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mCRL2 toolset: analysis of system behaviour

Analysis of system behaviour:

Modelling: create an abstract model of the behaviour of
the system

gain insight in the behaviour
reduce complexity to allow for validation and verification

Validation: are we building the right product?

test requirements on the model for a number of paths
and configurations
simulate the model
visualise the model

Verification: are we building the product right?

verify requirements on the model for all possible paths
and configurations
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mCRL2 toolset: goals

Goals of the mCRL2 toolset:

Research:

Develop techniques for the analysis of system behaviour
Provide a generic basis for the analysis of system
behaviour

Education:

Teach model-based design, validation and verification

Valorisation:

Industrial application of verification techniques
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mCRL2 toolset: overview

Overview of the mCRL2 toolset:

20 years of history:

Late 1980s: Common Representation Language (CRL)
From 1990: µCRL
During 1990s: µCRL toolset
From 2004: mCRL2 and mCRL2 toolset

Collection of tools for the analysis of system behaviour

External languages and tools are supported:
µCRL, CADP, χ, PNML, TorX, LySa, SystemC, LTSmin

Multi-platform: Windows, Mac and UNIX variants

Free software licence: Boost licence

Release policy: fixed release cycle (January and July)
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mCRL2 toolset: January 2009 release

Released on Monday 26th of January, 2009.

Most important improvements:

Exact rational numbers

Unique representations of finite sets and bags

Improved visualisation of directed graphs

Distributed state space generation

New experimental tools (not available by default):

Elimination of real numbers

Graphical specification of behaviour

Optimisation of Parameterised Boolean Equation Systems
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Exact rational numbers

Rational numbers in mCRL2:

New operations: /, floor , ceil , round
No limitations on size

A process that divides by 2... 500 times:

act report:R;

error;

proc P(n:N, r:R) = (n < 500) → report(r) · P(n+ 1, r/2)

+ (r/2 ≥ r) → error · δ;
init P(0, 1);

State space generation:

State space: 501 states and 500 transitions

No error actions are found
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Unique representations of finite sets

The wolf, the goat, and the cabbage:
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Unique representations of finite sets

The wolf, the goat, and the cabbage:

Data type declarations:

sort Item = struct wolf | goat | cabbage;

Position = struct left | right ;

Shores = struct shores(Set(Item),Set(Item));

map opp : Position → Position;

items : Shores × Position → Set(Item);

update : Shores × Position × Item → Shores;
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Unique representations of finite sets

The wolf, the goat, and the cabbage:

Data type definitions:

var s, t : Set(Item); i : Item;

eqn opp(left) = right ;

opp(right) = left ;

items(shores(s, t), left) = s;

items(shores(s, t), right) = t;

update(shores(s, t), right , i) = shores(s \ {i}, t ∪ {i});
update(shores(s, t), left , i) = shores(s ∪ {i}, t \ {i});
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Unique representations of finite sets

The wolf, the goat, and the cabbage:

Actions:
act is eaten:Item;

move:Position;

move:Position × Item;

done;
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Unique representations of finite sets

The wolf, the goat, and the cabbage:

Process:
proc WGC(s:Shores, p:Position) =

({wolf , goat} ⊆ items(s, opp(p)))→ is eaten(goat) · δ
+ ({goat , cabbage} ⊆ items(s, opp(p)))→ is eaten(cabbage) · δ
+ ({wolf , goat} * items(s, opp(p)) ∧ {goat , cabbage} * items(s, opp(p)))→

(move(opp(p)) ·WGC(s, opp(p))

+
P

i:Item (i ∈ items(s, p))→
move(opp(p), i) ·WGC(update(s, opp(p), i), opp(p))

+ (items(s, right)≈ {wolf , goat , cabbage})→ done

);

init WGC(shores({wolf , goat , cabbage}, ∅), left);
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Unique representations of finite sets

The wolf, the goat, and the cabbage:

State space generation:

State space: 19 states and 44 transitions

The following shortest solution is found:
move(right , goat)

move(left)

move(right ,wolf )

move(left , goat)

move(right , cabbage)

move(left)

move(right , goat)

done
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Unique representations of finite bags

mCRL2

Coloured Petri Net

Labelled Transition System

pnml2mcrl2

mcrl22lps + lps2lts
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Improved visualisation of directed graphs

Improvements of ltsgraph:

OpenGL implementation

dot file support
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Distributed state space generation

Compatibility with the LTSmin toolset:

Developed at the Formal Methods & Tools group,
University of Twente

Implements latest techniques for distributed
instantiation of labelled transition systems

Tools for mCRL2 state space generation:

Sequential: lps2lts-grey
Symbolic: lpsreach
Distributed: lps2lts-mpi
mCRL2 libraries provide next state/transition
functionality
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Elimination of real numbers (experimental)

A timed light switch:

sort Light = struct off | on | bright ;

act press, status:Light ;

proc P(r:R, l:Light) =

(l ≈ off )→ press(on) · P(0, on)

+
P

s:R(l 6≈ off ∧ 0 < s ∧ r + s < 5)→ press(bright) · P(r + s, bright)

+
P

s:R(l 6≈ off ∧ 0 < s ∧ r + s ≥ 5)→ press(off ) · P(0, off )

+ status(l) · P(r, l);

init P(0, off );

State space generation:

Impossible directly

Possible using lpsrealelm: 3 states and 8 transitions
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Graphical modelling (experimental)

Graphical Process Editor (GraPE):

graphical specification of sequential behaviour

graphical specification of parallel behaviour
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Thank you for your attention

More information can be found on mcrl2.org.
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