

The mCRL2 Toolset

Aad Mathijssen Bas Ploeger

Design and Analysis of Systems Group / LaQuSo
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven

NXP Semiconductors

July 9th, 2008

1/44

Analysis techniques

Analysis techniques used in hardware/software development:

Structural analysis: what things are in the system

Class diagrams
Component diagrams
Package diagrams
. . .

Behavioural analysis: what happens in the system

State diagrams
Message sequence charts
Petri nets
Process algebra
Temporal logic
. . .

2/44

Behavioural analysis
What is it?

What is behavioural analysis about?

Modelling:

Create an abstract model of the behaviour

Validation and Verification:

Validation: does the model roughly behave as expected?
Verification: does the model satisfy the requirements in
all states?

3/44

Behavioural analysis
Modelling

Why modelling?

To reduce complexity:

Direct verification of all states of the software is
impossible due to the huge number of states.

Much more complex than e.g. Rubik’s cube:

43, 252, 003, 274, 489, 856, 000 (4.3× 1019) states

4/44

Behavioural analysis
Modelling

Why modelling?

To reduce complexity:

Direct verification of all states of the software is
impossible due to the huge number of states.

Much more complex than e.g. Rubik’s cube:

43, 252, 003, 274, 489, 856, 000 (4.3× 1019) states

4/44

Behavioural analysis
Software lifecycle

Behavioural analysis is applicable to all phases of the
software lifecycle:

Requirements Analysis and Design:
Prove that the design satisfies the requirements
before anything is built.

Implementation to Maintenance:
Prove that the software satisfies the requirements
in a rigorous way.

5/44

Behavioural analysis
Experience

From our experience:

Without proper modelling it is impossible to get a
system right.

Implementing a model does not introduce substantial
flaws.

Modelling an implementation nearly always reveals flaws.

6/44

Behavioural analysis
Tool support

For verification of industrial systems, tool support is essential.

Toolsets for modelling, validation and verification of
behaviour:

CADP (INRIA Rhone Alpes, France)

SPIN (Bell Labs, USA)

FDR (Formal Systems Limited, Oxford, UK)

Uppaal (Uppsala University, Sweden)

NuSMV (Carnegie Mellon University, USA)

mCRL2 (OAS group / LaQuSo, TU/e)

. . .

7/44

Toolset overview
History

History of the mCRL2 toolset:

Late 1980s: Common Representation Language (CRL)

From 1990: micro Common Representation Language
(µCRL)

During 1990s: development of the µCRL toolset

Since 2004: micro Common Representation Language 2
(mCRL2) + toolset

8/44

Toolset overview
General information

The mCRL2 toolset can be used for modelling, validation
and verification of concurrent systems and protocols.

Collection of tools

Available for the following platforms:

Microsoft Windows
Linux
Mac OS X
FreeBSD
Solaris

Distributed under the Boost license

Available at http://mcrl2.org

9/44

http://mcrl2.org

Toolset overview
Tool categories

Process
specification

Modal
formula

Lineariser
PBES

generator

Theorem
proving

Linear
process

specification

Parametrised
boolean equation

system

Simulators
LTS

generator
BES

generator Solvers

Labelled
transition

system

Boolean
equation
system

Visualisers

user input

abstract

concrete

10/44

Toolset overview
Linear process specifications

LPS tools:

Generation:

mcrl22lps: Linearise a process specification

Information:

lpsinfo: Information about an LPS
lpspp: Pretty prints an LPS

Simulation:

sim: Text based simulation of an LPS
xsim: Graphical simulation of an LPS

11/44

Toolset overview
Linear process specifications (2)

LPS tools:

Optimisation:

lpsconstelm: Removes constant process parameters
lpsparelm: Removes irrelevant process parameters
lpssuminst: Instantiate sum operators
lpssumelm: Removes superfluous sum operators
lpsactionrename: Renaming of actions
lpsconfcheck: Marks confluent tau summands
lpsinvelm: Removes violating summands on invariants
lpsbinary: Replaces finite sort variables by vectors of
boolean variables
lpsrewr: Rewrites data expressions of an LPS
lpsuntime: Removes time from an LPS

12/44

Toolset overview
Linear process specifications (3)

Simulation using xsim:

13/44

Toolset overview
Linear process specifications (3)

Simulation using xsim with plugins:

13/44

Toolset overview
Labelled transition systems

LTS tools:

Generation:

lps2lts: Generates an LTS from an LPS

Information and visualisation:

ltsinfo: Information about an LTS
tracepp: View traces generated by sim/xsim or lps2lts
ltsgraph: 2D LTS graph based visualisation
ltsview: 3D LTS state based clustered visualisation
diagraphica: Multivariate state visualisation and
simulation analysis for LTSs

Comparison, conversion and minimisation:

ltscompare: Compares two LTSs with respect to
an equivalence or preorder
ltsconvert: Converts and minimises an LTS

14/44

Toolset overview
Labelled transition systems (2)

Visualisation using ltsgraph:

15/44

Toolset overview
Labelled transition systems (3)

Visualisation using ltsview:

16/44

Toolset overview
Labelled transition systems (4)

Visualisation using diagraphica:

17/44

Toolset overview
Parameterised boolean equation systems

PBES tools:

Generation:

lps2pbes: Generates a PBES from an LPS and a
temporal formula
txt2pbes: Parses a textual description of a PBES

Information:

pbesinfo: Information about a PBES
pbes2pp: Pretty prints a PBES

Solving:

pbes2bool: Solves a PBES

Optimisation:

pbesrewr: Rewrite data expressions in a PBES

18/44

Toolset overview
Import and export

Import and export tools:

chi2mcrl2: Translates a χ specification to an mCRL2
specification

pnml2mcrl2: Translates a Petri net to an mCRL2
specification

tbf2lps: Translates a µCRL LPE to an mCRL2 LPS

formcheck : Checks whether a boolean data expression
holds

lps2torx: Provide TorX explorer interface to an LPS

19/44

Toolset overview
Tools under development

Graphical specification (individual component):

20/44

Toolset overview
Tools under development

Graphical specification (communicating components):

20/44

Toolset overview
Tools under development (2)

Systems Quality Analysis and Design Toolkit (SQuADT):

21/44

Toolset demo: dining philosophers

Dining philosophers:

1 Problem description

2 Model the problem

3 Verify the problem

4 A solution

5 Verify the solution

22/44

Toolset demo: dining philosophers
Problem description

Illustrative example of a
common computing problem
in concurrency

5 hungry philosophers

5 forks in-between the
philosophers

Rules:

Philosophers cannot
communicate
Two forks are needed
for eating

p1

p2

p3 p4

p5

f1

f2

f3

f4

f5

23/44

Toolset demo: dining philosophers
Problem description (2)

Deadlock: Every philosopher holds a left fork and waits
for a right fork (or vice versa).

Starvation: If a philosopher cannot acquire two forks
he will starve.

The dining philosophers problem is a generic and abstract
problem used for explaining various issues which arise in
concurrency theory.

The forks resemble shared resources.

The philosophers resemble concurrent processes.

24/44

Toolset demo: dining philosophers
Modelling the problem: data types

Data type for representing the philosophers and the forks:

sort PhilId = struct p1 | p2 | p3 | p4 | p5;
ForkId = struct f1 | f2 | f3 | f4 | f5;

Function for representing the positions of the forks relative to
the philosophers (the left and right fork):

map lf , rf : PhilId → ForkId ;
eqn lf (p1) = f1; lf (p2) = f2; lf (p3) = f3;

lf (p4) = f4; lf (p5) = f5;
rf (p1) = f5; rf (p2) = f1; rf (p3) = f2;
rf (p4) = f3; rf (p5) = f4;

25/44

Toolset demo: dining philosophers
Modelling the problem: individual processes

Modelling the behaviour of the philosophers:

eat(p): philosopher p eats

get(p, f): philosopher p takes up fork f

put(p, f): philosopher p puts down fork f

act get, put : PhilId × ForkId ;
eat : PhilId ;

proc Phil(p : PhilId) =
(get(p, lf (p)) · get(p, rf (p)) + get(p, rf (p)) · get(p, lf (p)))
· eat(p)
· (put(p, lf (p)) · put(p, rf (p)) + put(p, rf (p)) · put(p, lf (p)))
· Phil(p);

26/44

Toolset demo: dining philosophers
Modelling the problem: individual processes

Modelling the behaviour of the forks:

up(p, f): fork f is picked up by philosopher p

down(p, f): fork f is put down by philosopher p

act up, down : PhilId × ForkId ;
proc Fork(f : ForkId) =∑

p:Phil up(p, f) · down(p, f) · Fork(f);

27/44

Toolset demo: dining philosophers
Modelling the problem: communication and initialisation

Complete specification:

put all forks and philosophers in parallel

synchronise on actions get and up,
and on actions put and down

act lock, free : PhilId × ForkId ;
init ∇({lock, free, eat},

Γ({get|up→ lock, put|down→ free},
Phil(p1) ‖ Phil(p2) ‖ Phil(p3) ‖ Phil(p4) ‖ Phil(p5) ‖
Fork(f1) ‖ Fork(f2) ‖ Fork(f3))) ‖ Fork(f4) ‖ Fork(f5)
));

28/44

Toolset demo: dining philosophers
Analysing the model

Linearisation:
mcrl22lps -vD dining5.mcrl2 dining5.lps

Sum instantation:
lpssuminst -v dining5.lps dining5.sum.lps

Constant elimination:
lpsconstelm -v dining5.sum.lps dining5.sum.const.lps

Parameter elimination:
lpsparelm -v dining5.sum.const.lps

dining5.sum.const.par.lps

Generate state space:
lps2lts -vD dining5.sum.const.lps dining5.sum.const.lts

Deadlock detected!

29/44

Toolset demo: dining philosophers
A Possible solution: the waiter

Waiter:

Decides whether a philosopher may pick up two forks

Only allowed when less than four forks are in use

p1

p2

p3 p4

p5

f1

f2

f3

f4

f5

30/44

Toolset demo: dining philosophers
Modelling the solution: actions

New actions:

ack(p): philosopher p takes the opportunity to pick up
two forks and eat

done(p): philospher p signal the waither that he is done
eating and has put down both forks

act r ack, s ack, ack : Phil ;
r done, s done, done : Phil ;

31/44

Toolset demo: dining philosophers
Modelling the solution: the waiter

Modelling the behaviour of the waiter:

proc Waiter(n : N) =
(n < 4) →

∑
p:Phil s ack(p) ·Waiter(n+2)

+ (n > 1) →
∑

p:Phil r done(p) ·Waiter(Int2Nat(n−2));

32/44

Toolset demo: dining philosophers
Modelling the solution: the philosophers

Extend the philosopher process:

proc Phil(p : PhilId) =
r ack(p)
· (get(p, lf (p)) · get(p, rf (p)) + get(p, rf (p)) · get(p, lf (p)))
· eat(p)
· (put(p, lf (p)) · put(p, rf (p)) + put(p, rf (p)) · put(p, lf (p)))
· s done(p)
· Phil(p);

33/44

Toolset demo: dining philosophers
Modelling the solution: communication and initialisation

Complete specification:

init ∇({lock, free, eat, ack, done},
Γ({get|up→ lock, put|down→ free

r ack|s ack→ ack, r done|s done→ done,

Phil(p1) ‖ Phil(p2) ‖ Phil(p3) ‖ Phil(p4) ‖ Phil(p5) ‖
Fork(f1) ‖ Fork(f2) ‖ Fork(f3) ‖ Fork(f4) ‖ Fork(f5) ‖
Waiter(0)
));

34/44

Toolset demo: dining philosophers
Verifying the solution

Deadlock freedom: Yes

[true∗] 〈true〉 true

1 lps2pbes --formula=nodeadlock.mcf dining5 waiter.lps
dining5 waiter nd.pbes

2 pbes2bool dining5 waiter nd.pbes

Starvation freedom: Yes

∀p:Phil [true∗ · (¬eat(p))∗] 〈(¬eat(p))∗ · eat(p)〉 true

1 lps2pbes --formula=nostarvation.mcf dining5 waiter.lps
dining5 waiter ns.pbes

2 pbes2bool dining5 waiter ns.pbes

35/44

Industrial case studies

Industrial case studies carried out using the µCRL and
mCRL2 toolsets:

Océ: automated document feeder

Add-controls: distributed system for lifting trucks

CVSS: automated parking garage

Vitatron: pacemaker

AIA: ITP load-balancer

Philips Healthcare: patient support platform

. . . and lots more

36/44

Industrial case studies
Océ: automated document feeder

Automated document feeder:

Feed documents to the scanner automatically

One sheet at a time

Prototype implementation

Analysis:

Model: µCRL

Verification: CADP

Size: 350,000 states
and 1,100,000 transitions

Actual errors found: 2

37/44

Industrial case studies
Add-controls: distributed system for lifting trucks

Distributed system for lifting trucks:

Each lift has a controller

Controllers are connected via a circular network

3 errors found after testing by the developers

Analysis:

Model: µCRL

Verification: CADP

Actual errors found: 4

Lifts States Transitions

2 383 716
3 7,282 18,957
4 128,901 419,108
5 2,155,576 8,676,815

38/44

Industrial case studies
CVSS: automated parking garage

An automated parking garage:

39/44

Industrial case studies
CVSS: automated parking garage (2)

Verified design of an automated parking garage:

Design of the control software

Verified the safety layer of this design

Analysis:

Design: 991 lines of mCRL2

Verification: 217 lines of mCRL2

Size: 3.3 million states and 98 million transitions

Simulation using custom built visualisation plugin

40/44

Industrial case studies
CVSS: automated parking garage (3)

Design flaws detected using the visualisation plugin:

41/44

Industrial case studies
Vitatron: pacemaker

Pacemaker:

Controlled by firmware

Must deal with all possible rates and arrhythmias

Firmware design

Analysis:

Model: mCRL2 (and Uppaal)

Verification: mCRL2 model checking

Size:

full model: 500 million states
suspicious part: 714.464 states

Actual errors found: 1 (known)

42/44

Industrial case studies
AIA: ITP load balancer

Intelligent Text Processing (ITP):

Print job distribution over document processors

7,500 lines of C code

Analysis:

Load balancing part

Model: mCRL2

Verification:
mCRL2 model checking

Actual errors found: 6

Size: 1.9 billion states
and 38.9 billion transitions

LaQuSo certification
43/44

Industrial case studies
Philips Healthcare: patient support platform

Patient support platform:

Verified design of the control software

Convertor and Motion Controller

Implemented in Python

Analysis:

Model: mCRL2

Verification: CADP

Requirements:

4 checked
1 did not hold but
was very unlikely to occur

Size: 45 million states

44/44

