Nominal Algebra

Aad Mathijssen Murdoch J. Gabbay
Department of Mathematics and Computer Science Technische Universiteit Eindhoven The Netherlands

18th Nordic Workshop on Programming Theory (NWPT'06) Reykjavík University, Iceland

18-20th October 2006

Motivation

In informal mathematical usage, we often encounter properties like the following:

- λ-calculus: $\lambda x .(t x)=t$
— if $x \notin f v(t)$.
- First-order logic: $(\forall x \cdot \phi) \wedge \psi=\forall x \cdot(\phi \wedge \psi) \quad$ - if $x \notin f v(\psi)$.
- π-calculus: $\quad(\nu x . P) \mid Q=\nu x .(P \mid Q) \quad$ - if $x \notin f v(Q)$.

And for any binder $\xi \in\{\lambda, \forall, \nu\}$:

- $\quad(\xi x . t)[y \mapsto u]=\xi x .(t[y \mapsto u])$ - if $x \notin f v(u)$.
- α-equivalence: $\quad \xi x . t=\xi y \cdot(t[x \mapsto y])$
- if $y \notin f v(t)$.

Motivation

In informal mathematical usage, we often encounter properties like the following:

- λ-calculus: $\lambda x .(t x)=t$
— if $x \notin f v(t)$.
- First-order logic: $(\forall x \cdot \phi) \wedge \psi=\forall x .(\phi \wedge \psi) \quad$ - if $x \notin f v(\psi)$.
- π-calculus: $\quad(\nu x . P) \mid Q=\nu x .(P \mid Q) \quad$ - if $x \notin f v(Q)$.

And for any binder $\xi \in\{\lambda, \forall, \nu\}$:

- $\quad(\xi x . t)[y \mapsto u]=\xi x .(t[y \mapsto u])$ - if $x \notin f v(u)$.
- α-equivalence: $\quad \xi x \cdot t=\xi y \cdot(t[x \mapsto y]) \quad$ - if $y \notin f v(t)$. Here:
- t, u, ϕ, ψ, P, Q are meta-variables ranging over terms.

Motivation

In informal mathematical usage, we often encounter properties like the following:

- λ-calculus: $\quad \lambda x .(t x)=t$
— if $x \notin f v(t)$.
- First-order logic: $(\forall x . \phi) \wedge \psi=\forall x .(\phi \wedge \psi)$
— if $x \notin f v(\psi)$.
- π-calculus: $\quad(\nu x . P) \mid Q=\nu x .(P \mid Q)$
- if $x \notin f v(Q)$.

And for any binder $\xi \in\{\lambda, \forall, \nu\}$:

- $\quad(\xi x . t)[y \mapsto u]=\xi x .(t[y \mapsto u])$ - if $x \notin f v(u)$.
- α-equivalence: $\quad \xi x . t=\xi y \cdot(t[x \mapsto y])$ — if $y \notin f v(t)$. Here:
- t, u, ϕ, ψ, P, Q are meta-variables ranging over terms.
- Freshness occurs in the presence of meta-variables.

Motivation (2)
Question: Is it possible to formalise these meta-level properties in a direct way?

Motivation (2)

Question: Is it possible to formalise these meta-level properties in a direct way?

Answer: Yes, using a universal algebra on nominal terms.

Motivation (2)

Question: Is it possible to formalise these meta-level properties in a direct way?

Answer: Yes, using a universal algebra on nominal terms.
Explanation:

- Universal algebra, or equational logic, is one of the simplest languages to study properties of mathematical structures.
- Nominal terms are a syntax designed to naturally express binding and freshness in the presence of meta-variables.

Nominal Terms

Definition

Nominal terms are inductively defined by:

$$
t::=a|X| \mathrm{f}\left(t_{1}, \ldots, t_{n}\right) \mid[a] t
$$

Here we fix:

- atoms a, b, c, \ldots (for $x, y)$.
- unknowns X, Y, Z, \ldots (for t, u, ϕ, ψ, P and Q).
- term-formers $\mathrm{f}, \mathrm{g}, \mathrm{h}, \ldots\left(\right.$ for $\left.\left.\lambda, \ldots, \forall, \wedge, \nu, \mid,{ }_{-}{ }_{-} \mapsto{ }_{-}\right]\right)$.

We call [a]t an abstraction (for the x._).

Nominal Terms

Examples

Representation of mathematical syntax in nominal terms:

mathematics	nominal terms	
	unsugared	sugared
$\lambda x . t$	$\lambda([a] X)$	$\lambda[a] X$
$\lambda x .(t x)$	$\lambda([a] a p p(X, a))$	$\lambda[a](X a)$
$(\forall x . \phi) \wedge \psi$	$\wedge(\forall([a] X), Y)$	$(\forall[a] X) \wedge Y$
$(\nu x . P) \mid Q$	$\mid(\nu([a] X), Y)$	$(\nu[a] X) \mid Y$
$t[x \mapsto u]$	$\operatorname{sub}([a] X, Y)$	$X[a \mapsto Y]$

Nominal algebra
Definition
Nominal algebra is a theory of equality between nominal terms:

- $t=u$ is an equality.
- $a \# X$ is a primitive freshness (for $x \notin f v(t)$).
- A freshness context Δ is a finite set of primitive freshnesses.
- $\Delta \rightarrow t=u$ is a judgement (for ' $t=u$ if $x \notin f v(v)^{\prime}$).

If $\Delta=\emptyset$, write $t=u$.

Nominal algebra
Example judgements
Meta-level properties as judgements in nominal algebra:

- λ-calculus: $a \# X \rightarrow \lambda[a](X a)=X$.
- First-order logic: $a \# Y \rightarrow(\forall[a] X) \wedge Y=\forall[a](X \wedge Y)$.
- π-calculus: $\quad a \# Y \rightarrow(\nu[a] X) \mid Y=\nu[a](X \mid Y)$.

And for any binder $\xi \in\{\forall, \lambda, \nu\}$:

- $\quad a \# Y \rightarrow(\xi[a] X)[b \mapsto Y]=\xi[a](X[b \mapsto Y])$.
- α-equivalence: $\quad b \# X \rightarrow \xi[a] X=\xi[b](X[a \mapsto b])$.

Nominal algebra
Theories
A theory in nominal algebra consists of:

- a set of term-formers;
- a set of axioms: judgements $\Delta \rightarrow t=u$.

Nominal Algebra
LAM: the lambda-calculus
A theory LAM for the lambda-calculus with meta-variables:

- Term-formers λ, app and sub (recall that $t[a \mapsto u]$ is just sugar for $\operatorname{sub}([a] t, u)$).
- An axiom for β-reduction:

$$
(\beta) \quad(\lambda[a] Y) X=Y[a \mapsto X]
$$

Example judgements in LAM:

$$
\begin{array}{cc}
(\lambda[a] Y) X=Y[a \mapsto X] \quad(\lambda[a] b) c=b[a \mapsto c] \\
(\lambda[a] a) c=a[a \mapsto c] & (\lambda[b] a) c=a[b \mapsto c] \\
(\lambda[a](\lambda[b] Z) Y) X=((\lambda[b] Z) Y)[a \mapsto X]=Z[b \mapsto Y][a \mapsto X]
\end{array}
$$

Nominal Algebra
FOL: first-order logic
A theory FOL for first-order logic with meta-variables, also called one-and-a-halfth-order logic:

- Term-formers:
- $\perp, \supset, \forall, \approx$ and sub for the basic operators ($T, \neg, \wedge, \vee, \Leftrightarrow, \exists$ are sugar);
- p_{1}, \ldots, p_{m} and f_{1}, \ldots, f_{n} for object-level predicates and terms.
- Axioms: ...

Nominal Algebra Axioms of FOL

$$
\begin{aligned}
\text { (MP) } & \backslash \supset P=P \\
\text { (SwapL) } & P \supset(Q \supset R)=Q \supset(P \supset R) \\
\text { (CP) } & \neg P \supset Q=\neg Q \supset P \\
\text { (BotE) } & \perp \supset P=\top \\
\text { (Orldem) } & \neg P \supset P=P \\
\text { (Triv) } & P \supset P=\top \\
\text { (Q1) } & \forall[a] P \supset P[a \mapsto T]=\top \\
\text { (Q2) } & \forall[a](P \wedge Q)=\forall[a] P \wedge \forall[a] Q \\
\text { (Q3) } & a \# P \rightarrow \forall[a](P \supset Q)=P \supset \forall[a] Q \\
\text { (E1) } & T \approx T=\top \\
\text { (E2) } & U \approx T \wedge P[a \mapsto T] \supset P[a \mapsto U]=\top
\end{aligned}
$$

Nominal Algebra
Axioms of FOL: (Q3)

$$
(\text { Q3) } \quad a \# P \rightarrow \forall[a](P \supset Q)=P \supset \forall[a] Q
$$

Inst. P	Resulting judgement
$P:=p(a)$	violation of freshness context
$P:=p(b)$	$\forall[a](p(b) \supset Q)=p(b) \supset \forall[a] Q$
$P:=\forall[a] R$	$\forall[a](\forall[a] R \supset Q)=\forall[a] R \supset \forall[a] Q$
$P:=\forall[b] R$	$a \# R \rightarrow \forall[a](\forall[b] R \supset Q)=\forall[b] R \supset \forall[a] Q$
$P:=R \supset S$	$a \# R, a \# S \rightarrow$ $\quad[a]((R \supset S) \supset Q)=(R \supset S) \supset \forall[a] Q$

Nominal Algebra
SUB: a theory of explicit substitution
A theory SUB for explicit substitution is:

$$
\begin{aligned}
(\mathbf{v a r} \mapsto) & a[a \mapsto T] & =T \\
(\# \mapsto) & a \# X \rightarrow X[a \mapsto T] & =X \\
(\mathbf{f} \mapsto) & f\left(X_{1}, \ldots, X_{n}\right)[a \mapsto T] & =f\left(X_{1}[a \mapsto T], \ldots, X_{n}[a \mapsto T]\right) \\
(\mathrm{abs} \mapsto) & b \# T \rightarrow([b] X)[a \mapsto T] & =[b](X[a \mapsto T]) \\
(\mathrm{ren} \mapsto) & b \# X \rightarrow X[a \mapsto b] & =(b a) \cdot X
\end{aligned}
$$

Nominal algebra

Results
Results on nominal algebra:

- it has a semantics in nominal sets;
- it has a notion of derivability:
- sound and complete with respect to the semantics;
- fresh atoms can be introduced within a derivation.
- α-equivalence of terms with meta-variables:
- permutations of atoms are stuck on unknowns;
- unification up to α-equivalence is decidable.

Nominal algebra
Results on the theories (other work)
Results on theory SUB:

- actual capture-avoiding substitution on closed terms;
- extending to open terms: omega-completeness.

Results on theory FOL:

- first-order logic on closed terms;
- has an equivalent sequent calculus:
- representing schemas of derivations in first-order logic;
- satisfies cut-elimination.

Conclusions

Nominal algebra:

- is a theory of algebraic equality on nominal terms;
- allows us to reason about systems with binding;
- closely mirrors informal mathematical usage:
- we can manipulate variables directly
- natural notion of instantiation of meta-variables: informal notation: instantiating t to x in λx.t yields $\lambda x . x$. nominal terms: instantiating X to a in $\lambda[a] X$ yields $\lambda[a] a$.

Nominal terms revisited
Permutations
Nominal terms are inductively defined by:

$$
t::=a|\pi \cdot X| f\left(t_{1}, \ldots, t_{n}\right) \mid[a] t
$$

Here:

- π a permutation of atoms.
- we call $\pi \cdot X$ a moderated unknown; write X when π is the trivial permutation Id.

Nominal algebra revisited α-equivalence

Permutations essentially capture α-equivalence on nominal terms:

$$
a \# X \rightarrow[a] X=[b](b a) \cdot X
$$

For any binder $\xi \in\{\forall, \lambda, \nu\}$:

$$
a \# X \rightarrow \xi[a] X=\xi[b](b a) \cdot X
$$

Sorts

Nominal algebra is sorted.
Sorts τ, inductively defined by:

$$
\tau::=\mathbb{A}|\delta|[\mathbb{A}] \tau
$$

Here:

- a set \mathbb{A} is the set of all atoms a, b, c, \ldots;
- we fix base sorts δ;
- $[\mathbb{A}] \tau$ represents an abstraction set: the set consisting of elements of τ with an atom abstracted.

Sorting assertions

Assign to each

- unknown X a sort τ, write this as $X: \tau$;
- term-former f an arity $\left(\tau_{1}, \ldots, \tau_{n}\right) \tau$, write this as $\mathrm{f}:\left(\tau_{1}, \ldots, \tau_{n}\right) \tau$.

Define sorting assertions on nominal terms, inductively by:

$$
\begin{gathered}
\overline{a: \mathbb{A}} \quad \frac{}{\pi \cdot X_{\tau}: \tau} \quad \frac{t: \tau}{[a] t:[\mathbb{A}] \tau} \\
\frac{\mathrm{f}:\left(\tau_{1}, \ldots, \tau_{n}\right) \tau \quad t_{1}: \tau_{1} \quad \cdots \quad t_{n}: \tau_{n}}{\mathrm{f}\left(t_{1}, \ldots, t_{n}\right): \tau}
\end{gathered}
$$

In equalities $t=u, t$ and u should have the same sort.

Freshness on terms
Definition and derivability
Recall that a primitive freshness is a pair $a \# X$.
A freshness $a \# t$ is a pair of an atom a and a term t.
Write $\Delta \vdash a \# t$ when $a \# t$ is derivable from Δ using the following inference rules:

$$
\begin{gathered}
\frac{\pi^{-1}(a) \# X}{a \# b}(\# \mathbf{a b}) \quad \frac{a \# \mathbf{X})}{a \# \pi \cdot X}(\#[] \mathbf{a}) \quad \frac{a \# t}{a \#[b] t}(\#[] \mathbf{b}) \quad \frac{a \# t_{1} \cdots a \# t_{n}}{a \# \mathrm{f}\left(t_{1}, \ldots, t_{n}\right)}(\# \mathbf{f})
\end{gathered}
$$

Examples:

$$
\vdash a \# b \quad \vdash a \# \lambda[a] X \quad a \# X \vdash a \# \lambda[b] X
$$

Derivability of equalities
Write $\Delta \vdash_{\mathrm{T}} t=u$ when $t=u$ is derivable from the rules below, s.t.

- only assumptions used are from Δ;
- each axiom used in ($\mathrm{ax}_{\Delta^{\prime}} \rightarrow t^{\prime}=u^{\prime}$) is from T only.

$$
\begin{aligned}
& \overline{t=t}(\mathbf{r e f l}) \quad \frac{t=u}{u=t}(\mathbf{s y m m}) \quad \frac{t=u \quad u=v}{t=v}(\operatorname{tran}) \\
& \frac{t=u}{C[t]=C[u]}(\text { cong }) \quad \frac{a \# t \quad b \# t}{(a b) \cdot t=t}(\text { perm }) \\
& {\left[a \# X_{1}, \ldots, a \# X_{n}\right] \Delta} \\
& \frac{\Delta^{\pi} \sigma}{t^{\pi} \sigma=u^{\pi} \sigma}\left(\mathbf{a x}_{\Delta \rightarrow t=u}\right) \quad \frac{\vdots}{\frac{t}{=} u}(\mathbf{f r}) \quad(a \notin t, u, \Delta)
\end{aligned}
$$

Related work

Related work to Nominal Algebra (NA):

- Higher-Order Algebra (HOA)
- Cylindric Algebra and Lambda-Abstraction Algebra (CA/LAA)

These do not mirror informal mathematical usage like NA does:

- Non-capturing substitution cannot be defined HOA/CA/LAA. It is the default notion of (meta-level) substitution in NA.
- Variables are encoded:
- by higher-order functions in HOA;
- by De Bruijn indices in CA/LAA.

