
12

/ department of mathematics and computer scienceJJ J N I II 1/32JJ J N I II 1/32

mCRL2
Towards a practical formal specification language

Aad Mathijssen Jan Friso Groote Muck van Weerdenburg Yaroslav Usenko

23th June 2005

12

/ department of mathematics and computer scienceJJ J N I II 2/32JJ J N I II 2/32

Motivation: Petri nets

Bring stand-alone developments of specification languages together.
GenSpect: find a common base for hierarchical Petri nets and process algebra
with data.

x2 x2i k l j

It should be possible to translate Petri nets to process algebra:

• places are unordered buffers

• transitions are memoryless input/output relations

• arcs define communication between places and transitions

12

/ department of mathematics and computer scienceJJ J N I II 3/32JJ J N I II 3/32

Motivation: Petri nets (2)

We would like to use µCRL as a target for this translation. Unfortunately, there
are a number of problems:

• all actions involved in the firing of transitions occur at the same time; using
interleaving for this translation is problematic:

– state space explosion

– nice Petri net properties do not carry over

• hierarchical approach enforces that operators are compositional, but com-
munication is not

12

/ department of mathematics and computer scienceJJ J N I II 4/32JJ J N I II 4/32

Motivation: concrete data types

Problems with the use of µCRL in practise, because of the lack of concrete data
types:

• specifications are too long

• specifications are hard to read

• standard notions are specified differently amongst different specifications

• lack of higher-order notions

Specifying all data types yourself distracts from doing the real work.

12

/ department of mathematics and computer scienceJJ J N I II 5/32JJ J N I II 5/32

Motivation: linear process equations

Every guarded untimed µCRL specification can be transformed to a linear pro-
cess equation (LPE), which has the following form:

P (
−−→
d:D) =

∑
i∈I

∑
−−→
ei:Ei

ai(
−→
fi (
−−→
d, ei)) · P (−→gi (

−−→
d, ei)) / ci(

−−→
d, ei) . δ

An LPE is a symbolic representation of a state space.
It is the core language used by the µCRL toolset.

Two things are lacking:

• time

• don’t care values

12

/ department of mathematics and computer scienceJJ J N I II 6/32JJ J N I II 6/32

mCRL2

Design a new language and toolset, using both theoretical and practical experi-
ence with µCRL. Basically, the mCRL2 language is timed µCRL with the follow-
ing changes/additions:

• true concurrency (multi-actions)

• local communication

• higher-order algebraic specification

• concrete data types

The toolset will use a new LPE format, which supports multi-actions, higher-
order algebraic specification, time and don’t care values.

12

/ department of mathematics and computer scienceJJ J N I II 7/32JJ J N I II 7/32

mCRL2 (2)

To find out if the language and the toolset is useful in practise, we took the fol-
lowing approach to design the language:

1. start with an initial design of the language and a toolset

2. iteratively:

(a) test using real-world examples

(b) improve formal language

(c) improve toolset

12

/ department of mathematics and computer scienceJJ J N I II 8/32JJ J N I II 8/32

mCRL2 process language

Process expressions have the following syntax:

p ::= a(~d) | δ | τ | p + p | p · p | p ‖ p | p T p | p|p |X(~d)
| (d = d) → p, p | p ↪ d |

∑
−→x:s p

| ∇V (p) | ∂IH(p) | τIH(p) | ΓC(p) | ρR(p)

• sync operator | does not communicate

• a sync of actions is called a multi-action, e.g.
a, a|b, b|a, a|b|c, a|b|a, a(t)|b(u)|a(v)

• V and IH are sets of parameterless multi-actions/actions

• C and R are sets of renamings of parameterless multi-actions/actions to
actions; the lhs’s of C/R must be disjoint

12

/ department of mathematics and computer scienceJJ J N I II 9/32JJ J N I II 9/32

mCRL2 process language (2)

Restriction and communication:

• allow operator∇V only multi-actions that are in the set V , e.g.
∇{ a,b }(a ‖ b) = a · b + b · a, ∇{ a|b }(a ‖ b) = a|b,
∇{ a|b }(a|b|c) = δ, ∇{ a,b|c }(a ‖ b ‖ c) = a · (b|c) + (b|c) · a

• blocking operator ∂IH blocks all actions that occur in the set IH , e.g.
∂{ a }(a + b · (a|c)) = b · δ

• communication operator ΓC realises communication of multi-actions with
equal parameters, e.g. where t = u and t 6= v:
Γ{ a|b→c }(a(t)|b(u)) = c(t), Γ{ a|b→c }(a(t)|b(v)) = a(t)|b(v),
Γ{ a|b|c→d }(a|b|c|d) = d|d, Γ{ a|b|c→d,d|d→d }(a|b|c|d) = d|d∑

d:D Γ{ a|a→a }(a(d)|a(t)) =
∑

d:D d = t → a(t), a(d)|a(t)

12

/ department of mathematics and computer scienceJJ J N I II 10/32JJ J N I II 10/32

mCRL2 process language (3)

Process equations are formed as follows:

pe ::= X(−−→x : s) = p

Process specifications:

sp ::= (act (a; | a : s× · · · × s;)+ | proc (pe;)+)∗ init p;

12

/ department of mathematics and computer scienceJJ J N I II 11/32JJ J N I II 11/32

Petri net translation

Petri nets can be expressed in mCRL2:

x2 x2i k l j

Translation to mCRL2:

Sqr i,o =
∑

n:N get i(n)|put o(n
2) · Sqr i,o

Pi,o(b : Bag(N)) =
∑

n:N put i(n) · Pi,o(b ∪ {n }) +∑
n:N n ∈ b → get o(n) · Pi,o(b \ {n })

DSqr i,j =∇V (ΓC(Sqr i,k ‖ Pk,l(∅) ‖ Sqr l,j))

where

C = { putk |putk → putk, get l |get l → get l }, V = { get i |putk, get l |put j }

12

/ department of mathematics and computer scienceJJ J N I II 12/32JJ J N I II 12/32

Beyond Petri nets

Connected places:

i k j

P 2 =∇{ put i,passk,get j }(Γ{ getk|getk→passk }(Pi,k(∅) ‖ Pk,j(∅)))

Connected transitions:

dup

inc

mul

12

/ department of mathematics and computer scienceJJ J N I II 13/32JJ J N I II 13/32

mCRL2 data language

Is it advantageous to use an existing data language?
Not likely, because:

• algebraic specification languages are often first-order and lack concrete data
types

• functional programming languages cannot handle open terms and are fo-
cused on evaluation only

• it is often hard to integrate an existing language in a toolset

12

/ department of mathematics and computer scienceJJ J N I II 14/32JJ J N I II 14/32

mCRL2 data language (2)

Conclusion: we define our own language, but keep the door open to existing
algebraic specification languages.

Approach:

• define a core theory of higher-order algebraic specification

• add concrete data types:

– add syntax

– implement data types within the core theory

12

/ department of mathematics and computer scienceJJ J N I II 15/32JJ J N I II 15/32

Higher-order algebraic specification

Concepts: sorts, operations, terms and equations

Higher-order sorts are constructed as follows, where b is a set of base sorts:

s := b | s → s

An operation is of the form f : s, which means that all operations are constants.

Data terms are constructed from variables and operations:

d ::= x : s | f : s | d(d)

12

/ department of mathematics and computer scienceJJ J N I II 16/32JJ J N I II 16/32

Higher-order algebraic specification (2)

We use a conditional equational logic to express properties of data:

φ ::= ∀−→x:s. d = d ∧ · · · ∧ d = d → d = d

Data specification elements:

dse ::= sort (b;)+

| cons (f : s;)+

|map (f : s;)+

| (var (x : s;)+)? eqn (φ;)+

Data specification:
ds ::= dse∗

12

/ department of mathematics and computer scienceJJ J N I II 17/32JJ J N I II 17/32

HOAS in practise

Changes/additions:

• conditional equations are restricted to d → d = d, where the condition is a
term of predefined sort B

• s0 × · · · × sn → s is a shorthand for s0 → · · · → sn → s, where → is
right-associative

• t(t0, . . . , tn) is a shorthand for t(t0) · · · (tn), where application is left-
associative

• sort references can be defined:

sort B = C → D;

• add prefix, infix and mixfix notation for concrete data types, together with
operator precedence

12

/ department of mathematics and computer scienceJJ J N I II 18/32JJ J N I II 18/32

HOAS in practise: concrete data types

General:

• equality d == d, inequality d 6= d and conditional if (d, d, d)

• lambda expressions λ−→x:s.d

• where clauses d whr x = d, . . . , x = d end

Basic data types:

• Booleans (B)
true, false,¬d, d ∧ d, d ∨ d, d ⇒ d,∀−→x:s.d,∃−→x:s.d

• Numbers (P, N and Z)
0, 1,−1, 2,−2, . . .
d < d, d ≤ d, d > d, d ≥ d,−d, d + d, d− d, d ∗ d, d div d, d mod d, . . .

12

/ department of mathematics and computer scienceJJ J N I II 19/32JJ J N I II 19/32

HOAS in practise: concrete data types (2)

Type constructors:

• structured types (sum types and product types)

struct c1(pr 1,1 : A1,1, . . . , pr 1,k1
: A1,k1

)?is_c1

| c2(pr 2,1 : A2,1, . . . , pr 2,k2
: A2,k2

)?is_c2
...

| cn(prn,1 : An,1, . . . , prn,kn
: An,kn

)?is_cn

• lists (List(s))
[], [d, . . . , d], #d, d . d, d / d, d++d, d.d

• sets and bags (Set(s),Bag(s))
∅, { d, . . . , d }, { d:d, . . . , d:d }, {x:s | d }
#d, d ∈ d, d ⊆ d, d ⊂ d, d ∪ d, d \ d, d ∩ d, d

12

/ department of mathematics and computer scienceJJ J N I II 20/32JJ J N I II 20/32

Example: automated parking garage

The company CVSS is currently building an automated parking garage in Bre-
men.

LaQuSo assignment: design and analyse the software for this system.

Focus on safety.

12

/ department of mathematics and computer scienceJJ J N I II 21/32JJ J N I II 21/32

Implementation of concrete data types

General requirements:

• computability: reading the equations from left to right, we obtain a term
rewrite system that is confluent, terminating and complete (if possible)

• simplicity: internal representation should be unique

• efficiency:

– reduction lengths should be minimised

– the number of equations should be minimised

• provability: the number of properties that can be proved on open terms
should be maximised

12

/ department of mathematics and computer scienceJJ J N I II 22/32JJ J N I II 22/32

Implementation of concrete data types (2)

Data type specific:

• lambda expressions and where clauses are implemented as named func-
tions, e.g. λy:N.(x + y) becomes f (x), where f : N → N → N satisfies
f (x)(y) = x + y, for all x, y : N

• quantifications over sort s are implemented as functions of sort
(s → B) → B

• numbers have a unique binary representation:

– sort P has constructors 1 : P and cDub : B× P → P
– sort N has constructors 0 : N and cNat : P → N
– sort Z has constructors cInt : N → Z and cNeg : P → Z

• sets and bags over sort s are implemented as functions s → B and s → N

12

/ department of mathematics and computer scienceJJ J N I II 23/32JJ J N I II 23/32

Linear process equations

µCRL LPE:

P (
−−→
d:D) =

∑
i∈I

∑
−−→
ei:Ei

ai(
−→
fi (
−−→
d, ei)) · P (−→gi (

−−→
d, ei)) / ci(

−−→
d, ei) . δ

mCRL2 LPE:

P (
−−→
d:D) =

∑
i∈I

∑
−−→
ei:Ei

ci(
−−→
d, ei) →

(a0
i (
−→
fi,0(

−−→
d, ei)) | · · · | an(i)

i (
−−→
fi,n(i)(

−−→
d, ei))) ↪ ti(

−−→
d, ei) · P (−→gi (

−−→
d, ei)),

where:

• data types are higher-order

• free variables are used to model don’t care values

12

/ department of mathematics and computer scienceJJ J N I II 24/32JJ J N I II 24/32

Tool support

Because of the changes to the core language (LPEs), reuse of existing tools is
hard. So we re-implemented some of them.

New goals:

• graphical user interface that will:

– lower the treshold for new users

– simplify the analysis process

• flexible LPE simulator with different pluggable views

• model checking directly on LPEs

• visualisation of large LTSs

12

/ department of mathematics and computer scienceJJ J N I II 25/32JJ J N I II 25/32

GUI: Analysis interface

12

/ department of mathematics and computer scienceJJ J N I II 26/32JJ J N I II 26/32

GUI: Analysis interface (2)

Features:

• tree represents an analysis:

– each node is labelled with the result of an analysis step

– each analysis step corresponds to the execution of a tool

• parameters can be supplied to tools using a graphical interface

• analysis trees abstract from temporary files: treated as cache

12

/ department of mathematics and computer scienceJJ J N I II 27/32JJ J N I II 27/32

Graphical simulator

Features:

• simulate LPEs

• pluggable views

Demo of the parking garage

12

/ department of mathematics and computer scienceJJ J N I II 28/32JJ J N I II 28/32

Model checking on LPEs

Parameterised Boolean Equation Systems (PBESs): mixture of BES and HOAS

Check a property P on an LPE E:

1. combine P and E into a PBES

2. convert the PBES to a BES

3. check the BES

12

/ department of mathematics and computer scienceJJ J N I II 29/32JJ J N I II 29/32

Visualisation of large LTSs (Hannes Pretorius)

12

/ department of mathematics and computer scienceJJ J N I II 30/32JJ J N I II 30/32

Tool development status

Finished (mostly):

• parser

• type checker

• implementation of concrete data types

• lineariser

• rewriter (interpreting, compiling, JITty)

• simulator (both textual and graphical)

• instantiator

• 2D LTS visualiser

• classical Petri net to mCRL2 convertor

12

/ department of mathematics and computer scienceJJ J N I II 31/32JJ J N I II 31/32

Tool development status (2)

To be implemented:

• LPE reduction tools

• LPE model checker

• graphical analysis interface

• prover

• µCRL to mCRL2 convertor and vice versa

• coloured Petri net to mCRL2 convertor

12

/ department of mathematics and computer scienceJJ J N I II 32/32JJ J N I II 32/32

Conclusions and future work

mCRL2 is an attempt to make µCRL more applicable in practise.
It is extended such that:

• Petri nets can be facilitated

• the treshold for new users is lowered

Future work:

• formalise the syntax and semantics of mCRL2

• finish the toolset and apply it to a number of real world cases

• find a connection with other toolsets

