
NOMINAL ALGEBRA

MURDOCH J. GABBAY AND AAD MATHIJSSEN

Abstract. Nominal terms are a term-language used to accurately and expres-

sively represent systems with binding. We present Nominal Algebra (NA), a

theory of algebraic equality on nominal terms. Built-in support for binding in
the presence of meta-variables allows NA to closely mirror informal mathemat-

ical usage and notation, where expressions such as λa.t or ∀a.φ are common, in

which meta-variables t and φ explicitly occur in the scope of a variable a. We
describe the syntax and semantics of NA, and provide a sound and complete

proof system for it. We also give some examples of axioms; other work has

considered sets of axioms of particular interest in some detail.

1. Introduction

Universal algebra [6, 18, 5] is the theory of equalities t = u. It is a simple frame-
work within which we can study mathematical structures, for example groups,
rings, and fields. It has also been applied to study the mathematical properties of
mathematical truth and computability. For example boolean algebras correspond
to classical truth, heyting algebras correspond to intuitionistic truth, cylindric al-
gebras correspond to truth in the presence of predicates as well as propositions,
combinators correspond to computability, and so on.

Informal mathematical usage and notation often involve binding. In many cases,
this involves freshness and α-equivalence in the presence of meta-variables. For
example:

• λ-calculus: λx.(tx) = t — if x does not occur free in (is fresh for) t.
• π-calculus: (νa.P) | Q = νa.(P | Q) — if a is fresh for Q.
• First-order logic: (∀x.φ) ∧ ψ = ∀x.(φ ∧ ψ) — if x is fresh for ψ.

Here t, P , Q, φ and ψ are meta-variables ranging over concrete terms.
Now take any binder ξ ∈ {∀, λ, ν}. Then:
• (ξx.t)[y 7→ u] = ξx.(t[y 7→ u]) — if x is fresh for u.
• α-equivalence: ξx.t = ξy.t[x 7→ y] — if y is fresh for t.

Nominal terms [26, 27] are a syntax designed to naturally express binding, fresh-
ness and α-equivalence in the presence of these meta-variables. This paper studies
the theory of equality between nominal terms. We obtain Nominal Algebra
(NA). This permits direct and intuitive axiomatisation of systems with binding
and yet we keep the flavour of ‘normal algebra’.

In other published work we have already applied nominal algebra to investigate
specific axiomatic systems for truth and computability [12, 13]. In this paper we
present a common syntax and semantics for Nominal Algebra, together with a
sound and complete proof system.

1

2 MURDOCH J. GABBAY AND AAD MATHIJSSEN

2. Syntax

2.1. Sorts, terms and signatures. In this paper we consider a sorted NA; an
unsorted version would also be feasible. Fix disjoint collections of base sorts T
and atomic sorts A. For our examples we need only one atomic sort, so we may
write A for the atomic sort.

Then sorts τ and arities ρ are defined by the following grammars:

τ ::= T | A | [A]τ ρ ::= (τ1, . . . , τn)τ

Here n may be zero, in which case we write ()τ as τ .
For each atomic sort A fix a countably infinite collection of atoms aA, bA, cA,

representing object-variables. For each sort τ fix a countably infinite collection
of unknowns Xτ , Yτ , Zτ , representing meta-variables. All these collections are
assumed disjoint. We may omit the subscripts. We call π · X where π stands for
a permutation of atoms a moderated unknown. This represents a permutation
of object-variables that is performed when the meta-variable is instantiated to a
concrete term. We will explain later how these permutations on unknowns facilitate
α-conversion on nominal terms.

Fix term-formers f to each of which is associated some unique arity ρ. We
may write f : ρ for ‘f, which has arity ρ’.

Terms t, u, v are inductively defined by:

t ::= a | π ·X | [a]t | f(t1, . . . , tn)

We define sorting assertions inductively by:

aA : A π ·Xτ : τ

t : τ

[aA]t : [A]τ

f : (τ1, . . . , τn)τ t1 : τ1 · · · tn : τn

f(t1, . . . , tn) : τ

Here [a]t is called an abstractor ; it represents a term in which an object-variable is
abstracted.

A signature Σ is a triple containing finite sets of base sorts, atomic sorts, and
term-formers with associated arities.

Example 2.1. A signature for. . .
• the λ-calculus ΣLAM consists of base sort T, atomic sort A, and term-formers

var : (A)T, app : (T,T)T, and λ : ([A]T)T. Note how this mirrors the speci-
fication of λ-calculus syntax. var is needed to turn an atom aA into a term
of sort T; this is a standard device called a casting function. We generally
sugar app(t, u) to tu and λ([a]t) to λ[a]t.

• first-order logic ΣFOL with equality has base sorts F and T, atomic sort
A, and term-formers ⊥ : F, ⊃: (F,F)F, ∀ : ([A]F)F, ≈: (T,T)F, and
var : (A)T. We sugar ⊃(φ, ψ) to φ ⊃ ψ, ∀([a]φ) to ∀[a]φ and ≈(t, u) to
t ≈ u.

A permutation π of atoms is a bijection A → A with finite support. That
means that for some finite set of atoms (which may be empty) π(a) 6= a, and for all
other atoms π(a) = a. For further discussion of permutations of atoms see elsewhere
([15], [27], and [10, Section 5.4]). Write Id for the identity permutation, π-1 for the

NOMINAL ALGEBRA 3

inverse of π, and π◦π′ for the composition of π and π′, i.e. (π◦π′)(a) = π(π′(a)).
Id is also the identity of composition, i.e. Id ◦ π = π and π ◦ Id = π. Write (a b)
for the permutation that swaps a and b, i.e. the permutation that maps a to b, b
to a and all other c to themselves. We abbreviate Id ·X to X.

In the presence of multiple atomic sorts we assume that π(a) must have the same
sort as a; so permutations are sort-respecting.

Write t ≡ u for syntactic identity of terms. There is no quotient by abstraction
so for example [a]a 6≡ [b]b. Say that a term t is closed when it does not contain
any unknowns. Write a ∈ t for ‘a occurs in (the syntax of) t’, and X ∈ t for ‘X
occurs in (the syntax of) t’. Occurrence is literal, e.g. a ∈ [a]a and a ∈ π ·X
when π(a) 6= a. Similarly write a 6∈ t and X 6∈ t for ‘does not occur in the syntax
of t’.

2.2. Judgements, axioms and theories. A freshness (assertion) is a pair a#t
of an atom a and a term t. An equality (assertion) is a pair t = u where t and u
are terms of the same sort. Call a freshness a#X (so t ≡ X) primitive. Write ∆
for a finite set of primitive freshnesses and call it a freshness context. We drop
set brackets in freshness contexts, e.g. writing a#X, b#Y for {a#X, b#Y }.

A judgement is a pair ∆ → A of a freshness context and an assertion. We may
call it an equality (or freshness) judgement, if A is an equality (or freshness)
assertion. We may write ∅ → A as A.

We allow equality judgements ∆ → t = u as axioms (made formal later). We
do not allow freshness judgements as axioms; we shall see that they can be easily
expressed using equalities instead.

A theory T = (Σ,Ax) is a pair of a signature Σ and a possibly infinite set of
axioms Ax on that signature. We name theories in sans serif font.

Example 2.2.

• CORE is a theory with an atomic sort A and one axiom

(perm) a#X, b#X → (b a) ·X = X

This theory expresses α-equivalence in the presence of meta-variables (made
formal by Theorem 4.5). Henceforth we shall consider only theories con-
taining (perm).

• SUB has a signature with a base sort T, a sort of atoms A, a substitution
term-former sub : ([A]τ,T)τ for each τ ∈ {T, [A]T}, additional term-formers
(say) app : (T,T)T and lam : ([A]T)T, and a variable casting term-former
var : (A)T. We sugar sub([a]t, u) to t[a 7→ u].

SUB has the following axioms:

var(a)[a 7→ X] = X
a#Y → Y [a 7→ X] = Y
b#X → ([b]Y)[a 7→ X] = [b](Y [a 7→ X])

f(Y1, . . . , Yn)[a 7→ X] = f(Y1[a 7→ X], . . . , Yn[a 7→ X])
b#Y → Y [a 7→ var(b)] = (b a) · Y

Here f ∈ {app, lam, sub}.
A detailed study of SUB can be found in [12].

• LAM takes SUB and adds the axiom (λ[a]Y)X = Y [a 7→ X]. Here we use
sugar from Example 2.1.

4 MURDOCH J. GABBAY AND AAD MATHIJSSEN

• In other work we investigate a theory FOL for the signature of first-order
logic ΣFOL mentioned above [13].

We are not concerned in whether the above theories have some other base data
sorts, so the reader should consider these examples to be parametric over such
choices. As mentioned above, we only consider theories extending CORE.

3. Semantics

Nominal sets are the natural model of nominal terms (the sets came first [15]).
Write P for the set of all permutations. A permutation action on a set X

is a function · : P × X → X, write it infix as π · x, such that Id · x = x and
π · (π′ · x) = (π ◦ π′) · x. It is easy to prove that π is always bijective as a function
on X. Call a pair (X, ·) of a set and a permutation action on it a set with a
permutation action. We generally write X both for the set and for (X, ·).

Example 3.1.

• A has the natural permutation action given by π · a = π(a).
• The powerset of A, write it P = {U | U ⊆ A} has the natural permuta-

tion action given by the pointwise action π · U = {π · u | u ∈ U}.
• Call U ⊆ A cofinite when A\U is finite. The set of finite and cofinite

subsets of A, write it Pfs = {U | U ⊆ A, U finite or cofinite} inherits the
pointwise action from P. (fs stands for finite support ; more on this soon.)

We assume these permutation actions on these sets henceforth.
Given a formula φ on atoms, write Na.φ(a) (the Gabbay-Pitts NEW quantifier

[8, 15]) for the assertion ‘φ(a) is false for finitely many atoms a ∈ A (perhaps none),
and true for all other atoms’. This is a mathematical notion of ‘φ(a) for most a’.
For a ∈ A and x ∈ X write a#x when Nb.(b a) · x = x. Read this as a is fresh for
x.

Example 3.2.

• For X = A, a#x when a 6= x.
• For both X = P and X = Pfs , a#U when U is finite and a 6∈ U , or when U

is cofinite and a ∈ U . For example, a#{b} but not a#A\{a}.

We can think of a#x as an abstract notion of ‘does not occur in any distinguished
manner’. We say ‘distinguished’, because the last example of Pfs shows that # is
not the same as 6∈: for example a 6∈ (A\{a}) but not a#(A\{a}).

Call X a nominal set when ∀x∈X. Na.a#x, i.e. ∀x∈X. Na. Nb.(b a) · x = x. This
property expresses finite support [15, 23]. Henceforth X and Y range over nominal
sets. Of the examples above, all except for P are nominal sets [8].

Write X× Y for the set {(x, y) | x ∈ X, y ∈ Y} with the pointwise permutation
action π · (x, y) = (π · x, π · y). The abstraction set [A]X is A× X quotiented by
a relation ∼ given by (a, x) ∼ (a′, x′) when Nb.(b a) · x = (b a′) · x′. Write [a]x for
the ∼-equivalence class of (a, x). The elements of [A]X validate the characteristic
property of α-equivalence that if a′#x then [a]x = [a′](a′ a) · x (detailed accounts
of this are elsewhere [15, 8]). Both X× Y and [A]X are a nominal sets.

Functions f : X → Y (on the underlying sets) have a natural conjugation permu-
tation action given by (π · f)(x) = π · (f(π-1 · x)). Call f equivariant if π · f = f
for all π, i.e. if π · (f(x)) = f(π · x) always.

NOMINAL ALGEBRA 5

We can now give a semantics to NA theories. An interpretation I of a sig-
nature assigns a nominal set TI to each base sort T and an equivariant function
fI ∈ (Jτ1KI × · · · × JτnKI) → τI to each term-former f : (τ1, . . . , τn)τ .

JτKI is inductively defined by:

JTKI = TI JAKI = A J[A]τKI = [A]JτKI

An evaluation ς maps unknowns Xτ to elements ς(Xτ) ∈ JτKI . An interpreta-
tion and evaluation extend to terms JtKIς :

JaKIς = a Jπ·XKIς = π·ς(X) J[a]tKIς = [a]JtKIς
Jf(t1, . . . , tn)KIς = fI(Jt1KIς , . . . , JtnKIς)

We can now define validity of assertions, freshness contexts and judgements:

Ja#tKIς (is valid) when a#JtKIς Jt = uKIς when JtKIς = JuKIς
J∆KIς when a#ς(X) for each a#X ∈ ∆

J∆ → AKIς when J∆KIς implies JAKIς
J∆ → AKI when J∆ → AKIς for all evaluations ς

Then a model M of a theory T is an interpretation of its signature such that
J∆ → t = uKM for all axioms ∆ → t = u of T. So a model of an NA theory is just
like a model of any other algebraic theory, but we must interpret atoms by atoms,
permutations by permutations, abstractions by abstractions, and term-formers by
equivariant functions on underlying sets.

Write ∆ |=
T
A if J∆ → AKM for all models M of T. Say that ∆ validates A in

theory T.

4. Derivability

4.1. Permutation and substitution actions. Substitution is the mechanism by
which unknowns X become terms, and is necessary in algebra in order to define
instances of axioms. Formally a substitution σ is a finitely supported function
from unknowns to terms of the same sort. Here, finite support means: for some
finite set of unknowns σ(X) 6≡ X, and for all other unknowns σ(X) ≡ X. Write
[t1/X1, . . . , tn/Xn] for the substitution σ such that σ(Xi) ≡ ti and σ(Y) ≡ Y , for
all Y 6≡ Xi, 1 ≤ i ≤ n.

In order to define the inference rules of NA, we need to be able to apply permu-
tations and substitutions to terms. Write π · t for the action of a permutation π
on a term t, defined by:

π · a ≡ π(a) π · (π′·X) ≡ (π ◦ π′) ·X π · [a]t ≡ [π(a)](π · t)
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

Composition and identity of permutations also extend to terms.

Lemma 4.1. (π ◦ π′) · t ≡ π · (π′ · t) and Id · t ≡ t.

Proof. By straightforward induction on the structure of t, using the definition of
π · . �

6 MURDOCH J. GABBAY AND AAD MATHIJSSEN

Write the action of a substitution σ on a term t as tσ and define it by:

aσ ≡ a (π ·X)σ ≡ π · σ(X) ([a]t)σ ≡ [a](tσ)

f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

Note that substitution does not avoid capture, i.e. ([a]X)[a/X] ≡ [a]a. It reduces
parentheses to give substitution a higher priority than permutation and abstraction,
so we do. Write σ ◦ σ′ for composition, i.e. t(σ ◦ σ′) ≡ (tσ)σ′.

The following commutation is easy to prove [27, 7]:

Lemma 4.2. π · tσ ≡ (π · t)σ.

Proof. By straightforward induction on the structure of t, using the definitions of
π · and σ. �

Another permutation action is useful. Write tπ for the meta-level action of π
on t, inductively defined by:

aπ ≡ π(a) (π′ ·X)π ≡ π ◦ π′ ◦ π-1 ·X ([a]t)π ≡ [π(a)]tπ

f(t1, . . . , tn)π ≡ f(t1π, . . . , tn
π)

Also for this permutation action, composition and identity of permutations ex-
tend to terms.

Lemma 4.3. tπ◦π
′ ≡ tπ

′π
and tId ≡ t.

Proof. By straightforward induction on the structure of t, using the definition of
π. �

Permutation actions π · and π are interdefinable; sometimes one is more con-
venient than the other.

Lemma 4.4. Given a term t let σ and σ′ be substitutions that map each X ∈ t to
π ·X and π-1 ·X, respectively. Then π · t ≡ tπσ and tπ ≡ (π · t)σ′.

Proof. By straightforward induction on the structure of t, using the definitions
of π · , π and σ. The only interesting case is when t ≡ π′ ·X. Then we need
to show π · (π′ ·X) ≡ (π′ ·X)πσ. Using the definitions of π and σ, we obtain
(π′ ·X)πσ ≡ (π ◦ π′ ◦ π-1) · (π ·X) for the right-hand-side. By the definition of π ·
this is equivalent to (π ◦ π′ ◦ π-1 ◦ π) ·X, which is equivalent to (π ◦ π′) ·X by basic
permutation group theory. Again by the definition of π · , this is equivalent to
π · (π′ ·X), which we needed to show. The proof of Xπ ≡ (π ·X)σ′ follows similar
lines. �

Extend notation for permutation actions π · and π and substitution action σ
to assertions A and freshness contexts ∆ in a pointwise fashion.

4.2. Inference rules. Define derivability on freshnesses by:

(#ab)
a#b

π-1(a)#X
(#X)

a#π ·X

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

NOMINAL ALGEBRA 7

Here π 6= Id, and a and b permutatively range over atoms, which means that they
represent any two distinct atoms. Write ∆ `

T
a#t when a#t may be derived from

∆ using the signature from T. Say that ∆ entails a#t in T.
Define derivability on equalities by:

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(congabs)

[a]t = [a]u

t = u
(congf)

f(. . . , t, . . .) = f(. . . , u, . . .)

∆πσ
(ax∆→t=u)

tπσ = uπσ

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr)

t = u

Here (fr) is subject to a condition that a 6∈ t, u,∆ and the square brackets denote
discharge of assumptions in natural deduction style [16].

Write ∆ `
T
t = u when we may derive t = u from ∆, using the signature from

theory T and admitting only the axioms it contains. For any assertion A, we may
write ∅ `

T
A as `

T
A.

In (ax∆→t=u) the actions π and σ make formal an intuition that in axioms
we are supposed to permute atoms and instantiate unknowns. Take e.g. the theory
(ΣLAM, {A,B,C}) where A stands for var(a) = var(b), B for λ[a]X = λ[b]Y , and C
for a#X → λ[a]X = λ[b]X. Then these derivations

(axA)
var(c) = var(a)

(axB)
λ[b]var(b) = λ[a]var(a)

are valid taking π = (c a) and any σ, and π = (a b) and σ = [var(b)/X, var(a)/Y],
respectively. But it is not possible to derive var(a) = var(a) using (axA) because
no matter what π we try to use, it must be bijective. Furthermore in

(#ab)
a#b

(#f)
a#var(b)

(axC)
λ[a]var(b) = λ[b]var(b)

a#a
(#f)

a#var(a)
(axC)

λ[a]var(a) = λ[b]var(a)

the left derivation is valid but the right one is not, because a#a is not derivable.
With reference to the discussion of π · versus π above, another version of the

rule (ax∆→t=u) is possible:
π ·∆σ

(ax′∆→t=u)
π · tσ = π · uσ

however in this case, atoms in the substitution σ are renamed according to π. For
example, from an axiom [a]X = [b]X it is immediate that [b]a = [a]a is derivable
with (ax) where we choose π = (b a) and σ = [a/X]. It is also derivable with (ax′)
but we must choose π = (b a) and σ = [b/X]. We find this version less natural.

Note that we assumed above that theories contain the axiom (perm); we could
alternatively add (axperm) as a derivation rule.

We have not set up facilities to allow freshness axioms (ax∆→a#t). Such a
thing is possible but we gain no expressivity; the same effect can be obtained by an

8 MURDOCH J. GABBAY AND AAD MATHIJSSEN

equality axiom ∆, b#X1, . . . , b#Xn → (b a) · t = t where b is fresh and X1, . . . , Xn

are the unknowns mentioned in ∆ and t.
(fr) introduces a fresh atom into the derivation. To illustrate the extra power

this gives, note that in a theory with an axiom c#X → X = c, we can derive
X = Y with (fr), but cannot without it. (fr) guarantees that some atom fresh
for X exists. Further examples are derivations of `

SUB
X[a 7→ var(a)] = X and

a#P `
FOL

P ⊃ (Q ⊃ ∀[a]P), which arise in the papers dedicated to the theories
SUB [12, part 2 of Example 4.1] and FOL [13, 6th derivation of Figure 2].

Here are some derivations in CORE:
(#ab)

a#b
(#[]b)

a#[b]b
(#[]a)

b#[b]b
(axperm)

[a]a = [b]b

a#X
(#[]b)

a#[b]X
(#[]a)

b#[b]X
(axperm)

[a](a b) ·X = [b]X

We may use (axperm) since [a]a ≡ (a b) · [b]b and [a](a b) ·X ≡ (a b) · [b]X.
As mentioned before, CORE is a theory of α-equivalence — in the presence of

meta-variables (represented by unknowns). It is an interesting algebraic version of
work originally presented in nominal unification [27], and this can be made formal:

Theorem 4.5. ∆ `
CORE

t = u iff ∆ ` t = u holds in the sense of [27, 7].

Proof. The left-to-right direction is by induction on the structure of NA derivations
of t = u from ∆, as defined on page 7. The right-to-left direction is by induction on
the structure on derivations of ∆ ` t = u, as defined in [27, Figure 2] or [7, p.13].
The result follows by detailed calculations. �

4.3. Proof theoretical results. We naturally extend the meta-level action of
permutations to theories: given a theory T = (Σ,Ax), write Tπ for (Σ,Axπ) such
that ∆π → tπ = uπ ∈ Axπ if and only if ∆ → t = u ∈ Ax .

Lemma 4.6. If ∆ `
T
A then ∆ `

Tπ A.

Proof. By induction on derivations. The only nontrivial case is (ax∆′→t=u), where
we need to show that ∆ `

Tπ ∆′π′
σ implies ∆ `

Tπ tπ
′
σ = uπ′

σ. By Lemma 4.3, this
is equivalent to showing that

∆ `
Tπ ∆′ππ′◦π-1

σ implies ∆ `
Tπ tπ

π′◦π-1

σ = uππ′◦π-1

σ.

This follows by (ax∆′π→tπ=uπ) taking permutation π′ ◦ π-1 and substitution σ. �

Theorem 4.7. If ∆ `
T
A then ∆ `

T
π ·A.

Proof. By induction on the structure of derivations. We consider the most inter-
esting cases only. Suppose the derivation of ∆ `

T
A concludes in. . .

(1) (#X). Suppose a#π′ ·X is derived from π′-1(a)#X using (#X), where
π′ 6= Id. Then we need to show π(a)#π · (π′ ·X). By Lemma 4.1, this is
equivalent to π(a)#(π ◦ π′) ·X.

We continue by case distinction. Suppose π ◦ π′ = Id. Then the proof
obligation is equivalent to the assumption π′-1(a)#X, since π = π′-1 by
basic permutation group theory.1 The result follows.

1Composing both sides of π ◦ π′ = Id with π-1, we obtain π′ = π-1. Inverting both sides, we
obtain π′-1 = π.

NOMINAL ALGEBRA 9

Now suppose π ◦ π′ 6= Id. Then by (#X) (which may now be applied),
the proof obligation follows from (π ◦ π′)-1(π(a))#X. Since we also have
(π ◦ π′)-1(π(a)) = π′-1(a), this is equivalent to the assumption π′-1(a)#X,
and again the result follows.

(2) (ax∆′→t=u). Then A is tπ
′
σ = uπ′

σ and ∆ `
T

∆′π′
σ.

We need to derive π · tπ′
σ = π · uπ′

σ from ∆. By Lemma 4.2, this is
equivalent to (π · tπ′

)σ = (π · uπ′
)σ. By Lemma 4.4 it suffices to derive

tπ
′π

(σ′ ◦ σ) = uπ′π
(σ′ ◦ σ), where substitution σ′ maps each X ∈ ∆′, t, u to

π ·X. By Lemma 4.3, this is equivalent to tπ◦π
′
(σ′ ◦ σ) = uπ◦π′

(σ′ ◦ σ).
Then by (ax∆′→t=u) with permutation π ◦ π′ and substitution σ′ ◦ σ, this
follows from ∆′π◦π′

(σ′ ◦ σ). Again by Lemmas 4.2, 4.4 and 4.3 this is
equivalent to π ·∆′π′

σ and we are done since by inductive hypothesis ∆
entails this.

(3) (fr). Then ∆, a#X1, . . . , a#Xn `T
A for some a 6∈ ∆, A and we assume

the inductive hypothesis of this derivation. If π(a) = a there is no problem
since then a 6∈ ∆, π ·A and we may extend the derivation with (fr).

However, suppose π(a) 6= a and so (possibly) a ∈ π ·A. We observe that
the predicate

“if the labelled tree Π is a valid derivation of ∆ `
T
A, then for all

permutations π′ there are derivations of ∆ `
T
π′ ·A”

has free variables Π, ∆, T, and A.
We now use the principle of logical (FM) equivariance: if an assertion

is true of some arguments, then it is also true of those arguments with
some atoms permuted providing the axiom of choice is not used (in the
cases we are interested in, it is not). For a proof of this beautiful and
useful meta-principle see elsewhere [8, 15]. So the predicate above holds
of Π(a′ a), ∆(a′ a), T(a′ a), and A(a′ a) and using Lemma 4.6 we deduce
the inductive hypothesis of ∆, a′#X1, . . . , a

′#Xn `T
A for any a′ 6∈ ∆, A, π.

Then ∆, a′#X1, . . . , a
′#Xn `T

π ·A and we extend the derivation with (fr)
to deduce ∆ `

T
π ·A as required.

�

We may substitute terms for unknowns, provided the substitution on the fresh-
ness context is consistent :

Theorem 4.8. If ∆ `
T
A then ∆′ `

T
Aσ for all ∆′ such that ∆′ `

T
∆σ.

Proof. We note that the structure of natural deduction derivations is such that the
conclusion of one derivation may simply be ‘plugged in’ to an assumption in another
derivation if assumption and conclusion are syntactically identical. We also note
that the structure of all the rules except for (#X) is such that if unknowns are
instantiated by σ, nothing need change. For the case of (#X) we use Theorem 4.7.

�

4.4. Soundness and completeness.

Theorem 4.9 (Soundness). If ∆ `
T
A then ∆ |=

T
A.

Proof. Let M be a model of T. We work by induction on the derivation rules in
Subsection 4.2. Most cases are very easy. We just give a sketch:

10 MURDOCH J. GABBAY AND AAD MATHIJSSEN

(#ab) is immediate, since by construction JaKMς = a for any ς. (#f) follows
because we assume fM is equivariant. a#[a]x is a basic property of nominal sets
[15, Corollary 5.2] and (#[]a) follows. a#x if and only if a#[b]x, and a#π ·x if and
only if π-1(a)#x are also basic properties, and (#[]b) and (#X) follow.

For (ax∆→t=u) suppose J∆πσKMς for any ς. Then π(a)#ς(σ(X)) holds for all
a#X ∈ ∆. By logical equivariance then also a#ς ′(X) for all a#X ∈ ∆ where ς ′ is
defined as ς ′(X) = π-1 · ς(σ(X)) for all X. So J∆KMς′ holds. Since ∆ → t = u is an
axiom of T, also JtKMς′ = JuKMς′ holds. Then JtπσKMς = JuπσKMς follows by logical
equivariance again. �

Given a theory T we construct a term model T of T as follows:

• For each sort τ and n > 0 introduce a term-former dn
τ : (

n︷ ︸︸ ︷
A, . . . ,A)τ .

• For each sort T take as TT the set of closed terms of sort T (terms without
unknowns) in the enriched signature, quotiented by provable equality, with
the permutation action given pointwise.

• For each term-former f take as fT the function defined as

fT (x1, . . . , xn) = {t | `
T
t = f(t1, . . . , tn), t closed, ti ∈ xi}.

We must enrich the signature with the dn
τ to ensure that our term model has enough

elements. Since term-formers must be interpreted by equivariant functions, the
usual method of adding constants c (0-ary term-formers) would add only elements
such that `

T
π · c = c always, which would not suffice. This idea goes back to [9].

It is not hard to prove the definition above well-defined, and that T is an inter-
pretation: that each TT is a nominal set, and that each fT is equivariant.

Lemma 4.10. If a#JtKTς then there is some t′ ∈ JtKTς such that `
T
a#t′.

This result looks obvious, but it is not: let T have one base sort T and one
term-former ι : (A)T. Let it have one axiom ι(a) = ι(b). It is easy to verify
that a#Jι(a)KTς but a#ι(a) is not derivable. Of course, a#ι(b) and ι(a) = ι(b) are
derivable.

Proof. Since a#JtKTς we do know that for fresh a′ we have (a′ a) · JtKTς = JtKTς , that
is `

T
(a′ a) · t = t. Take t′ ≡ (a′ a) · t. �

Lemma 4.11. The term model T of T is a model.

Proof. We show that if ∆ → t = u is an axiom of T then J∆ → t = uKTς is valid for
any ς. Let X1, . . . , Xn be the unknowns mentioned in ∆ → t = u and suppose that
ς is such that ai#ς(Xi) for all ai#Xi ∈ ∆. Use Lemma 4.10 to choose ti ∈ ς(Xi)
such that `

T
ai#ti for each ai#Xi ∈ ∆. By Theorem 4.8 taking σ(Xi) ≡ ti we

have that `
T
tσ = uσ is derivable, because it is an instance of an axiom. By

construction JtKTς = JtσKTς — ς is irrelevant on the right since tσ is closed — and
similarly JuKTς = JuσKTς . So JtKTς = JuKTς .

�

Theorem 4.12 (Completeness). If ∆ |=
T
t = u then ∆ `

T
t = u.

Proof. By assumption we have J∆ → t = uKMς for any model M of T and any
evaluation ς. Let M be T , the term model of T. In order to choose a suitable ς,
we introduce the following:

NOMINAL ALGEBRA 11

• Let A be the set of atoms mentioned anywhere in ∆, t, and u.
• Let X1

τ1
, . . . , Xn

τn
be the set of unknowns mentioned anywhere in ∆, t, or

u, (not just in ∆!) in some arbitrary order.
• For each 1 ≤ i ≤ n let Ai be the set of all atoms a ∈ A such that a#Xi

τi
6∈ ∆.

• For each 1 ≤ i ≤ n let σ(Xi
τi

) ≡ dni
τi

(a1, . . . , ani
) where Ai = {a1, . . . , ani

}.
Assume the dni

τi
we use are distinct; if necessary we ‘pad’ with extra fresh atoms,

or use a richer term model with extra d.
Let ς map Xi

τi
to Jσ(Xi

τi
)KTς , for 1 ≤ i ≤ n. By construction J∆KTς , so by as-

sumption JtKTς = JuKTς , and by definition this means that tσ = uσ is derivable. This
derivation can be transformed rule by rule into a derivation of ∆ `

T
t = u, since the

only freshnesses and equalities we can assert of the d are those we can also assert of
the X — the only complication is when perhaps for some fresh b we use a freshness
derivation to derive b#vσ for some fresh b; then we modify the derivation to use
(fr) instead. �

Completeness only holds for equalities, not freshnesses:

Theorem 4.13. ∆ `
T
t = u and ∆ `

T
a#t does not necessarily imply ∆ `

T
a#u.

As a corollary ∆ |=
T
a#t need not imply derivability of ∆ `

T
a#t.

Proof. A counterexample is the theory mentioned in Lemma 4.10. �

So by Theorem 4.9 if a#t is derivable then a#JtKMς is valid, but the converse
of Theorem 4.9 does not hold for freshness assertions. Recall that a#JtKMς when

Nb.(b a) · JtKMς = JtKMς . To express this semantic notion we check derivability of
∆, b#X1, . . . , b#Xn `T

(b a) · t = t for some b 6∈ t and the Xi the unknowns in ∆
and t. The complexity of deciding this depends on T, as it should.

5. Conclusions and related work

Nominal terms model the instantiation behaviour of meta-variables, e.g. in in-
formal notation instantiating t to x in λx.t yields λx.x, reflected formally in this
paper by the syntactic equality (λ[a]X)[var(a)/X] ≡ λ[a]var(a). NA stakes a claim
to nominal terms as a logical system, and the support for binding allows us to re-
flect binding in logic in a direct fashion. Other work [12, 13, 11] demonstrates the
flavour of nominal algebra applied to specific theories.

Nominal Algebra has similarities to Nominal Logic [23]: our (axperm) and (fr)
correspond to axioms (F1) and (F4) of Nominal Logic. These come from the
shared semantics in nominal sets, as ‘normal’ algebra shares a sets semantics with
first-order logic. There are also significant differences. Nominal logic does not use
nominal terms (they came later [26]) and freshness contexts, and this difference
shows in the technical detail; for example the treatment of freshness in Nominal
Logic is semantic in the sense of the discussion following Theorem 4.13 [23, p.175
‘Freshness’].

Since the conception of Nominal Algebra, Pitts and Clouston have been develop-
ing ‘Nominal Equational Logic’ (publication in preparation at the time of writing).
This seems closer than Nominal Algebra to being the pure equality fragment of
Nominal Logic. In particular it features a semantic, not syntactic, treatment of
freshness.

The theory of contexts [20] can be used to axiomatise systems with binding. So,
differently, can higher-order algebra [19]. So indeed can simply-typed λ-calculus [22,

12 MURDOCH J. GABBAY AND AAD MATHIJSSEN

Figures 6 and 7]. These systems are different and for different purposes but they
share a core which is in essence simply-typed λ-terms up to αβ-equivalence. As for
nominal terms this richer term-language gives more expressivity which can be used
to give stronger axioms. However, these approaches do not (so we argue) accurately
capture our intention for the meta-variables t and φ when we write ‘λa.t’ or ‘∀a.φ’;
Nominal Algebra was designed with that in mind from the start. Also, moving to
higher orders engenders certain computational difficulties [17].2 Still, quotienting
terms by αβ is convenient, as exploited by theorem-provers such as Isabelle —
but this is not algebra for binding any more than quotienting arithmetic terms
by arithmetic equality constitutes an algebra for arithmetic. Syntactic equivalence
and provable equality — two quite different things!

Lambda-abstraction algebras [24] and cylindric algebras [5, 1] algebraically ax-
iomatise systems with binding (λ-calculus and first-order predicate logic). They
indirectly code freshness conditions; e.g. the use of Sy

z ξ throughout rule (β6) just
before definition 3 in [24, page 203] obtains the effect of ‘y is not free in ξ’. Likewise
the use of ciy throughout rule C4 in [5, page 29] in example 13 obtains the effect of
‘i not free in y’. In this connection we should also mention polyadic algebras; a brief
but clear discussion of the design of these and related systems is in [4, Appendix
C]. These systems are effective for their particular application but we see Nominal
Algebra as parameterising the ‘binding’ part as an orthogonal structure (and of
course in a new way involving the nominal terms). Sun has authored [25] a mon-
umental study in doing just that; it is way ahead of us in terms of pure algebra.3

That work is be based on a functional semantics for binding [25, Definition 2.2.3],
whereas we work according to the (relatively newer) nominal semantics, which is
decidedly non-functional; currently the two strands are essentially independent and
it remains to see what ideas might flow between them.

Combinators [3] make binding of variables ‘go away’. Algebras over (untyped)
combinators can then express first-order predicate logic [2]. This interesting and
difficult enterprise is more foundational/semantic than proof-theoretic/algebraic
(the flavour of this work), because the extreme self-reflective power of untyped
combinators makes contradictions hard to avoid.

References

[1] H. Andréka, I. Németi, and I. Sain. Algebraic logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, 2nd Edition, volume 2, pages 133–249. Kluwer, 2001.

[2] H. Barendregt, W. Dekkers, and M. Bunder. Completeness of two systems of illative combi-

natory logic for first-order propositional and predicate calculus. Archive für Mathematische
Logik, 37:327–341, 1998.

[3] H. P. Barendregt. The Lambda Calculus: its Syntax and Semantics (revised ed.), volume 103
of Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

[4] W. J. Blok and D. Pigozzi. Algebraizable logics. Memoirs of the A.M.S., 77(396), 1989.

[5] S. Burris and H. Sankappanavar. A Course in Universal Algebra. Springer, 1981. Available
online.

[6] P. Cohn. Universal Algebra. Harper and Row, New York, 1965.

[7] M. Fernández and M. J. Gabbay. Nominal rewriting. Information and Computation, 2005.
In press.

2For example unification up to αβ-equivalence is not decidable (restrictions of it are in [21]).

Unification up to CORE is decidable [27].
3Ironically, this paper was published the same year as [14] and several other papers we know

of on binding.

NOMINAL ALGEBRA 13

[8] M. J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence. PhD thesis, Cam-

bridge, UK, 2000.

[9] M. J. Gabbay. Fresh logic. Journal of Logic and Computation, 2006. In press.
[10] M. J. Gabbay and J. Cheney. A sequent calculus for nominal logic. In Proc. 19th IEEE

Symposium on Logic in Computer Science (LICS 2004), pages 139–148. IEEE Computer

Society, 2004.
[11] M. J. Gabbay, A. Marin, and S. Rota Bulò. A nominal semantics for simple types. Submitted

STACS’07, 2006.

[12] M. J. Gabbay and A. Mathijssen. Capture-avoiding substitution as a nominal algebra. In
ICTAC’2006, 2006.

[13] M. J. Gabbay and A. Mathijssen. One-and-a-halfth-order logic. In PPDP ’06: Proceedings of

the 8th ACM SIGPLAN symposium on Principles and Practice of Declarative Programming,
pages 189–200, New York, NY, USA, 2006. ACM Press.

[14] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders. In 14th
Annual Symposium on Logic in Computer Science, pages 214–224. IEEE Computer Society

Press, Washington, 1999.

[15] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13(3–5):341–363, 2001.

[16] W. Hodges. Elementary predicate logic. In D. Gabbay and F. Guenthner, editors, Handbook

of Philosophical Logic, 2nd Edition, volume 1, pages 1–131. Kluwer, 2001.
[17] D. Leivant. Higher order logic. In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbook

of Logic in Artificial Intelligence and Logic Programming, volume 2, pages 229–322. Oxford

University Press, 1994.
[18] J. Loeckx, H. Ehrich, and M. Wolf. Specification of Abstract Data Types. Wiley, 1996.

[19] K. Meinke. Universal algebra in higher types. Theoretical Computer Science, 100(2):385–417,

june 1992.
[20] M. Miculan. Developing (meta)theory of lambda-calculus in the theory of contexts. ENTCS,

1(58), 2001.
[21] D. Miller. A logic programming language with lambda-abstraction, function variables, and

simple unification. Extensions of Logic Programming, 475:253–281, 1991.

[22] L. C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning,
5(3):363–397, 1989.

[23] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and

Computation, 186(2):165–193, 2003.
[24] A. Salibra. On the algebraic models of lambda calculus. Theoretical Computer Science,

249(1):197–240, 2000.

[25] Y. Sun. An algebraic generalization of frege structures - binding algebras. Theoretical Com-
puter Science, 211:189–232, 1999.

[26] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. In CSL’03 & KGC, volume

2803 of LNCS, pages 513–527, 2003.
[27] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer Science,

323(1–3):473–497, 2004.

School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh
EH14 4AS, Scotland, Great Britain

E-mail address: murdoch.gabbay@gmail.com

Department of Mathematics and Computer Science, Eindhoven University of Tech-

nology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

E-mail address: A.H.J.Mathijssen@tue.nl

