
12

/ department of mathematics and computer scienceJJ J N I II 1/24JJ J N I II 1/24

Data Types for GenSpect

Aad Mathijssen

23th September 2004

12

/ department of mathematics and computer scienceJJ J N I II 2/24JJ J N I II 2/24

Basic formalism

Data types in GenSpect are abstract data types.

Abstract data types consist of:

• sorts and operations on these sorts

• equations on terms made up from operations and variables, where the
terms are of the same sort

Declaration in GenSpect:

Declaration Keyword
sorts sort
operations op
variables var
equations eqn

12

/ department of mathematics and computer scienceJJ J N I II 3/24JJ J N I II 3/24

Predefined data types: booleans

Booleans are represented by the sort Bool .

For this sort, we have the following operations:

Operator Rich Plain
true true true
false false false
negation ¬_ !_
conjunction _ ∧ _ _ && _
disjunction _ ∨ _ _ || _
implication _ ⇒ _ _ => _
universal quantification ∀_:_._ forall _:_._
existential quantification ∃_:_._ exists _:_._

12

/ department of mathematics and computer scienceJJ J N I II 4/24JJ J N I II 4/24

Predefined data types: booleans (2)

For any sort (predefined or user defined), we have the following operations:

Operator Rich Plain
equality _ = _ _ == _
inequality _ 6= _ _ <> _
conditional if (_, _, _) if(_,_,_)

For sort Bool , we have:

• equality is bi-implication

• inequality is exclusive-or

12

/ department of mathematics and computer scienceJJ J N I II 5/24JJ J N I II 5/24

Predefined data types: numbers

Positive numbers, natural numbers and integers are represented the sorts
Pos , Nat and Int .

For these sorts, we have the following operations:

Operator Rich Plain
positive numbers 1, 2, 3, . . . 1,2,3,...
natural numbers 0, 1, 2, . . . 0,1,2,...
integers . . . ,−2,−1, 0, 1, 2,,-2,-1,0,1,2,...
negation −_ -_
addition _ + _ _ + _
subtraction _− _ _ - _
multiplication _ ∗ _ _ * _
integer div _ div _ _ div _
integer mod _ mod _ _ mod _

12

/ department of mathematics and computer scienceJJ J N I II 6/24JJ J N I II 6/24

Predefined data types: numbers (2)

And the following operations, where A and B are numeric sorts:

Operator Rich Plain
exponentiation exp(_ , _) exp(_,_)
increment inc(_) inc(_)
decrement dec(_) dec(_)
absolute value abs(_) abs(_)
maximum max (_ , _) max(_,_)
minimum min(_ , _) min(_,_)
less than _ < _ _ < _
greater than _ > _ _ > _
less than or equal _ ≤ _ _ <= _
greater than or equal _ ≥ _ _ >= _
conversions A2B(_) A2B(_)

12

/ department of mathematics and computer scienceJJ J N I II 7/24JJ J N I II 7/24

Type constructors: lists

Singly linked lists consisting of elements of sort A only:

sort L = List(A)

The following operations are provided for this sort:

Operator Rich Plain
construction [_ , . . . , _] [_,...,_]
length #_ #_
cons _ . _ _ |> _
snoc _ / _ _ <| _
concatenation _++_ _ ++ _
element at position _ˆ_ _ ^ _

Lists are constructed from [] and . .
[a, . . . , z] is an abbreviation of a z . [].

12

/ department of mathematics and computer scienceJJ J N I II 8/24JJ J N I II 8/24

Type constructors: lists (2)

We also have the following operations:

Operator Rich Plain
empty predicate isempty(_) isempty(_)
the first element of a list lhead(_) lhead(_)
list without its first element ltail(_) ltail(_)
the last element of a list rhead(_) rhead(_)
list without its last element rtail(_) rtail(_)

Operations isempty, ltail and ltail have constant time complexity
The other operations have linear time complexity.

The introduced syntax can be used for both cons and snoc lists.
Should we leave the choice to the user?

12

/ department of mathematics and computer scienceJJ J N I II 9/24JJ J N I II 9/24

Type constructors: sets and bags

Sets and bags consisting of elements of sort A only:

sort S = Set(A)
B = Bag(A)

The following operations are provided:

Operator Rich Plain
set enumeration { _ , . . . , _ } { _,...,_ }
bag enumeration { _ : _ , . . . , _ : _ } { _:_,...,_:_}
comprehension { _ : _ | _ } { _:_ | _ }

A comprehension is of the form {x:A | f (x) }, where:
• f is a total function of type A → Bool for sets

• f is a total function of type A → Nat for bags

12

/ department of mathematics and computer scienceJJ J N I II 10/24JJ J N I II 10/24

Type constructors: sets and bags (2)

We also have the following operations:

Operator Rich Plain
size (cardinality) #_ #_
bag multiplicity / set element test _ . _ _ . _
element test _ ∈ _ _ in _
subset/subbag _ ⊆ _ _ <= _
proper subset/subbag _ ⊂ _ _ < _
union _ ∪ _ _ + _
intersection _ ∩ _ _ * _
difference __ _ \ _
set complement _′ _~

Note that the empty set or bag is written as an empty enumeration: { }.

12

/ department of mathematics and computer scienceJJ J N I II 11/24JJ J N I II 11/24

Type constructors: function types

A function type of total functions from X to Y :

sort F = X → Y

The following operations are provided for this sort:

Operator Rich Plain
function application _._ _ . _
lambda abstraction λ_:_._ lambda _:_._

12

/ department of mathematics and computer scienceJJ J N I II 12/24JJ J N I II 12/24

Type constructors: structured types

General form of structured types, where n ∈ N+ and ki ∈ N, 1 ≤ i ≤ n:

sort A = c1 : (pr 1,1 : A1,1) × . . .× (pr 1,k1
: A1,k1

)
| c2 : (pr 2,1 : A2,1) × . . .× (pr 2,k2

: A2,k2
)

...
| cn : (prn,1 : An,1)× . . .× (prn,kn

: An,kn
)

Remarks:

• At least 1 summation, possibly 0 products.

• Each summation i is labelled by a constructor ci.

• Each product (i, j) is labelled by a projection pr i,j.

• All labels have to be distinct.

• Each sort Ai,j has to be either declared or equal to A.

• Projection labels and parentheses are optional.

12

/ department of mathematics and computer scienceJJ J N I II 13/24JJ J N I II 13/24

Type constructors: structured types (2)

The following operations are provided for sort A:

Operator Rich Plain
constructor of summation i ci(_, . . . , _) ci(_,...,_)
membership test for summation i is_ci(_) is_ci(_)
projection (i, j), if declared pr i ,j (_) prij(_)

A projection operation is only provided when its projection label is declared.

12

/ department of mathematics and computer scienceJJ J N I II 14/24JJ J N I II 14/24

Type constructors: structured type examples

For finite n ∈ N, an enumerated type can be declared as follows:

sort Enum = enum0 | . . . | enumn

Provided operations, for all i, 0 ≤ i ≤ n:

• constructor operation enum i :→ Enum

• membership operations is_enum i : Enum → Bool

Pairs of elements of sort A and B can be declared as follows:

sort ABPair = pair : (fst : A)× (snd : B)

Provided operations:

• constructor and membership operation for label pair

• projection operations fst : ABPair → A and snd : ABPair → B

12

/ department of mathematics and computer scienceJJ J N I II 15/24JJ J N I II 15/24

Type constructors: structured type examples (2)

Binary trees where all leaves and nodes are labelled with elements of sort A:

sort T = leaf : (lval : A) | node : (left : T)× (nval : A)× (right : T)

Quantification of an associative operation f : A× A → A over all labels in
a T tree:

op quantf : T → A
var t, u : T

a : A
eqn quantf (leaf (a)) = a

quantf (node(t, a, u)) = f (quantf (t), f (a, quantf (u)))

Without pattern matching:

var t : T
eqn quantf (t) = ite(isleaf (t), lval(t),

f (quantf (left(t)), f (nval(t), quantf (right(t)))))

12

/ department of mathematics and computer scienceJJ J N I II 16/24JJ J N I II 16/24

Hierarchy

Hierarchy in the context of µCRL:

User defined data types

Numbers Lists Booleans Sets Bags

Structured types Function types

µCRL data types

12

/ department of mathematics and computer scienceJJ J N I II 17/24JJ J N I II 17/24

Extensions

GenSpect representations were provided for the most important data types.

When needed, the following predefined data types can be added:

• characters

• strings

Analogously, the following type constructors can be added:

• Natmod(n), for finite n ∈ N
• (infinite) tables, arrays

• stacks, queues

• . . .

12

/ department of mathematics and computer scienceJJ J N I II 18/24JJ J N I II 18/24

Process declarations

Processes are defined by means of process equations.
Variables occurring at the right hand side must occur at the left hand side.
There are three candidate representations.

1) Current µCRL representation:

proc P(t : T) = isleaf (t) → get(lval(t)).δ +
isnode(t)→ get(nval(t)).(P(left(t)) + P(right(t)))

2) Current µCRL representation extended with pattern matching:

proc P(leaf (a : A)) = get(a).δ
P(node(t : T, a : A, u : T)) = get(a).(snd(d).P(t, d, e) +

snd(e).P(u, d, e))

12

/ department of mathematics and computer scienceJJ J N I II 19/24JJ J N I II 19/24

Process declarations (2)

3) Representation 2) where variable declarations are separated from the pro-
cess declarations and a type declaration for the process is added:

proc P : T
var a : A

t, u : T
pdef P(leaf (a)) = get(a).δ

P(node(t, a, u)) = get(a).(snd(d).P(t, d, e) + snd(e).P(u, d, e))

Advantages 2) and 3) over 1): avoid membership and projection operations.
Advantages 3) over 2) and 1): closest to the definition of data operations.

12

/ department of mathematics and computer scienceJJ J N I II 20/24JJ J N I II 20/24

Process declarations (3)

A syntactical improvement: shorten process references using an assignment.

Example:
We may write Q(x := c) instead of Q(a, b, c, d), if only the second argu-
ment has to be changed.

Problems:

• the pattern matching variants may complicate the left hand side of the
assignment, e.g. P(node(t, a, u) := t).

• what to do with references to different process equations?

12

/ department of mathematics and computer scienceJJ J N I II 21/24JJ J N I II 21/24

Parsing issues: relation with processes

Occurrences of data terms in relation to processes:

• action parameters

• process declarations (representations 2 and 3)

• arguments of a process reference

• left argument of conditional process terms (b → p)

• right argument of a timed process term (p@t)

Last two are ambiguous / hard to read for quantifications and infix opera-
tions. These operations need to be parenthesized.

12

/ department of mathematics and computer scienceJJ J N I II 22/24JJ J N I II 22/24

Parsing issues: type inference

Type inference is needed, because:

• operations may be overloaded

• numbers are ambiguous (1 can be of sort Pos , Nat or Int)

12

/ department of mathematics and computer scienceJJ J N I II 23/24JJ J N I II 23/24

Parsing issues: priorities

Precedence of operators:
postfix > prefix > ∀_:_._, ∃_:_._ > binary > λ_:_._

Precedence of binary operators:

Pr. operator
1 ^ , .
2 * , div , mod, \
3 +, -
4 <, >, <=, >=, <| , |> , ++, in
5 ==, <>
6 &&, ||
7 =>

12

/ department of mathematics and computer scienceJJ J N I II 24/24JJ J N I II 24/24

Parsing issues: associativity

The following binary operators are associative:

operator associativity
. left
* left/right
+ left/right
|> right
<| left
++ left/right
== left/right
<> left/right
&& left/right
|| left/right

