
Nominal Algebra

Aad Mathijssen Murdoch J. Gabbay

Department of Mathematics and Computer Science

Technische Universiteit Eindhoven

The Netherlands

18th Nordic Workshop on Programming Theory (NWPT'06)
Reykjavík University, Iceland

18-20th October 2006

Motivation

In informal mathematical usage, we often encounter properties like
the following:

• λ-calculus: λx .(tx) = t � if x 6∈ fv(t).

• First-order logic: (∀x .φ) ∧ ψ = ∀x .(φ ∧ ψ) � if x 6∈ fv(ψ).

• π-calculus: (νx .P) | Q = νx .(P | Q) � if x 6∈ fv(Q).

And for any binder ξ ∈ {λ,∀, ν}:
• (ξx .t)[y 7→ u] = ξx .(t[y 7→ u]) � if x 6∈ fv(u).

• α-equivalence: ξx .t = ξy .(t[x 7→ y]) � if y 6∈ fv(t).

Here:

I t, u, φ, ψ,P,Q are meta-variables ranging over terms.

I Freshness occurs in the presence of meta-variables.

Motivation

In informal mathematical usage, we often encounter properties like
the following:

• λ-calculus: λx .(tx) = t � if x 6∈ fv(t).

• First-order logic: (∀x .φ) ∧ ψ = ∀x .(φ ∧ ψ) � if x 6∈ fv(ψ).

• π-calculus: (νx .P) | Q = νx .(P | Q) � if x 6∈ fv(Q).

And for any binder ξ ∈ {λ,∀, ν}:
• (ξx .t)[y 7→ u] = ξx .(t[y 7→ u]) � if x 6∈ fv(u).

• α-equivalence: ξx .t = ξy .(t[x 7→ y]) � if y 6∈ fv(t).

Here:

I t, u, φ, ψ,P,Q are meta-variables ranging over terms.

I Freshness occurs in the presence of meta-variables.

Motivation

In informal mathematical usage, we often encounter properties like
the following:

• λ-calculus: λx .(tx) = t � if x 6∈ fv(t).

• First-order logic: (∀x .φ) ∧ ψ = ∀x .(φ ∧ ψ) � if x 6∈ fv(ψ).

• π-calculus: (νx .P) | Q = νx .(P | Q) � if x 6∈ fv(Q).

And for any binder ξ ∈ {λ,∀, ν}:
• (ξx .t)[y 7→ u] = ξx .(t[y 7→ u]) � if x 6∈ fv(u).

• α-equivalence: ξx .t = ξy .(t[x 7→ y]) � if y 6∈ fv(t).

Here:

I t, u, φ, ψ,P,Q are meta-variables ranging over terms.

I Freshness occurs in the presence of meta-variables.

Motivation (2)

Question: Is it possible to formalise these meta-level properties
in a direct way?

Answer: Yes, using a universal algebra on nominal terms.

Explanation:

I Universal algebra, or equational logic, is one of the simplest
languages to study properties of mathematical structures.

I Nominal terms are a syntax designed to naturally express
binding and freshness in the presence of meta-variables.

Motivation (2)

Question: Is it possible to formalise these meta-level properties
in a direct way?

Answer: Yes, using a universal algebra on nominal terms.

Explanation:

I Universal algebra, or equational logic, is one of the simplest
languages to study properties of mathematical structures.

I Nominal terms are a syntax designed to naturally express
binding and freshness in the presence of meta-variables.

Motivation (2)

Question: Is it possible to formalise these meta-level properties
in a direct way?

Answer: Yes, using a universal algebra on nominal terms.

Explanation:

I Universal algebra, or equational logic, is one of the simplest
languages to study properties of mathematical structures.

I Nominal terms are a syntax designed to naturally express
binding and freshness in the presence of meta-variables.

Nominal Terms
De�nition

Nominal terms are inductively de�ned by:

t ::= a | X | f(t1, . . . , tn) | [a]t

Here we �x:

I atoms a, b, c, . . . (for x , y).

I unknowns X ,Y ,Z , . . . (for t, u, φ, ψ, P and Q).

I term-formers f, g, h, . . . (for λ, __, ∀, ∧, ν, |, _[_ 7→ _]).

We call [a]t an abstraction (for the x ._).

Nominal Terms
Examples

Representation of mathematical syntax in nominal terms:

nominal terms
mathematics

unsugared sugared

λx .t λ([a]X) λ[a]X

λx .(tx) λ([a]app(X , a)) λ[a](Xa)

(∀x .φ) ∧ ψ ∧(∀([a]X),Y) (∀[a]X) ∧ Y

(νx .P) | Q | (ν([a]X),Y) (ν[a]X) | Y
t[x 7→ u] sub([a]X ,Y) X [a 7→ Y]

Nominal algebra
De�nition

Nominal algebra is a theory of equality between nominal terms:

I t = u is an equality.

I a#X is a primitive freshness (for x 6∈ fv(t)).

I A freshness context ∆ is a �nite set of primitive freshnesses.

I ∆ → t = u is a judgement (for `t = u if x 6∈ fv(v)').
If ∆ = ∅, write t = u.

Nominal algebra
Example judgements

Meta-level properties as judgements in nominal algebra:

• λ-calculus: a#X → λ[a](Xa) = X .

• First-order logic: a#Y → (∀[a]X) ∧ Y = ∀[a](X ∧ Y).

• π-calculus: a#Y → (ν[a]X) | Y = ν[a](X | Y).

And for any binder ξ ∈ {∀, λ, ν}:

• a#Y → (ξ[a]X)[b 7→ Y] = ξ[a](X [b 7→ Y]).

• α-equivalence: b#X → ξ[a]X = ξ[b](X [a 7→ b]).

Nominal algebra
Theories

A theory in nominal algebra consists of:

I a set of term-formers;

I a set of axioms: judgements ∆ → t = u.

Nominal Algebra
LAM: the lambda-calculus

A theory LAM for the lambda-calculus with meta-variables:

I Term-formers λ, app and sub
(recall that t[a 7→ u] is just sugar for sub([a]t, u)).

I An axiom for β-reduction:

(β) (λ[a]Y)X = Y [a 7→ X]

Example judgements in LAM:

(λ[a]Y)X = Y [a 7→ X] (λ[a]b)c = b[a 7→ c]

(λ[a]a)c = a[a 7→ c] (λ[b]a)c = a[b 7→ c]

(λ[a](λ[b]Z)Y)X = ((λ[b]Z)Y)[a 7→ X] = Z [b 7→ Y][a 7→ X]

Nominal Algebra
FOL: �rst-order logic

A theory FOL for �rst-order logic with meta-variables,
also called one-and-a-halfth-order logic:

I Term-formers:
I ⊥, ⊃, ∀, ≈ and sub for the basic operators

(>, ¬, ∧, ∨, ⇔, ∃ are sugar);
I p1, . . . , pm and f1, . . . , fn for object-level predicates and terms.

I Axioms: . . .

Nominal Algebra
Axioms of FOL

(MP) > ⊃ P = P

(SwapL) P ⊃ (Q ⊃ R) = Q ⊃ (P ⊃ R)
(CP) ¬P ⊃ Q = ¬Q ⊃ P

(BotE) ⊥ ⊃ P = >
(OrIdem) ¬P ⊃ P = P

(Triv) P ⊃ P = >

(Q1) ∀[a]P ⊃ P[a 7→ T] = >
(Q2) ∀[a](P ∧ Q) = ∀[a]P ∧ ∀[a]Q
(Q3) a#P → ∀[a](P ⊃ Q) = P ⊃ ∀[a]Q

(E1) T ≈ T = >
(E2) U ≈ T ∧ P[a 7→ T] ⊃ P[a 7→ U] = >

Nominal Algebra
Axioms of FOL: (Q3)

(Q3) a#P → ∀[a](P ⊃ Q) = P ⊃ ∀[a]Q

Inst. P Resulting judgement

P := p(a) violation of freshness context

P := p(b) ∀[a](p(b) ⊃ Q) = p(b) ⊃ ∀[a]Q
P := ∀[a]R ∀[a](∀[a]R ⊃ Q) = ∀[a]R ⊃ ∀[a]Q
P := ∀[b]R a#R → ∀[a](∀[b]R ⊃ Q) = ∀[b]R ⊃ ∀[a]Q
P := R ⊃ S a#R, a#S →

∀[a]((R ⊃ S) ⊃ Q) = (R ⊃ S) ⊃ ∀[a]Q

Nominal Algebra
SUB: a theory of explicit substitution

A theory SUB for explicit substitution is:

(var 7→) a[a 7→ T] = T

(# 7→) a#X → X [a 7→ T] = X

(f 7→) f(X1, . . . ,Xn)[a 7→ T] = f(X1[a 7→ T], . . . ,Xn[a 7→ T])

(abs7→) b#T → ([b]X)[a 7→ T] = [b](X [a 7→ T])

(ren 7→) b#X → X [a 7→ b] = (b a) · X

Nominal algebra
Results

Results on nominal algebra:

I it has a semantics in nominal sets;

I it has a notion of derivability:

I sound and complete with respect to the semantics;

I fresh atoms can be introduced within a derivation.

I α-equivalence of terms with meta-variables:

I permutations of atoms are stuck on unknowns;

I uni�cation up to α-equivalence is decidable.

Nominal algebra
Results on the theories (other work)

Results on theory SUB:

I actual capture-avoiding substitution on closed terms;

I extending to open terms: omega-completeness.

Results on theory FOL:

I �rst-order logic on closed terms;

I has an equivalent sequent calculus:

I representing schemas of derivations in �rst-order logic;

I satis�es cut-elimination.

Conclusions

Nominal algebra:

I is a theory of algebraic equality on nominal terms;

I allows us to reason about systems with binding;

I closely mirrors informal mathematical usage:

I we can manipulate variables directly

I natural notion of instantiation of meta-variables:

informal notation: instantiating t to x in λx .t yields λx .x .

nominal terms: instantiating X to a in λ[a]X yields λ[a]a.

Nominal terms revisited
Permutations

Nominal terms are inductively de�ned by:

t ::= a | π · X | f(t1, . . . , tn) | [a]t

Here:

I π a permutation of atoms.

I we call π · X a moderated unknown;
write X when π is the trivial permutation Id.

Nominal algebra revisited
α-equivalence

Permutations essentially capture α-equivalence on nominal terms:

a#X → [a]X = [b](b a) · X

For any binder ξ ∈ {∀, λ, ν}:

a#X → ξ[a]X = ξ[b](b a) · X

Sorts

Nominal algebra is sorted.

Sorts τ , inductively de�ned by:

τ ::= A | δ | [A]τ

Here:

I a set A is the set of all atoms a, b, c, . . .;

I we �x base sorts δ;

I [A]τ represents an abstraction set:
the set consisting of elements of τ with an atom abstracted.

Sorting assertions

Assign to each

I unknown X a sort τ , write this as X : τ ;

I term-former f an arity (τ1, . . . , τn)τ ,
write this as f : (τ1, . . . , τn)τ .

De�ne sorting assertions on nominal terms, inductively by:

a : A π · Xτ : τ

t : τ

[a]t : [A]τ

f : (τ1, . . . , τn)τ t1 : τ1 · · · tn : τn

f(t1, . . . , tn) : τ

In equalities t = u, t and u should have the same sort.

Freshness on terms
De�nition and derivability

Recall that a primitive freshness is a pair a#X .
A freshness a#t is a pair of an atom a and a term t.

Write ∆ ` a#t when a#t is derivable from ∆ using the following
inference rules:

(#ab)
a#b

π-1(a)#X
(#X)

a#π · X

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Examples:

` a#b ` a#λ[a]X a#X ` a#λ[b]X

Derivability of equalities

Write ∆ `
T
t = u when t = u is derivable from the rules below, s.t.

I only assumptions used are from ∆;

I each axiom used in (ax∆′ → t
′ = u

′) is from T only.

(re�)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong)

C [t] = C [u]

a#t b#t
(perm)

(a b) · t = t

∆πσ
(ax∆→ t = u)

tπσ = uπσ

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr) (a 6∈ t, u,∆)

t = u

Related work

Related work to Nominal Algebra (NA):

I Higher-Order Algebra (HOA)

I Cylindric Algebra and Lambda-Abstraction Algebra (CA/LAA)

These do not mirror informal mathematical usage like NA does:

I Non-capturing substitution cannot be de�ned HOA/CA/LAA.
It is the default notion of (meta-level) substitution in NA.

I Variables are encoded:

I by higher-order functions in HOA;

I by De Bruijn indices in CA/LAA.

