks using capture-avoiding substitution

Capture-avoiding substitution is everywhere:

- λ-calculus: $(\lambda x . X) Y$

$$
=X[x \mapsto Y]
$$

- First-order logic: $\forall x . X$

$$
=\forall x . X \wedge X[x \mapsto Y]
$$

- Process algebra: $\sum_{x} X \quad=\sum_{x} X+X[x \mapsto Y]$

And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:

- α-equivalence: $\xi x . X \quad=\xi y \cdot(X[x \mapsto y])$ if $y \notin f v(X)$

$$
\begin{array}{r}
(\xi x . X)[y \mapsto Y]=\xi x \cdot(X[y \mapsto Y]) \text { if } x \notin f v(Y) \\
Z[x \mapsto X][y \mapsto Y]=Z[y \mapsto Y][x \mapsto X[y \mapsto Y]] \text { if } x \notin f v(Y)
\end{array}
$$

X, Y and Z formally represent meta-variables.

Motivation

Frameworks using capture-avoiding substitution

Capture-avoiding substitution is everywhere:

- λ-calculus: $(\lambda x . X) Y$

$$
=X[x \mapsto Y]
$$

- First-order logic: $\forall x . X$

$$
=\forall x . X \wedge X[x \mapsto Y]
$$

- Process algebra: $\sum_{x} X \quad=\sum_{x} X+X[x \mapsto Y]$

And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:

- α-equivalence: $\xi x . X \quad=\xi y \cdot(X[x \mapsto y])$ if $y \notin f v(X)$

$$
\begin{array}{r}
(\xi x . X)[y \mapsto Y]=\xi x .(X[y \mapsto Y]) \quad \text { if } x \notin f v(Y) \\
Z[x \mapsto X][y \mapsto Y]=Z[y \mapsto Y][x \mapsto X[y \mapsto Y]] \text { if } x \notin f v(Y)
\end{array}
$$

$$
f v(X)=? \quad Y[x \mapsto X]=?
$$

Motivation

Axiomatisation of capture-avoiding with meta-variables?

Question

Can we axiomatise capture-avoiding substitution with meta-variables with the following properties:

- generic: parametric over the choice of term-formers
- close to informal practice: direct support for binding

Motivation

Axiomatisation of capture-avoiding with meta-variables?

Question

Can we axiomatise capture-avoiding substitution with meta-variables with the following properties:

- generic: parametric over the choice of term-formers
- close to informal practice: direct support for binding

Answer

Yes, using the new framework of Nominal Algebra:

- Nominal Algebra directly supports binding and meta-variables.
- Axiomatise capture-avoiding substitution as a theory that allows for arbitary term-formers.

Nominal Algebra
Nominal Algebra:

- an equational logic on Nominal Terms (Urban, Gabbay, Pitts)
- designed to closely mirror informal reasoning about binding and meta-variables
- has built-in α-equivalence
- is sorted to keep terms well-formed

Nominal Algebra
Nominal Algebra:

- an equational logic on Nominal Terms (Urban, Gabbay, Pitts)
- designed to closely mirror informal reasoning about binding and meta-variables
- has built-in α-equivalence
- is sorted to keep terms well-formed

Properties of Nominal Algebra:

- semantics in nominal sets
- semantics based on α-equivalence classes, not functions
- sound and complete proof system
- unification up to α-equivalence is decidable

Nominal Algebra
Example properties/axioms
Meta-level properties expressed in nominal algebra:

- λ-calculus:

$$
\begin{aligned}
& (\lambda[a] X \\
& \forall[a] X
\end{aligned}
$$

$$
=X[a \mapsto Y]
$$

- First-order logic: $a \# Y \vdash \forall[a] X$
$=\forall[a] X \wedge X[a \mapsto Y]$
- Process algebra: $a \# X \vdash \sum[a] X$

$$
=\sum[a] X+X[a \mapsto Y]
$$

And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:

- α-equivalence: $b \# X \vdash \xi[a] X=\xi[b](X[a \mapsto b])$
- $\quad a \# Y \vdash(\xi[a] X)[b \mapsto Y]=\xi[a](X[b \mapsto Y])$
- $a \# Y \vdash Z[a \mapsto X][b \mapsto Y]=Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]$

Nominal Algebra
Example properties/axioms
Meta-level properties expressed in nominal algebra:

- λ-calculus:

$$
\begin{aligned}
& (\lambda[a] X \\
& \forall[a] X
\end{aligned}
$$

$$
=X[a \mapsto Y]
$$

- First-order logic: $a \# Y \vdash \forall[a] X$
- Process algebra: $a \# X \vdash \sum[a] X$
$=\forall[a] X \wedge X[a \mapsto Y]$
$=\sum[a] X+X[a \mapsto Y]$
And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:
- α-equivalence: $b \# X \vdash \xi[a] X=\xi[b](X[a \mapsto b])$

$$
\begin{gathered}
a \# Y \vdash(\xi[a] X)[b \mapsto Y]=\xi[a](X[b \mapsto Y]) \\
a \# Y \vdash Z[a \mapsto X][b \mapsto Y]=Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]
\end{gathered}
$$

Atoms a, b represent object-variables x, y.

Nominal Algebra
Example properties/axioms
Meta-level properties expressed in nominal algebra:

- λ-calculus: $(\lambda[a] X)$
$\forall[a] X$
- Process algebra: $a \# X \vdash \sum[a] X$

$$
=X[a \mapsto Y]
$$

- First-order logic: $a \# Y \vdash \forall[a] X$

$$
=\forall[a] X \wedge X[a \mapsto Y]
$$

$$
=\sum[a] X+X[a \mapsto Y]
$$

And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:

- α-equivalence: $b \# X \vdash \xi[a] X=\xi[b](X[a \mapsto b])$
- $\quad a \# Y \vdash(\xi[a] X)[b \mapsto Y]=\xi[a](X[b \mapsto Y])$
- $a \# Y \vdash Z[a \mapsto X][b \mapsto Y]=Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]$

Unknowns X, Y, Z represent meta-variables t, u, v, ϕ, p.

Nominal Algebra
Example properties/axioms
Meta-level properties expressed in nominal algebra:

- λ-calculus:

$$
\begin{aligned}
& (\lambda[a] X \\
& \forall[a] X
\end{aligned}
$$

$$
=X[a \mapsto Y]
$$

- First-order logic: $a \# Y \vdash \forall[a] X$

$$
=\forall[a] X \wedge X[a \mapsto Y]
$$

- Process algebra: $a \# X \vdash \sum[a] X$

$$
=\sum[a] X+X[a \mapsto Y]
$$

And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:

- α-equivalence: $b \# X \vdash \xi[a] X=\xi[b](X[a \mapsto b])$

$$
\begin{gathered}
a \# Y \vdash(\xi[a] X)[b \mapsto Y]=\xi[a](X[b \mapsto Y]) \\
a \# Y \vdash Z[a \mapsto X][b \mapsto Y]=Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]
\end{gathered}
$$

Freshnesses $a \# Y$ and $b \# X$ represent $x \notin f v(u), y \notin f v(t)$

Nominal Algebra
Example properties/axioms
Meta-level properties expressed in nominal algebra:

- λ-calculus:

$$
\begin{aligned}
& (\lambda[a] X \\
& \forall[a] X
\end{aligned}
$$

$$
=X[a \mapsto Y]
$$

- First-order logic: $a \# Y \vdash \forall[a] X$ $=\forall[a] X \wedge X[a \mapsto Y]$
- Process algebra: $a \# X \vdash \sum[a] X$

$$
=\sum[a] X+X[a \mapsto Y]
$$

And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:

- α-equivalence: $b \# X \vdash \xi[a] X \quad=\xi[b](X[a \mapsto b])$
- $\quad a \# Y \vdash(\xi[a] X)[b \mapsto Y]=\xi[a](X[b \mapsto Y])$
- $\quad a \# Y \vdash Z[a \mapsto X][b \mapsto Y]=Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]$

Abstractions [a]X and $[b] Y$ represent binding fragments x.t, y.u

Nominal Algebra
Example properties/axioms
Meta-level properties expressed in nominal algebra:

- λ-calculus:

$$
\begin{aligned}
& (\lambda[a] X \\
& \forall[a] X
\end{aligned}
$$

$$
=X[a \mapsto Y]
$$

- First-order logic: $a \# Y \vdash \forall[a] X$
- Process algebra: $a \# X \vdash \sum[a] X$
$=\forall[a] X \wedge X[a \mapsto Y]$
$=\sum[a] X+X[a \mapsto Y]$
And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:
- α-equivalence: $b \# X \vdash \xi[a] X=\xi[b](X[a \mapsto b])$
- $\quad a \# Y \vdash(\xi[a] X)[b \mapsto Y]=\xi[a](X[b \mapsto Y])$

$$
a \# Y \vdash Z[a \mapsto X][b \mapsto Y]=Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]
$$

Term-formers for λ, \qquad $, \forall, \wedge, \sum,+$.

Nominal Algebra
Example properties/axioms
Meta-level properties expressed in nominal algebra:

- λ-calculus:

$$
\begin{aligned}
& (\lambda[a] X \\
& \forall[a] X
\end{aligned}
$$

$$
=X[a \mapsto Y]
$$

- First-order logic: $a \# Y \vdash \forall[a] X$
- Process algebra: $a \# X \vdash \sum[a] X$

$$
=\forall[a] X \wedge X[a \mapsto Y]
$$

$$
=\sum[a] X+X[a \mapsto Y]
$$

And for any binder $\xi \in\left\{\lambda, \forall, \sum\right\}$:

- α-equivalence: $b \# X \vdash \xi[a] X \quad=\xi[b](X[a \mapsto b])$
- $\quad a \# Y \vdash(\xi[a] X)[b \mapsto Y]=\xi[a](X[b \mapsto Y])$
- $a \# Y \vdash Z[a \mapsto X][b \mapsto Y]=Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]$

Substitution is a term-former: we write sub([a]t,u) as $t[a \mapsto u]$.

An axiomatisation of capture-avoiding substitution

An axiomatisation of capture-avoiding substitution:

$$
\begin{aligned}
(\mathrm{var}) & a[a \mapsto X]
\end{aligned}=X,
$$

Here:

- f ranges over term-formers... including sub
- cases $b[a \mapsto X]$ and $([a] Y)[a \mapsto X]$ are covered by $(\# \mapsto)$
- $(b a) \cdot X$ swaps b and a when X is instantiated
- $($ ren $\mapsto)$ links to the underlying theory of α-equivalence
- we call this axiomatisation SUB

Instantiation of axioms

$$
(\# \mapsto) \quad a \# Y \vdash Y[a \mapsto X]=Y
$$

Instantiation	Resulting property
$Y:=b$	$a \# Y \vdash Y[a \mapsto X]=Y$
$Y:=a$	$b[a \mapsto X]=b$, since $\vdash a \# b$
$Y:=[a] Z$	none, since $\vdash \mathrm{a} \# \mathrm{a}$
$Y:=[b] Z$	$([a] Z)[a \mapsto X]=[a] Z$, since $\vdash a \#[a] Z$
$Y:=f\left(Y_{1}, \ldots, Y_{n}\right)$	$a \# Z \vdash([b] Z)[a \mapsto X]=[b] Z$
	$a \# Y_{1}, \ldots, a \# Y_{n} \vdash$
$Y:=Z, X:=Y, a:=b$	$f\left(Y_{1}, \ldots, Y_{n}\right)[a \mapsto X]=f\left(Y_{1}, \ldots, Y_{n}\right)$
	$b \# Z \vdash[b \mapsto Y]=Z$

Equational proofs

Lemma

$c \# X, c \# Y \vdash([b] Y)[a \mapsto X]=[c](Y[b \mapsto c][a \mapsto X])$ is derivable.

Equational proofs

Lemma

$c \# X, c \# Y \vdash([b] Y)[a \mapsto X]=[c](Y[b \mapsto c][a \mapsto X])$ is derivable.
Proof.

$$
\begin{aligned}
& ([b] Y)[a \mapsto X] \\
= & \{[b] Y=[c](c b) \cdot Y, \text { since } c \# X, c \# Y \vdash c \#[b] Y, b \#[b] Y\} \\
& ([c](c b) \cdot Y)[a \mapsto X] \\
= & \{\text { axiom (abs↔), since } c \# X, c \# Y \vdash c \# X\} \\
& {[c]((c b) \cdot Y)[a \mapsto X] } \\
= & \{\text { axiom (ren }) \text {, since } c \# X, c \# Y \vdash c \# X\} \\
& {[c] Y[b \mapsto c][a \mapsto X] }
\end{aligned}
$$

Equational proofs

Lemma

$c \# X, c \# Y \vdash([b] Y)[a \mapsto X]=[c](Y[b \mapsto c][a \mapsto X])$ is derivable.
Corollary
The axiomatisation of substitution can mimic the usual definition of capture-avoiding substitution (without unknowns):
$x[x \mapsto t] \quad=t$
$y[x \mapsto t] \quad=y$
$\mathrm{f}\left(u_{1}, \ldots, u_{n}\right)[x \mapsto t]=\mathrm{f}\left(u_{1}[x \mapsto t], \ldots, u_{n}[x \mapsto t]\right)$
$(\xi x . u)[x \mapsto t] \quad=\xi x . u$
$(\xi y . u)[x \mapsto t] \quad=\xi y . u[x \mapsto t] \quad$ if $y \notin f v(u)$
$(\xi y . u)[x \mapsto t] \quad=\xi z .(u[y \mapsto z][x \mapsto t]$ if $y \in f v(t), z \notin f v(t, u)$

Equational proofs

Lemma

$$
X[a \mapsto a]=X \text { is derivable. }
$$

$$
\begin{aligned}
& \frac{}{a \#[a] X}\left(\#[\mathbf{a}) \quad \frac{[b \# X]^{1}}{b \#[a] X}(\#[\mathbf{b})\right. \\
& \text { (perm) } \\
& \frac{[b](b a) \cdot X=[a] X}{[a] X=[b](b a) \cdot X}(\text { symm }) \\
& \frac{[a] X=[b](b a) \cdot X}{X[a \mapsto a]=((b a) \cdot X)[b \mapsto a]} \text { (congf) } \\
& \frac{X[a \mapsto a]=X}{X[a \mapsto a]=X}(f r)^{1}
\end{aligned}
$$

α-conversion

α-conversion in nominal algebra is expressed by the proof rule:
$\frac{a \# t \quad b \# t}{(b a) \cdot t=t}($ perm $)$

α-conversion

α-conversion in nominal algebra is expressed by the proof rule:

$$
\frac{a \# t \quad b \# t}{(b a) \cdot t=t}(\text { perm })
$$

Why not replace this rule by the following axiom instead?

$$
a \# X, b \# X \vdash X[a \mapsto b]=X
$$

α-conversion

α-conversion in nominal algebra is expressed by the proof rule:

$$
\frac{a \# t \quad b \# t}{(b a) \cdot t=t}(\text { perm })
$$

Why not replace this rule by the following axiom instead?

$$
a \# X, b \# X \vdash X[a \mapsto b]=X
$$

This destroys the proof theory:

- When proving properties by induction on the size of terms, you often want to freshen up a term using α-conversion.
- Freshening using the axiom increases term size, destroying the inductive hypothesis

α-conversion

α-conversion in nominal algebra is expressed by the proof rule:

$$
\frac{a \# t \quad b \# t}{(b a) \cdot t=t}(\text { perm })
$$

Why not replace this rule by the following axiom instead?

$$
a \# X, b \# X \vdash X[a \mapsto b]=X
$$

Not all theories with binding use substitution of terms for atoms.
For example, the π-calculus has substitution of atoms for atoms.

Substitution as a rewrite system

Directing the equalities of our axiomatisation SUB we obtain a nominal rewrite system SUBr.

Lemma (Equivalence of equality and rewriting)
SUB is equivalent to the transitive reflexive symmetric closure of SUBr (assuming sufficient freshnesses).

So we can use nice properties from the world of rewriting such as confluence and termination.

Substitution as a rewrite system

Simultaneous substitutions
Problem: SUBr is not terminating because SUB has a simultaneous character:

$$
\begin{aligned}
& X\left[a \mapsto a^{\prime}\right]\left[b \mapsto b^{\prime}\right]\left[c \mapsto c^{\prime}\right] \rightarrow^{*} X\left[c \mapsto c^{\prime}\right]\left[b \mapsto b^{\prime}\right]\left[a \mapsto a^{\prime}\right] \\
& X\left[c \mapsto c^{\prime}\right]\left[b \mapsto b^{\prime}\right]\left[a \mapsto a^{\prime}\right] \rightarrow^{*} X\left[a \mapsto a^{\prime}\right]\left[b \mapsto b^{\prime}\right]\left[c \mapsto c^{\prime}\right]
\end{aligned}
$$

Substitution as a rewrite system

Simultaneous substitutions
Solution: introduce an equational theory SUBe of simultaneous substitutions:

$$
\begin{array}{rll}
a \# Y, b \# X & \vdash Z[a \mapsto X][b \mapsto Y] & =Z[b \mapsto Y][a \mapsto X] \\
a \# Y & \vdash Y[a \mapsto X] & =Y
\end{array}
$$

Substitution as a rewrite system

Simultaneous substitutions
Solution: introduce an equational theory SUBe of simultaneous substitutions:

$$
\begin{array}{rll}
a \# Y, b \# X & \vdash Z[a \mapsto X][b \mapsto Y] & =Z[b \mapsto Y][a \mapsto X] \\
a \# Y & \vdash Y[a \mapsto X] & =Y
\end{array}
$$

Lemma
SUBr is terminating and confluent up to SUBe.

Substitution as a rewrite system

Simultaneous substitutions
Solution: introduce an equational theory SUBe of simultaneous substitutions:

$$
\begin{array}{rll}
a \# Y, b \# X & \vdash Z[a \mapsto X][b \mapsto Y] & =Z[b \mapsto Y][a \mapsto X] \\
a \# Y & \vdash Y[a \mapsto X] & =Y
\end{array}
$$

Lemma
SUBr is terminating and confluent up to SUBe.
Lemma
Each SUBe equivalence class has a representative to which each term in that class rewrites.

Substitution as a rewrite system

Theorem (Confluence)
SUBr is confluent.
Proof (sketch).
Suppose $t \rightarrow{ }^{*} t_{1}$ and $t \rightarrow{ }^{*} t_{2}$.
By confluence up to SUBe, t_{1} and t_{2} rewrite to terms u_{1} and u_{2}, such that $u_{1}=u_{2}$ in SUBe. Then u_{1} and u_{2} have the same representative u to which they rewrite.

Corollaries of confluence

Some corollaries of confluence:

- SUB is a conservative extension over the empty theory:

$$
\Delta \vdash_{\text {SUB }} t=u \quad \text { iff } \quad \Delta \vdash_{\emptyset} t=u
$$

for all t and u not mentioning substitution.

- SUB is equivalent to the usual definition of capture-avoiding substitution, on terms not mentioning unknowns X, Y, Z.

Decidability

Lemma
$\Delta \vdash_{\text {sube }} t=u$ is decidable.
Theorem
$\Delta \vdash_{\text {sUB }} t=u$ is decidable.
Proof (sketch).

1. Rewrite t and u to normal forms up to SUBe t^{\prime} and u^{\prime}.
2. Check whether $\Delta \vdash_{\text {suBe }} t^{\prime}=u^{\prime}$ is decidable.
ω-completeness
Definition
Some terminology:

- Call a term t closed if it does not mention unknowns.
- Write σ for an instantiation of unknowns to closed terms.

SUB is sound and complete with respect to the closed term model. This is also called ω-completeness.

Theorem (ω-completeness)
$\Delta \vdash_{\text {SUB }} t=u \quad$ iff $\quad \vdash_{\text {SUB }} t \sigma=u \sigma$ for all σ such that $\vdash \Delta \sigma$
ω-completeness
Proof

Theorem (ω-completeness)
$\Delta \vdash_{\text {SUB }} t=u \quad$ iff $\quad \vdash_{\text {SUB }} t \sigma=u \sigma$ for all σ such that $\vdash \Delta \sigma$
ω-completeness
Proof

Theorem (ω-completeness)
$\Delta \vdash_{\text {SUB }} t=u \quad$ iff $\quad \vdash_{\text {SUB }} t \sigma=u \sigma$ for all σ such that $\vdash \Delta \sigma$
Proof (sketch).
Left-to-right: property of any theory in nominal algebra.
ω-completeness
Proof

Theorem (ω-completeness)
$\Delta \vdash_{\text {SUB }} t=u \quad$ iff $\quad \vdash_{\text {SUB }} t \sigma=u \sigma$ for all σ such that $\vdash \Delta \sigma$
Proof (sketch).
Right-to-left: by contraposition.

1. Suppose $\Vdash_{\text {sub }} t=u$.
2. By confluence, then also $\forall_{\text {sube }} t=u$.
3. Then we can suffice by showing that there exists a σ such that $\vdash \Delta \sigma$ and $\Vdash_{\text {sub }} t \sigma=u \sigma$.
4. Work by induction on the size of t and u.

Conclusions

Nominal algebra allows us to:

- axiomatise capture-avoiding substitution with meta-variables
- parametric over the choice of term-formers
- supporting binding and freshness directly

The axiomatisation has strong properties:

- equivalent to 'ordinary' capture-avoiding substitution on terms without unknowns
- conservative extension of the empty theory
- decidability of equality
- ω-completeness

Related work

axiomatisations of substitution

Related axiomatisations of substitutions:

- Logos (Crabbé):
- also uses atoms and freshness conditions
- does not treat binding
- works in first-order logic
- Polynomial substitution algebras (Feldman):
- closer to Cylindric Algebras and Lambda Abstraction Algebras
- $\forall a, \forall b, \ldots$ are encoded as an infinite family of unary operators
- less expressive on open terms
- Explicit substitutions:
- implementation vs axiomatisation
- variables are often encoded as de Bruijn indices

Related work
Applications of our work
Applications of our axiomatisation of substitution:

- the basic notion of equality in one-and-a-halfth-order logic: a theory of first-order logic with meta-variables (Gabbay, Mathijssen)
- abstract (non-term-based) models: substitution sets (Gabbay, Marin, Bulò)
- basic notion of capture-avoiding substitution in nominal equational logic (Pitts, Clouston)

Future work

Future work on capture-avoiding substitution:

- unification up to SUB
- take SUB over itself:
- express $X[a \mapsto Y][t / X]$ as $X[a \mapsto Y][X \mapsto \mathcal{T}]$ in a stronger axiom system where \mathcal{T} is a 'stronger' meta-variable
- related to the NEW calculus of contexts and hierarchical nominal rewriting (Gabbay)
- develop logics and λ-calculi with a new way of treating meta-variables, binding and substitution

Further reading

R Murdoch J. Gabbay, Aad Mathijssen:
Nominal Algebra.
Submitted STACS'07.
R- Murdoch J. Gabbay, Andrea Marin, Samuel Rota Bulò:
A nominal semantics for simple types.
Submitted STACS'07.
R- Murdoch J. Gabbay, Aad Mathijssen:
One-and-a-halfth-order Logic. PPDP'06.

Papers and slides of talks can be found on my web page:
http://www.win.tue.nl/~amathijs

