mCRL2

Towards a practical formal specification language

Aad Mathijssen Jan Friso Groote Muck van Weerdenburg Yaroslav Usenko

23th June 2005

Motivation: Petri nets

Bring stand-alone developments of specification languages together. GenSpect: find a common base for hierarchical Petri nets and process algebra with data.

It should be possible to translate Petri nets to process algebra:

- places are unordered buffers
- transitions are memoryless input/output relations
- arcs define communication between places and transitions

Motivation: Petri nets (2)

We would like to use μ CRL as a target for this translation. Unfortunately, there are a number of problems:

- all actions involved in the firing of transitions occur at the same time; using interleaving for this translation is problematic:
- state space explosion
- nice Petri net properties do not carry over
- hierarchical approach enforces that operators are compositional, but communication is not

Motivation: concrete data types

Problems with the use of $\mu \mathrm{CRL}$ in practise, because of the lack of concrete data types:

- specifications are too long
- specifications are hard to read
- standard notions are specified differently amongst different specifications
- lack of higher-order notions

Specifying all data types yourself distracts from doing the real work.

Motivation: linear process equations

Every guarded untimed μ CRL specification can be transformed to a linear process equation (LPE), which has the following form:

$$
P(\overrightarrow{d: D})=\sum_{i \in I} \sum_{\overrightarrow{e_{i}: E_{i}}} a_{i}\left(\overrightarrow{f_{i}}\left(\overrightarrow{d, e_{i}}\right)\right) \cdot P\left(\overrightarrow{g_{i}}\left(\overrightarrow{d, e_{i}}\right)\right) \triangleleft c_{i}\left(\overrightarrow{d, e_{i}}\right) \triangleright \delta
$$

An LPE is a symbolic representation of a state space. It is the core language used by the $\mu \mathrm{CRL}$ toolset.

Two things are lacking:

- time
- don't care values

mCRL2

Design a new language and toolset, using both theoretical and practical experience with μ CRL. Basically, the mCRL2 language is timed μ CRL with the following changes/additions:

- true concurrency (multi-actions)
- local communication
- higher-order algebraic specification
- concrete data types

The toolset will use a new LPE format, which supports multi-actions, higherorder algebraic specification, time and don't care values.

mCRL2 (2)

To find out if the language and the toolset is useful in practise, we took the following approach to design the language:
I. start with an initial design of the language and a toolset
2. iteratively:
(a) test using real-world examples
(b) improve formal language
(c) improve toolset

mCRL2 process language

Process expressions have the following syntax:

$$
\begin{aligned}
p::= & a(\vec{d})|\delta| \tau|p+p| p \cdot p|p\|p|p \| p| p|p| X(\vec{d}) \\
& |(d=d) \vec{c}=p| p \cdot d \mid \sum_{\overrightarrow{z: s}} p \\
& \left|\nabla_{V}(p)\right| \partial_{I H}(p)\left|\tau_{I H}(p)\right| \Gamma_{C}(p) \mid \rho_{R}(p)
\end{aligned}
$$

- sync operator \mid does not communicate
- a sync of actions is called a multi-action, e.g.
$a, a|b, b| a, a|b| c, a|b| a, a(t)|b(u)| a(v)$
- V and $I H$ are sets of parameterless multi-actions/actions
- C and R are sets of renamings of parameterless multi-actions/actions to actions; the lhs's of C / R must be disjoint

mCRL2 process language (2)

Restriction and communication:

- allow operator ∇_{V} only multi-actions that are in the set V, e.g.

$$
\begin{aligned}
& \nabla_{\{a, b\}}(a \| b)=a \cdot b+b \cdot a, \nabla_{\{a \mid b\}}(a \| b)=a \mid b, \\
& \nabla_{\{a \mid b\}}(a|b| c)=\delta, \nabla_{\{a, b \mid c\}}(a\|b\| c)=a \cdot(b \mid c)+(b \mid c) \cdot a
\end{aligned}
$$

- blocking operator $\partial_{I H}$ blocks all actions that occur in the set $I H$, e.g.

$$
\partial_{\{a\}}(a+b \cdot(a \mid c))=b \cdot \delta
$$

- communication operator Γ_{C} realises communication of multi-actions with equal parameters, e.g. where $t=u$ and $t \neq v$:
$\Gamma_{\{a \mid b \rightarrow c\}}(a(t) \mid b(u))=c(t), \Gamma_{\{a \mid b \rightarrow c\}}(a(t) \mid b(v))=a(t) \mid b(v)$,
$\Gamma_{\{a|b| c \rightarrow d\}}(a|b| c \mid d)=d\left|d, \Gamma_{\{a|b| c \rightarrow d, d \mid d \rightarrow d\}}(a|b| c \mid d)=d\right| d$
$\sum_{d: D} \Gamma_{\{a \mid a \rightarrow a\}}(a(d) \mid a(t))=\sum_{d: D} d=t \rightarrow a(t), a(d) \mid a(t)$

mCRL2 process language (3)

Process equations are formed as follows:

$$
p e::=X(\overrightarrow{x: s})=p
$$

Process specifications:

$$
s p::=\left(\operatorname{act}(a ; \mid a: s \times \cdots \times s ;)^{+} \mid \operatorname{proc}(p e ;)^{+}\right)^{*} \text { init } p ;
$$

Petri net translation

Petri nets can be expressed in mCRL2:

Translation to mCRL2:

$$
\begin{aligned}
\operatorname{Sqr}_{i, o} & =\sum_{n: \mathbb{N}} \overline{g_{e t}}(n) \mid \overline{p u t}_{o}\left(n^{2}\right) \cdot S q r_{i, o} \\
P_{i, o}(b: \operatorname{Bag}(\mathbb{N}))= & \sum_{n: \mathbb{N}} \underline{p u t_{i}}(n) \cdot P_{i, o}(b \cup\{n\})+ \\
& \sum_{n: \mathbb{N}} n \in b \rightarrow \operatorname{get}_{o}(n) \cdot P_{i, o}(b \backslash\{n\}) \\
D S q r_{i, j} & =\nabla_{V}\left(\Gamma_{C}\left(S q r_{i, k}\left\|P_{k, l}(\emptyset)\right\| S q r_{l, j}\right)\right)
\end{aligned}
$$

where

$$
C=\left\{\overline{\text { put }_{k}}\left|\underline{\text { put }_{k}} \rightarrow p u t_{k}, \overline{\text { get }_{l}}\right| \underline{\text { get }_{l}} \rightarrow \text { get }_{l}\right\}, V=\left\{\overline{\text { get }_{i}} \mid \text { put }_{k}, \text { get }_{l} \mid \overline{\text { put }_{j}}\right\}
$$

Beyond Petri nets

Connected places:

$$
\left.P^{2}=\nabla_{\left\{\underline{\text { put }}_{i}, \text { pass }_{k}, \underline{\text { get }}\right\}}\right\}
$$

Connected transitions:

mCRL2 data language

Is it advantageous to use an existing data language?
Not likely, because:

- algebraic specification languages are often first-order and lack concrete data types
- functional programming languages cannot handle open terms and are focused on evaluation only
- it is often hard to integrate an existing language in a toolset

mCRL2 data language (2)

Conclusion: we define our own language, but keep the door open to existing algebraic specification languages.

Approach:

- define a core theory of higher-order algebraic specification
- add concrete data types:
- add syntax
- implement data types within the core theory

Higher-order algebraic specification

Concepts: sorts, operations, terms and equations
Higher-order sorts are constructed as follows, where b is a set of base sorts:

$$
s:=b \mid s \rightarrow s
$$

An operation is of the form $f: s$, which means that all operations are constants.
Data terms are constructed from variables and operations:

$$
d::=x: s|f: s| d(d)
$$

Higher-order algebraic specification (2)

We use a conditional equational logic to express properties of data:

$$
\phi::=\forall \overrightarrow{x: s} \cdot d=d \wedge \cdots \wedge d=d \rightarrow d=d
$$

Data specification elements:

$$
\begin{aligned}
d s e:: & =\operatorname{sort}(b ;)^{+} \\
& \mid \operatorname{cons}(f: s ;)^{+} \\
& \mid \operatorname{map}(f: s ;)^{+} \\
& \mid\left(\operatorname{var}(x: s ;)^{+}\right) ? \mathbf{e q n}(\phi ;)^{+}
\end{aligned}
$$

Data specification:

$$
d s::=d s e^{*}
$$

HOAS in practise

Changes/additions:

- conditional equations are restricted to $d \rightarrow d=d$, where the condition is a term of predefined sort \mathbb{B}
- $s_{0} \times \cdots \times s_{n} \rightarrow s$ is a shorthand for $s_{0} \rightarrow \cdots \rightarrow s_{n} \rightarrow s$, where \rightarrow is right-associative
- $t\left(t_{0}, \ldots, t_{n}\right)$ is a shorthand for $t\left(t_{0}\right) \cdots\left(t_{n}\right)$, where application is leftassociative
- sort references can be defined:

$$
\text { sort } B=C \rightarrow D
$$

- add prefix, infix and mixfix notation for concrete data types, together with operator precedence

HOAS in practise: concrete data types

General:

- equality $d==d$, inequality $d \neq d$ and conditional if (d, d, d)
- lambda expressions $\lambda \overrightarrow{x: s} . d$
- where clauses d whr $x=d, \ldots, x=d$ end

Basic data types:

- Booleans (\mathbb{B})
true, false $, \neg d, d \wedge d, d \vee d, d \Rightarrow d, \forall \overrightarrow{x: s} . d, \exists \overrightarrow{x: s} . d$
- Numbers $(\mathbb{P}, \mathbb{N}$ and $\mathbb{Z})$
$0,1,-1,2,-2, \ldots$
$d<d, d \leq d, d>d, d \geq d,-d, d+d, d-d, d * d, d \operatorname{div} d, d \bmod d, \ldots$

HOAS in practise: concrete data types (2)

Type constructors:

- structured types (sum types and product types)

$$
\begin{gathered}
\text { struct } c_{1}\left(p r_{1,1}: A_{1,1}, \ldots, p r_{1, k_{1}}: A_{1, k_{1}}\right) ? i s_{_} c_{1} \\
\mid c_{2}\left(p r_{2,1}: A_{2,1}, \ldots, p r_{2, k_{2}}: A_{2, k_{2}}\right) ? i s_{-} c_{2} \\
\vdots \\
\mid c_{n}\left(p r_{n, 1}: A_{n, 1}, \ldots, p r_{n, k_{n}}: A_{n, k_{n}}\right) ? i s_{-} c_{n}
\end{gathered}
$$

- lists (List(s))
[]$,[d, \ldots, d], \# d, d \triangleright d, d \triangleleft d, d+d, d . d$
- sets and bags $(\operatorname{Set}(s), \operatorname{Bag}(s))$
$\emptyset,\{d, \ldots, d\},\{d: d, \ldots, d: d\},\{x: s \mid d\}$
$\# d, d \in d, d \subseteq d, d \subset d, d \cup d, d \backslash d, d \cap d, \bar{d}$

Example: automated parking garage

The company CVSS is currently building an automated parking garage in Bremen.

LaQuSo assignment: design and analyse the software for this system.
Focus on safety.

Implementation of concrete data types

General requirements:

- computability: reading the equations from left to right, we obtain a term rewrite system that is confluent, terminating and complete (if possible)
- simplicity: internal representation should be unique
- efficiency:
- reduction lengths should be minimised
- the number of equations should be minimised
- provability: the number of properties that can be proved on open terms should be maximised

Implementation of concrete data types (2)

Data type specific:

- lambda expressions and where clauses are implemented as named functions, e.g. $\lambda y: \mathbb{N}$. $(x+y)$ becomes $f(x)$, where $f: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ satisfies $f(x)(y)=x+y$, for all $x, y: \mathbb{N}$
- quantifications over sort s are implemented as functions of sort $(s \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$
- numbers have a unique binary representation:
- sort \mathbb{P} has constructors $1: \mathbb{P}$ and $c D u b: \mathbb{B} \times \mathbb{P} \rightarrow \mathbb{P}$
- sort \mathbb{N} has constructors $0: \mathbb{N}$ and $c N a t: \mathbb{P} \rightarrow \mathbb{N}$
- sort \mathbb{Z} has constructors cInt : $\mathbb{N} \rightarrow \mathbb{Z}$ and $c N e g: \mathbb{P} \rightarrow \mathbb{Z}$
- sets and bags over sort s are implemented as functions $s \rightarrow \mathbb{B}$ and $s \rightarrow \mathbb{N}$

TU/e

Linear process equations

μ CRL LPE:

$$
P(\overrightarrow{d: D})=\sum_{i \in I} \sum_{\overrightarrow{e_{i}: E_{i}}} a_{i}\left(\overrightarrow{f_{i}}\left(\overrightarrow{d, e_{i}}\right)\right) \cdot P\left(\overrightarrow{g_{i}}\left(\overrightarrow{d, e_{i}}\right)\right) \triangleleft c_{i}\left(\overrightarrow{d, e_{i}}\right) \triangleright \delta
$$

mCRL2 LPE:

$$
\begin{aligned}
P(\overrightarrow{d: D})= & \sum_{i \in I} \sum_{\overrightarrow{e_{i}: E_{i}}} c_{i}\left(\overrightarrow{d, e_{i}}\right) \rightarrow \\
& \left(a_{i}^{0}\left(\overrightarrow{f_{i, 0}}\left(\overrightarrow{d, e_{i}}\right)\right)|\cdots| a_{i}^{n(i)}\left(\overrightarrow{f_{i, n(i)}}\left(\overrightarrow{d, e_{i}}\right)\right)\right) \cdot t_{i}\left(\overrightarrow{d, e_{i}}\right) \cdot P\left(\overrightarrow{g_{i}}\left(\overrightarrow{d, e_{i}}\right)\right),
\end{aligned}
$$

where:

- data types are higher-order
- free variables are used to model don't care values

Tool support

Because of the changes to the core language (LPEs), reuse of existing tools is hard. So we re-implemented some of them.

New goals:

- graphical user interface that will:
- lower the treshold for new users
- simplify the analysis process
- flexible LPE simulator with different pluggable views
- model checking directly on LPEs
- visualisation of large LTSs

GUI: Analysis interface

GUI: Analysis interface (2)

Features:

- tree represents an analysis:
- each node is labelled with the result of an analysis step
- each analysis step corresponds to the execution of a tool
- parameters can be supplied to tools using a graphical interface
- analysis trees abstract from temporary files: treated as cache

Graphical simulator

Features:

- simulate LPEs
- pluggable views

Demo of the parking garage

Model checking on LPEs

Parameterised Boolean Equation Systems (PBESs): mixture of BES and HOAS
Check a property P on an LPE E :
I. combine P and E into a PBES
2. convert the PBES to a BES
3. check the BES

Visualisation of large LTSs (Hannes Pretorius)

Tool development status

Finished (mostly):

- parser
- type checker
- implementation of concrete data types
- lineariser
- rewriter (interpreting, compiling, JITty)
- simulator (both textual and graphical)
- instantiator
- 2D LTS visualiser
- classical Petri net to mCRL2 convertor

Tool development status (2)

To be implemented:

- LPE reduction tools
- LPE model checker
- graphical analysis interface
- prover
- μ CRL to mCRL2 convertor and vice versa
- coloured Petri net to mCRL2 convertor

Conclusions and future work

mCRL2 is an attempt to make μ CRL more applicable in practise. It is extended such that:

- Petri nets can be facilitated
- the treshold for new users is lowered

Future work:

- formalise the syntax and semantics of mCRL2
- finish the toolset and apply it to a number of real world cases
- find a connection with other toolsets

