
Capture-Avoiding Substitution

as a Nominal Algebra

Murdoch J. Gabbay1 Aad Mathijssen2

1School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, Scotland

2Department of Mathematics and Computer Science

Eindhoven University of Technology, The Netherlands

3rd International Colloquium
on Theoretical Aspects of Computing (ICTAC 2006)

Tunis, Tunisia, 20-24 November 2006

Motivation
Capture-avoiding substitution in the λ-calculus

The λ-calculus:

t ::= x | tt | λx .t

| X

Motivation
Capture-avoiding substitution in the λ-calculus

The λ-calculus:

t ::= x | tt | λx .t

| X

Axioms:

(α) λx .t = λy .(t[x 7→ y]) if y 6∈ fv(t)
(β) (λx .t)u = t[x 7→ u]
(η) λx .(tx) = t if x 6∈ fv(t)

Motivation
Capture-avoiding substitution in the λ-calculus

The λ-calculus:

t ::= x | tt | λx .t

| X

Axioms:

(α) λx .t = λy .(t[x 7→ y]) if y 6∈ fv(t)
(β) (λx .t)u = t[x 7→ u]
(η) λx .(tx) = t if x 6∈ fv(t)

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}

Motivation
Capture-avoiding substitution in the λ-calculus

The λ-calculus:

t ::= x | tt | λx .t

| X

Capture-avoiding substitution _[_ 7→ _]:

x [x 7→ t] = t

y [x 7→ t] = y

(uv)[x 7→ t] = (u[x 7→ t])(v [x 7→ t])
(λx .u)[x 7→ t] = λx .u
(λy .u)[x 7→ t] = λy .(u[x 7→ t]) if y 6∈ fv(t)
(λy .u)[x 7→ t] = λz .(u[y 7→ z][x 7→ t]) if y ∈ fv(t), z 6∈ fv(t, u)

Motivation
Capture-avoiding substitution in the λ-calculus

The λ-calculus:

t ::= x | tt | λx .t

| X

Capture-avoiding substitution _[_ 7→ _]:

x [x 7→ t] = t

y [x 7→ t] = y

(uv)[x 7→ t] = (u[x 7→ t])(v [x 7→ t])
(λx .u)[x 7→ t] = λx .u
(λy .u)[x 7→ t] = λy .(u[x 7→ t]) if y 6∈ fv(t)
(λy .u)[x 7→ t] = λz .(u[y 7→ z][x 7→ t]) if y ∈ fv(t), z 6∈ fv(t, u)

t, u and v are meta-variables ranging over lambda terms.

Motivation
Capture-avoiding substitution in the λ-calculus

The λ-calculus with meta-variables:

t ::= x | tt | λx .t | X

Capture-avoiding substitution _[_ 7→ _]:

x [x 7→ X] = X

y [x 7→ X] = y

(YZ)[x 7→ X] = (Y [x 7→ X])(Z [x 7→ X])
(λx .Y)[x 7→ X] = λx .Y
(λy .Y)[x 7→ X] = λy .(Y [x 7→ X]) if y 6∈ fv(X)
(λy .Y)[x 7→ X] = λz .(Y [y 7→ z][x 7→ X]) if y ∈ fv(X), z 6∈ fv(X ,Y)

X , Y and Z represent unknown lambda terms.

Motivation
Capture-avoiding substitution in the λ-calculus

The λ-calculus with meta-variables:

t ::= x | tt | λx .t | X

Capture-avoiding substitution _[_ 7→ _]:

x [x 7→ X] = X

y [x 7→ X] = y

(YZ)[x 7→ X] = (Y [x 7→ X])(Z [x 7→ X])
(λx .Y)[x 7→ X] = λx .Y
(λy .Y)[x 7→ X] = λy .(Y [x 7→ X]) if y 6∈ fv(X)
(λy .Y)[x 7→ X] = λz .(Y [y 7→ z][x 7→ X]) if y ∈ fv(X), z 6∈ fv(X ,Y)

fv(X) = ? Y [x 7→ X] = ?

Motivation
Frameworks using capture-avoiding substitution

Capture-avoiding substitution is everywhere:

• λ-calculus: (λx .t)u = t[x 7→ u]

• First-order logic: ∀x .φ = ∀x .φ ∧ φ[x 7→ t]

• Process algebra:
∑

x
p =

∑
x
p + p[x 7→ t]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: ξx .t = ξy .(t[x 7→ y]) if y 6∈ fv(t)

• (ξx .t)[y 7→ u] = ξx .(t[y 7→ u]) if x 6∈ fv(u)

• v [x 7→ t][y 7→ u] = v [y 7→ u][x 7→ t[y 7→ u]] if x 6∈ fv(u)

Motivation
Frameworks using capture-avoiding substitution

Capture-avoiding substitution is everywhere:

• λ-calculus: (λx .t)u = t[x 7→ u]

• First-order logic: ∀x .φ = ∀x .φ ∧ φ[x 7→ t]

• Process algebra:
∑

x
p =

∑
x
p + p[x 7→ t]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: ξx .t = ξy .(t[x 7→ y]) if y 6∈ fv(t)

• (ξx .t)[y 7→ u] = ξx .(t[y 7→ u]) if x 6∈ fv(u)

• v [x 7→ t][y 7→ u] = v [y 7→ u][x 7→ t[y 7→ u]] if x 6∈ fv(u)

t, u, v , φ, ψ, p are meta-variables ranging over terms.

Motivation
Frameworks using capture-avoiding substitution

Capture-avoiding substitution is everywhere:

• λ-calculus: (λx .X)Y = X [x 7→ Y]

• First-order logic: ∀x .X = ∀x .X ∧ X [x 7→ Y]

• Process algebra:
∑

x
X =

∑
x
X + X [x 7→ Y]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: ξx .X = ξy .(X [x 7→ y]) if y 6∈ fv(X)

• (ξx .X)[y 7→ Y] = ξx .(X [y 7→ Y]) if x 6∈ fv(Y)

• Z [x 7→ X][y 7→ Y] = Z [y 7→ Y][x 7→ X [y 7→ Y]] if x 6∈ fv(Y)

X , Y and Z formally represent meta-variables.

Motivation
Frameworks using capture-avoiding substitution

Capture-avoiding substitution is everywhere:

• λ-calculus: (λx .X)Y = X [x 7→ Y]

• First-order logic: ∀x .X = ∀x .X ∧ X [x 7→ Y]

• Process algebra:
∑

x
X =

∑
x
X + X [x 7→ Y]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: ξx .X = ξy .(X [x 7→ y]) if y 6∈ fv(X)

• (ξx .X)[y 7→ Y] = ξx .(X [y 7→ Y]) if x 6∈ fv(Y)

• Z [x 7→ X][y 7→ Y] = Z [y 7→ Y][x 7→ X [y 7→ Y]] if x 6∈ fv(Y)

fv(X) = ? Y [x 7→ X] = ?

Motivation
Axiomatisation of capture-avoiding with meta-variables?

Question
Can we axiomatise capture-avoiding substitution with

meta-variables with the following properties:

I generic: parametric over the choice of term-formers

I close to informal practice: direct support for binding

Answer
Yes, using the new framework of Nominal Algebra:

I Nominal Algebra directly supports binding and meta-variables.

I Axiomatise capture-avoiding substitution as a theory that

allows for arbitary term-formers.

Motivation
Axiomatisation of capture-avoiding with meta-variables?

Question
Can we axiomatise capture-avoiding substitution with

meta-variables with the following properties:

I generic: parametric over the choice of term-formers

I close to informal practice: direct support for binding

Answer
Yes, using the new framework of Nominal Algebra:

I Nominal Algebra directly supports binding and meta-variables.

I Axiomatise capture-avoiding substitution as a theory that

allows for arbitary term-formers.

Nominal Algebra

Nominal Algebra:

I an equational logic on Nominal Terms (Urban, Gabbay, Pitts)

I designed to closely mirror informal reasoning about binding
and meta-variables

I has built-in α-equivalence

I is sorted to keep terms well-formed

Properties of Nominal Algebra:

I semantics in nominal sets

I semantics based on α-equivalence classes, not functions

I sound and complete proof system

I uni�cation up to α-equivalence is decidable

Nominal Algebra

Nominal Algebra:

I an equational logic on Nominal Terms (Urban, Gabbay, Pitts)

I designed to closely mirror informal reasoning about binding
and meta-variables

I has built-in α-equivalence

I is sorted to keep terms well-formed

Properties of Nominal Algebra:

I semantics in nominal sets

I semantics based on α-equivalence classes, not functions

I sound and complete proof system

I uni�cation up to α-equivalence is decidable

Nominal Algebra
Example properties/axioms

Meta-level properties expressed in nominal algebra:

• λ-calculus: (λ[a]X)Y = X [a 7→ Y]

• First-order logic: a#Y ` ∀[a]X = ∀[a]X ∧ X [a 7→ Y]

• Process algebra: a#X `
∑

[a]X =
∑

[a]X + X [a 7→ Y]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: b#X ` ξ[a]X = ξ[b](X [a 7→ b])

• a#Y ` (ξ[a]X)[b 7→ Y] = ξ[a](X [b 7→ Y])

• a#Y ` Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X [b 7→ Y]]

Nominal Algebra
Example properties/axioms

Meta-level properties expressed in nominal algebra:

• λ-calculus: (λ[a]X)Y = X [a 7→ Y]

• First-order logic: a#Y ` ∀[a]X = ∀[a]X ∧ X [a 7→ Y]

• Process algebra: a#X `
∑

[a]X =
∑

[a]X + X [a 7→ Y]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: b#X ` ξ[a]X = ξ[b](X [a 7→ b])

• a#Y ` (ξ[a]X)[b 7→ Y] = ξ[a](X [b 7→ Y])

• a#Y ` Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X [b 7→ Y]]

Atoms a, b represent object-variables x , y .

Nominal Algebra
Example properties/axioms

Meta-level properties expressed in nominal algebra:

• λ-calculus: (λ[a]X)Y = X [a 7→ Y]

• First-order logic: a#Y ` ∀[a]X = ∀[a]X ∧ X [a 7→ Y]

• Process algebra: a#X `
∑

[a]X =
∑

[a]X + X [a 7→ Y]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: b#X ` ξ[a]X = ξ[b](X [a 7→ b])

• a#Y ` (ξ[a]X)[b 7→ Y] = ξ[a](X [b 7→ Y])

• a#Y ` Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X [b 7→ Y]]

Unknowns X ,Y ,Z represent meta-variables t, u, v , φ, p.

Nominal Algebra
Example properties/axioms

Meta-level properties expressed in nominal algebra:

• λ-calculus: (λ[a]X)Y = X [a 7→ Y]

• First-order logic: a#Y ` ∀[a]X = ∀[a]X ∧ X [a 7→ Y]

• Process algebra: a#X `
∑

[a]X =
∑

[a]X + X [a 7→ Y]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: b#X ` ξ[a]X = ξ[b](X [a 7→ b])

• a#Y ` (ξ[a]X)[b 7→ Y] = ξ[a](X [b 7→ Y])

• a#Y ` Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X [b 7→ Y]]

Freshnesses a#Y and b#X represent x 6∈ fv(u), y 6∈ fv(t)

Nominal Algebra
Example properties/axioms

Meta-level properties expressed in nominal algebra:

• λ-calculus: (λ[a]X)Y = X [a 7→ Y]

• First-order logic: a#Y ` ∀[a]X = ∀[a]X ∧ X [a 7→ Y]

• Process algebra: a#X `
∑

[a]X =
∑

[a]X + X [a 7→ Y]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: b#X ` ξ[a]X = ξ[b](X [a 7→ b])

• a#Y ` (ξ[a]X)[b 7→ Y] = ξ[a](X [b 7→ Y])

• a#Y ` Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X [b 7→ Y]]

Abstractions [a]X and [b]Y represent binding fragments x .t, y .u

Nominal Algebra
Example properties/axioms

Meta-level properties expressed in nominal algebra:

• λ-calculus: (λ[a]X)Y = X [a 7→ Y]

• First-order logic: a#Y ` ∀[a]X = ∀[a]X ∧ X [a 7→ Y]

• Process algebra: a#X `
∑

[a]X =
∑

[a]X + X [a 7→ Y]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: b#X ` ξ[a]X = ξ[b](X [a 7→ b])

• a#Y ` (ξ[a]X)[b 7→ Y] = ξ[a](X [b 7→ Y])

• a#Y ` Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X [b 7→ Y]]

Term-formers for λ,__,∀,∧,
∑
,+.

Nominal Algebra
Example properties/axioms

Meta-level properties expressed in nominal algebra:

• λ-calculus: (λ[a]X)Y = X [a 7→ Y]

• First-order logic: a#Y ` ∀[a]X = ∀[a]X ∧ X [a 7→ Y]

• Process algebra: a#X `
∑

[a]X =
∑

[a]X + X [a 7→ Y]

And for any binder ξ ∈ {λ,∀,
∑
}:

• α-equivalence: b#X ` ξ[a]X = ξ[b](X [a 7→ b])

• a#Y ` (ξ[a]X)[b 7→ Y] = ξ[a](X [b 7→ Y])

• a#Y ` Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X [b 7→ Y]]

Substitution is a term-former: we write sub([a]t, u) as t[a 7→ u].

An axiomatisation of capture-avoiding substitution

An axiomatisation of capture-avoiding substitution:

(var 7→) a[a 7→ X] = X

(# 7→) a#Y ` Y [a 7→ X] = Y

(f 7→) f(Y1, . . . ,Yn)[a 7→ X] = f(Y1[a 7→ X], . . . ,Yn[a 7→ X])
(abs7→) b#X ` ([b]Y)[a 7→ X] = [b](Y [a 7→ X])
(ren 7→) b#X ` X [a 7→ b] = (b a) · X

Here:
I f ranges over term-formers. . . including sub

I cases b[a 7→ X] and ([a]Y)[a 7→ X] are covered by (# 7→)

I (b a) · X swaps b and a when X is instantiated

I (ren 7→) links to the underlying theory of α-equivalence

I we call this axiomatisation SUB

Instantiation of axioms

(# 7→) a#Y ` Y [a 7→ X] = Y

Instantiation Resulting property

a#Y ` Y [a 7→ X] = Y

Y := b b[a 7→ X] = b, since ` a#b

Y := a none, since 6` a#a

Y := [a]Z ([a]Z)[a 7→ X] = [a]Z , since ` a#[a]Z

Y := [b]Z a#Z ` ([b]Z)[a 7→ X] = [b]Z

Y := f(Y1, . . . ,Yn) a#Y1, . . . , a#Yn `
f(Y1, . . . ,Yn)[a 7→ X] = f(Y1, . . . ,Yn)

Y := Z ,X := Y , a := b b#Z ` Z [b 7→ Y] = Z

Equational proofs

Lemma
c#X , c#Y ` ([b]Y)[a 7→ X] = [c](Y [b 7→ c][a 7→ X]) is derivable.

Equational proofs

Lemma
c#X , c#Y ` ([b]Y)[a 7→ X] = [c](Y [b 7→ c][a 7→ X]) is derivable.

Proof.

([b]Y)[a 7→ X]

= { [b]Y = [c](c b) · Y , since c#X , c#Y ` c#[b]Y , b#[b]Y }

([c](c b) · Y)[a 7→ X]

= { axiom (abs7→), since c#X , c#Y ` c#X }

[c]((c b) · Y)[a 7→ X]

= { axiom (ren 7→), since c#X , c#Y ` c#X }

[c]Y [b 7→ c][a 7→ X]

Equational proofs

Lemma
c#X , c#Y ` ([b]Y)[a 7→ X] = [c](Y [b 7→ c][a 7→ X]) is derivable.

Corollary

The axiomatisation of substitution can mimic the usual de�nition of

capture-avoiding substitution (without unknowns):

x [x 7→ t] = t

y [x 7→ t] = y

f(u1, . . . , un)[x 7→ t] = f(u1[x 7→ t], . . . , un[x 7→ t])
(ξx .u)[x 7→ t] = ξx .u
(ξy .u)[x 7→ t] = ξy .u[x 7→ t] if y 6∈ fv(u)
(ξy .u)[x 7→ t] = ξz .(u[y 7→ z][x 7→ t] if y ∈ fv(t), z 6∈ fv(t, u)

Equational proofs

Lemma
X [a 7→ a] = X is derivable.

(#[]a)
a#[a]X

[b#X]1

(#[]b)
b#[a]X

(perm)
[b](b a) · X = [a]X

(symm)
[a]X = [b](b a) · X

(congf)
X [a 7→ a] = ((b a) · X)[b 7→ a]

[b#X]1

(#X)
a#(b a) · X

(axren7→)
((b a) · X)[b 7→ a] = X

(tran)
X [a 7→ a] = X

(fr)1

X [a 7→ a] = X

α-conversion

α-conversion in nominal algebra is expressed by the proof rule:

a#t b#t
(perm)

(b a) · t = t

Why not replace this rule by the following axiom instead?

a#X , b#X ` X [a 7→ b] = X

α-conversion

α-conversion in nominal algebra is expressed by the proof rule:

a#t b#t
(perm)

(b a) · t = t

Why not replace this rule by the following axiom instead?

a#X , b#X ` X [a 7→ b] = X

α-conversion

α-conversion in nominal algebra is expressed by the proof rule:

a#t b#t
(perm)

(b a) · t = t

Why not replace this rule by the following axiom instead?

a#X , b#X ` X [a 7→ b] = X

This destroys the proof theory:

I When proving properties by induction on the size of terms,
you often want to freshen up a term using α-conversion.

I Freshening using the axiom increases term size,
destroying the inductive hypothesis

α-conversion

α-conversion in nominal algebra is expressed by the proof rule:

a#t b#t
(perm)

(b a) · t = t

Why not replace this rule by the following axiom instead?

a#X , b#X ` X [a 7→ b] = X

Not all theories with binding use substitution of terms for atoms.
For example, the π-calculus has substitution of atoms for atoms.

Substitution as a rewrite system

Directing the equalities of our axiomatisation SUB we obtain a
nominal rewrite system SUBr.

Lemma (Equivalence of equality and rewriting)

SUB is equivalent to the transitive re�exive symmetric closure of

SUBr (assuming su�cient freshnesses).

So we can use nice properties from the world of rewriting such as
con�uence and termination.

Substitution as a rewrite system
Simultaneous substitutions

Problem: SUBr is not terminating because SUB has a simultaneous
character:

X [a 7→ a′][b 7→ b′][c 7→ c ′] →∗ X [c 7→ c ′][b 7→ b′][a 7→ a′]

X [c 7→ c ′][b 7→ b′][a 7→ a′] →∗ X [a 7→ a′][b 7→ b′][c 7→ c ′]

Substitution as a rewrite system
Simultaneous substitutions

Solution: introduce an equational theory SUBe of simultaneous
substitutions:

a#Y , b#X ` Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X]
a#Y ` Y [a 7→ X] = Y

Lemma
SUBr is terminating and con�uent up to SUBe.

Lemma
Each SUBe equivalence class has a representative to which each

term in that class rewrites.

Substitution as a rewrite system
Simultaneous substitutions

Solution: introduce an equational theory SUBe of simultaneous
substitutions:

a#Y , b#X ` Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X]
a#Y ` Y [a 7→ X] = Y

Lemma
SUBr is terminating and con�uent up to SUBe.

Lemma
Each SUBe equivalence class has a representative to which each

term in that class rewrites.

Substitution as a rewrite system
Simultaneous substitutions

Solution: introduce an equational theory SUBe of simultaneous
substitutions:

a#Y , b#X ` Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X]
a#Y ` Y [a 7→ X] = Y

Lemma
SUBr is terminating and con�uent up to SUBe.

Lemma
Each SUBe equivalence class has a representative to which each

term in that class rewrites.

Substitution as a rewrite system
Con�uence

Theorem (Con�uence)

SUBr is con�uent.

Proof (sketch).

Suppose t →∗ t1 and t →∗ t2.
By con�uence up to SUBe, t1 and t2 rewrite to terms u1 and u2,
such that u1 = u2 in SUBe. Then u1 and u2 have the same
representative u to which they rewrite.

Corollaries of con�uence

Some corollaries of con�uence:

I SUB is a conservative extension over the empty theory:

∆ `
SUB

t = u i� ∆ `∅ t = u

for all t and u not mentioning substitution.

I SUB is equivalent to the usual de�nition of capture-avoiding
substitution, on terms not mentioning unknowns X ,Y ,Z .

Decidability

Lemma
∆ `

SUBe
t = u is decidable.

Theorem
∆ `

SUB
t = u is decidable.

Proof (sketch).

1. Rewrite t and u to normal forms up to SUBe t ′ and u′.

2. Check whether ∆ `
SUBe

t ′ = u′ is decidable.

ω-completeness
De�nition

Some terminology:

I Call a term t closed if it does not mention unknowns.

I Write σ for an instantiation of unknowns to closed terms.

SUB is sound and complete with respect to the closed term model.
This is also called ω-completeness.

Theorem (ω-completeness)

∆ `
SUB

t = u i� `
SUB

tσ = uσ for all σ such that ` ∆σ

ω-completeness
Proof

Theorem (ω-completeness)

∆ `
SUB

t = u i� `
SUB

tσ = uσ for all σ such that ` ∆σ

Proof (sketch).

ω-completeness
Proof

Theorem (ω-completeness)

∆ `
SUB

t = u i� `
SUB

tσ = uσ for all σ such that ` ∆σ

Proof (sketch).

Left-to-right: property of any theory in nominal algebra.

ω-completeness
Proof

Theorem (ω-completeness)

∆ `
SUB

t = u i� `
SUB

tσ = uσ for all σ such that ` ∆σ

Proof (sketch).

Right-to-left: by contraposition.

1. Suppose 6`
SUB

t = u.

2. By con�uence, then also 6`
SUBe

t = u.

3. Then we can su�ce by showing that there exists a σ such that
` ∆σ and 6`

SUB
tσ = uσ.

4. Work by induction on the size of t and u.

Conclusions

Nominal algebra allows us to:

I axiomatise capture-avoiding substitution with meta-variables

I parametric over the choice of term-formers

I supporting binding and freshness directly

The axiomatisation has strong properties:

I equivalent to `ordinary' capture-avoiding substitution
on terms without unknowns

I conservative extension of the empty theory

I decidability of equality

I ω-completeness

Related work
axiomatisations of substitution

Related axiomatisations of substitutions:

I Logos (Crabbé):
I also uses atoms and freshness conditions
I does not treat binding
I works in �rst-order logic

I Polynomial substitution algebras (Feldman):
I closer to Cylindric Algebras and Lambda Abstraction Algebras
I ∀a,∀b, . . . are encoded as an in�nite family of unary operators
I less expressive on open terms

I Explicit substitutions:
I implementation vs axiomatisation
I variables are often encoded as de Bruijn indices

Related work
Applications of our work

Applications of our axiomatisation of substitution:

I the basic notion of equality in one-and-a-halfth-order logic:
a theory of �rst-order logic with meta-variables
(Gabbay, Mathijssen)

I abstract (non-term-based) models: substitution sets
(Gabbay, Marin, Bulò)

I basic notion of capture-avoiding substitution
in nominal equational logic (Pitts, Clouston)

Future work

Future work on capture-avoiding substitution:

I uni�cation up to SUB

I take SUB over itself:
I express X [a 7→ Y][t/X] as X [a 7→ Y][X 7→ T] in a stronger

axiom system where T is a `stronger' meta-variable
I related to the NEW calculus of contexts and hierarchical

nominal rewriting (Gabbay)

I develop logics and λ-calculi with a new way of treating
meta-variables, binding and substitution

Further reading

Murdoch J. Gabbay, Aad Mathijssen:
Nominal Algebra.
Submitted STACS'07.

Murdoch J. Gabbay, Andrea Marin, Samuel Rota Bulò:
A nominal semantics for simple types.
Submitted STACS'07.

Murdoch J. Gabbay, Aad Mathijssen:
One-and-a-halfth-order Logic.
PPDP'06.

Papers and slides of talks can be found on my web page:
http://www.win.tue.nl/∼amathijs

