

mCRL2 toolset January 2009 release

Aad Mathijssen

Design and Analysis of Systems group
Laboratory for Quality Software (LaQuSo)

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

LaQuSo Lunch Presentation
Technische Universiteit Eindhoven

29th January 2009

1/13

mCRL2 toolset: analysis of system behaviour

Analysis of system behaviour:

Modelling: create an abstract model of the behaviour of
the system

gain insight in the behaviour
reduce complexity to allow for validation and verification

Validation: are we building the right product?

test requirements on the model for a number of paths
and configurations
simulate the model
visualise the model

Verification: are we building the product right?

verify requirements on the model for all possible paths
and configurations

2/13

mCRL2 toolset: goals

Goals of the mCRL2 toolset:

Research:

Develop techniques for the analysis of system behaviour
Provide a generic basis for the analysis of system
behaviour

Education:

Teach model-based design, validation and verification

Valorisation:

Industrial application of verification techniques

3/13

mCRL2 toolset: overview

Overview of the mCRL2 toolset:

20 years of history:

Late 1980s: Common Representation Language (CRL)
From 1990: µCRL
During 1990s: µCRL toolset
From 2004: mCRL2 and mCRL2 toolset

Collection of tools for the analysis of system behaviour

External languages and tools are supported:
µCRL, CADP, χ, PNML, TorX, LySa, SystemC, LTSmin

Multi-platform: Windows, Mac and UNIX variants

Free software licence: Boost licence

Release policy: fixed release cycle (January and July)

4/13

mCRL2 toolset: January 2009 release

Released on Monday 26th of January, 2009.

Most important improvements:

Exact rational numbers

Unique representations of finite sets and bags

Improved visualisation of directed graphs

Distributed state space generation

New experimental tools (not available by default):

Elimination of real numbers

Graphical specification of behaviour

Optimisation of Parameterised Boolean Equation Systems

5/13

Exact rational numbers

Rational numbers in mCRL2:

New operations: /, floor , ceil , round
No limitations on size

A process that divides by 2... 500 times:

act report:R;

error;

proc P(n:N, r:R) = (n < 500) → report(r) · P(n+ 1, r/2)

+ (r/2 ≥ r) → error · δ;
init P(0, 1);

State space generation:

State space: 501 states and 500 transitions

No error actions are found

6/13

Unique representations of finite sets

The wolf, the goat, and the cabbage:

7/13

Unique representations of finite sets

The wolf, the goat, and the cabbage:

Data type declarations:

sort Item = struct wolf | goat | cabbage;

Position = struct left | right ;

Shores = struct shores(Set(Item),Set(Item));

map opp : Position → Position;

items : Shores × Position → Set(Item);

update : Shores × Position × Item → Shores;

7/13

Unique representations of finite sets

The wolf, the goat, and the cabbage:

Data type definitions:

var s, t : Set(Item); i : Item;

eqn opp(left) = right ;

opp(right) = left ;

items(shores(s, t), left) = s;

items(shores(s, t), right) = t;

update(shores(s, t), right , i) = shores(s \ {i}, t ∪ {i});
update(shores(s, t), left , i) = shores(s ∪ {i}, t \ {i});

7/13

Unique representations of finite sets

The wolf, the goat, and the cabbage:

Actions:
act is eaten:Item;

move:Position;

move:Position × Item;

done;

7/13

Unique representations of finite sets

The wolf, the goat, and the cabbage:

Process:
proc WGC(s:Shores, p:Position) =

({wolf , goat} ⊆ items(s, opp(p)))→ is eaten(goat) · δ
+ ({goat , cabbage} ⊆ items(s, opp(p)))→ is eaten(cabbage) · δ
+ ({wolf , goat} * items(s, opp(p)) ∧ {goat , cabbage} * items(s, opp(p)))→

(move(opp(p)) ·WGC(s, opp(p))

+
P

i:Item (i ∈ items(s, p))→
move(opp(p), i) ·WGC(update(s, opp(p), i), opp(p))

+ (items(s, right)≈ {wolf , goat , cabbage})→ done

);

init WGC(shores({wolf , goat , cabbage}, ∅), left);

7/13

Unique representations of finite sets

The wolf, the goat, and the cabbage:

State space generation:

State space: 19 states and 44 transitions

The following shortest solution is found:
move(right , goat)

move(left)

move(right ,wolf)

move(left , goat)

move(right , cabbage)

move(left)

move(right , goat)

done

7/13

Unique representations of finite bags

mCRL2

Coloured Petri Net

Labelled Transition System

pnml2mcrl2

mcrl22lps + lps2lts

8/13

Improved visualisation of directed graphs

Improvements of ltsgraph:

OpenGL implementation

dot file support

9/13

Distributed state space generation

Compatibility with the LTSmin toolset:

Developed at the Formal Methods & Tools group,
University of Twente

Implements latest techniques for distributed
instantiation of labelled transition systems

Tools for mCRL2 state space generation:

Sequential: lps2lts-grey
Symbolic: lpsreach
Distributed: lps2lts-mpi
mCRL2 libraries provide next state/transition
functionality

10/13

Elimination of real numbers (experimental)

A timed light switch:

sort Light = struct off | on | bright ;

act press, status:Light ;

proc P(r:R, l:Light) =

(l ≈ off)→ press(on) · P(0, on)

+
P

s:R(l 6≈ off ∧ 0 < s ∧ r + s < 5)→ press(bright) · P(r + s, bright)

+
P

s:R(l 6≈ off ∧ 0 < s ∧ r + s ≥ 5)→ press(off) · P(0, off)

+ status(l) · P(r, l);

init P(0, off);

State space generation:

Impossible directly

Possible using lpsrealelm: 3 states and 8 transitions

11/13

Graphical modelling (experimental)

Graphical Process Editor (GraPE):

graphical specification of sequential behaviour

graphical specification of parallel behaviour

12/13

Thank you for your attention

More information can be found on mcrl2.org.

13/13

