
One-and-a-halfth-order Logic

Murdoch J. Gabbay ∗

Dept. of Computer Science
Heriot-Watt University

Riccarton, Edinburgh EH14 4AS
UK

murdoch.gabbay@gmail.com

Aad Mathijssen
Dept. of Mathematics and Computer Science
Eindhoven University of Technology (TU/e)

P.O. Box 513, 5600 MB Eindhoven
The Netherlands

aad.mathijssen@gmail.com

Abstract
The practice of first-order logic is replete with meta-level concepts.
Most notably there are the meta-variables themselves (ranging over
predicates, variables, and terms), assumptions about freshness of
variables with respect to these meta-variables, alpha-equivalence
and capture-avoiding substitution. We present one-and-a-halfth-
order logic, in which these concepts are made explicit. We exhibit
both algebraic and sequent specifications of one-and-a-halfth-order
logic derivability, show them equivalent, show that the derivations
satisfy cut-elimination, and prove correctness of an interpretation
of first-order logic within it.

We discuss the technicalities in a wider context as a case-study
for nominal algebra, as a logic in its own right, as an algebraisation
of logic, as an example of how other systems might be treated, and
also as a theoretical foundation for future implementation.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Proof theory

General Terms Theory

Keywords First-order logic, α-conversion, meta-variables, nomi-
nal terms, Fraenkel-Mostowski techniques, higher-order logic.

1. Introduction
Consider the following valid assertions about first-order predicate
logic with equality (FOL) [2, 4], written in standard notation also
explained later in this document:

• φ ⊃ (ψ ⊃ φ),

• if a �∈ fn(φ) then φ ⊃ (φ�a �→ t�),

• if a �∈ fn(φ) then φ ⊃ ∀a.φ,

• if a, b �∈ fn(φ) then (∀a.φ) ⊃ ∀b.φ,

• if a �∈ fn(φ) then ∀a.(φ ⊃ ψ) ⊃ (φ ⊃ ∀a.ψ),

• if a �∈ fn(φ) then ψ ⊃ (φ ⊃ ∀a.φ),

• ∀b.∀a.φ ⊃ ∀a.φ�b �→ a�, are derivable.

∗ Partially supported by EPSRC grant number EP/C013573/1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’06 July 10–12, 2006, Venice, Italy.
Copyright c© 2006 ACM 1-59593-388-3/06/0007. . . $5.00.

These assertions cannot be proved in FOL, since FOL derivations
involve FOL syntax, while the syntax of the assertions just given
contains meta-variables φ, ψ, a, b and t. These are not FOL syntax,
they vary over FOL syntax. Also we refer to properties of syntax
when we write ‘a �∈ fn(φ)’ and ‘φ�a �→ t�’, but FOL syntax can-
not represent these explicitly.

Of course to us humans this is all obvious. One reason is that
the derivations fall into a limited number of schema. For example
the ‘derivation’ below on the left:

(Ax)
ψ,φ � φ

(⊃R)
φ � ψ ⊃ φ

(⊃R)
� φ ⊃ (ψ ⊃ φ)

(Ax)
⊥,⊥ � ⊥

(⊃R)
⊥ � ⊥ ⊃ ⊥

(⊃R)
� ⊥ ⊃ (⊥ ⊃ ⊥)

is not a derivation, but it obviously represents a schema of deriva-
tions of which the (real) derivation on the right is an instance setting
φ and ψ to ⊥. But is there a logic in which the beast on the left is a
derivation too?

Note that it has been pointed out before that meta-variables
varying over syntax are not themselves syntax, and that schematic
derivations are not real derivations [20, page 7] (Hodges calls them
‘argument schema’). Many authors do leave meta-variables at the
meta-level. Some suggest that this is where they belong!

We feel that as mathematical computer scientists it is reason-
able, nay our duty, to pursue formalisation whenever possible.
Logic teaches us that reasoning can and should be formalised, not
only its conclusions. So if we use meta-variables in reasoning, we
can and should ask ‘what is the mathematics of this reasoning’?

This paper presents one-and-a-halfth-order logic, a generali-
sation of first-order logic in which meta-variables and properties of
syntax are made explicit.

We briefly mention the main technical barriers involved:

• ∀a.φ and ∀b.φ need not be α-convertible if φ mentions a and b
free, so any syntactic representation which represents the meta-
variable φmust sacrifice α-equivalence or some part of it. What
is a suitable representation of meta-variables and how does it
interact with binding?

• In the presence of meta-variables substitution becomes nontriv-
ial, since the ∀-left intro rule (see Subsection 8.2) demands we
reason about φ�a �→ t� where �a �→ t� means ‘replace a by
t’. What is a suitable and correct representation of substitution,
and what are its properties?

• Once these problems are solved, what derivation rules manage
the extra complexity involved so that derivations remain faithful
to ‘first-order logic style’, and cut-elimination is (fairly) easily
provable?

189

Without further ado we give derivation rules of one-and-a-
halfth-order logic in Figure 1. Also, Figure 2 includes one-and-
a-halfth-order logic derivations of the assertions above (in the last
three examples, we left out the use of (⊃R) on the top-level impli-
cations).

Explanations and technical machinery follow in the rest of this
paper. In Sections 2 to 4 we introduce the syntax and an equational
axiomatisation of one-and-a-halfth-order logic in terms of nominal
algebra. In Sections 5 to 7 we develop the sequent calculus of
Figure 1 and establish properties including cut-elimination and
equivalence with the axiomatisation. In Section 8 we show that a
subset of one-and-a-halfth-order logic is equivalent to first-order
logic. We discuss related and future work in the Conclusions.

2. Nominal algebra
We need a syntax in which ∀a.φ, a �∈ fn(φ), and φ�a �→ t� may be
explicitly represented. For this we use Nominal Terms [29], which
offer built-in support for meta-variables, abstraction, and freshness.
In this section, we describe nominal terms and the framework of
Nominal Algebra [15], which is a theory of equational equality for
nominal terms.

2.1 Sorts and terms

Fix two base sorts P of predicates and T of terms; we may
indicate these with δ. Fix a sort of atoms A. Define sorts τ :

τ ::= δ | A | [A]τ

The intuition of [A]τ is ‘elements of τ with an atom abstracted’.
This has no intuitive functional denotation, e.g. [τ ′]τ is not a valid
sort. ([A]τ behaves more like the set of α-equivalence classes of
elements of τ with a distinguished bound atom.)

Fix countably infinite disjoint collections of atoms a, b, c, and
unknownsX,Y,Z.

Atoms represent object-level variable symbols, for examples see
a, b in the Introduction. They will have sort A. Unknowns represent
meta-level variables, for examples see φ, ψ, t in the Introduction.
Unknowns may have any sort and we assume that they are inher-
ently sorted (and that there are infinitely many of each sort). We
may write X : τ as shorthand for ‘X, which has sort τ ’. We tend
to give unknowns of sort P names P,Q,R and unknowns of sort T

names T,U .
A term-former is a syntactic token f with an associated arity

ρ = (τ1, . . . , τn)τ , where n ≥ 0. We may write f : ρ as shorthand
for ‘f, which has arity ρ’. Fix the following term-formers:

⊥ : ()P ⊃ : (P,P)P ∀ : ([A]P)P ≈ : (T,T)P

var : (A)T sub : ([A]τ,T)τ (τ ∈ {T, [A]T, P, [A]P})
We discuss the intuitive meanings of these term-formers after we
have defined terms.

We call term-formers with arities (T, . . . ,T)T object-level
term-formers; one example could be + : (T,T)T. We call term-
formers with arities (T, . . . ,T)P atomic predicate-formers; one
example is ≈, others are socrates : (T)P and greek : (T)P. These
too can be added and cause no difficulties for the results which
follow.

We generally let f vary over all term-formers and (later in the
paper) we let of vary over object-level term-formers, and op vary
over atomic predicate-formers (‘o’ for ‘object-level’).

Terms t, u, v are inductively defined by:

t ::= aA | (π ·Xτ)τ | ([aA]tτ)[A]τ | (f(τ1,...,τn)τ (t1τ1 , . . . , t
n
τn

))τ

Here subscripts indicate sorting rules. We repeat the definition
without them, just for clarity:

t ::= a | π ·X | [a]t | f(t1, . . . , tn)

In case n = 0, we write f instead of f().
π is a permutation on atoms, we discuss π in the next subsec-

tion. We call π · X a moderated unknown; syntactically this is
just a pair of a permutation and an unknown, but intuitively this
represents the permutation π acting on an ‘unknown term’. This
intuition is made concrete in the definition of substitution on mod-
erated unknowns, below.

We may write t : τ as shorthand for ‘t of sort τ ’. We may call
terms φ : P predicates (not to be confused with atomic predicates
like greek(var(a))).

We sugar the term-formers fixed earlier, and give their intuitive
meaning. For any atoms a, b, terms t, u : T and predicates φ, ψ:

• ⊥ represents falsity.

• φ ⊃ ψ is ⊃(φ,ψ). Intuitively, this is an implication.

• ∀[a]φ is ∀([a]φ). Intuitively, this is universal quantification
(which takes an abstraction of a formula and yields a formula).
Accordingly we call the syntax-fragment [a] an abstractor. It
has no functional semantics; [a]t is intuitively merely t with a
bound. The fact that ∀ takes an abstraction of a term and gives
a term is imposed by its sort ([A]P)P.

• t ≈ u is ≈(t, u). Intuitively, this is equality in the object-
language.

• a is var(a). Intuitively, this term-former connects an atom a,
which has sort A, and an object-level variable symbol var(a),
which has sort T.

• v[a �→ t] is sub([a]v, t) for any term v of sort T, [A]T, P or
[A]P. Intuitively, this is substitution.

We use standard classical logic sugar:

¬φ is φ ⊃ ⊥ � is ¬⊥
φ ∧ ψ is ¬(φ ⊃ ¬ψ) φ ∨ ψ is ¬φ ⊃ ψ

φ⇔ ψ is (φ ⊃ ψ) ∧ (ψ ⊃ φ) ∃[a]φ is ¬∀[a]¬φ
To save on (unnecessary) parentheses, take [a] , [�→], ≈,

{¬, ∀,∃}, {∧,∨}, ⊃, ⇔ as the descending order of precedence.
Also let ∧, ∨, ⊃ and ⇔ associate to the right.

We write a ∈ t (or X ∈ t) for ‘a (or X) occurs in (the syntax
of) t’. Occurrence is literal, e.g. a ∈ [a]a and a ∈ π·X if π(a) �= a.
We omit inductive definitions. Similarly we may write a �∈ t and
X �∈ t for ‘does not occur in the syntax of t’.

Call t closed when t mentions no unknowns — t may still
mention atoms, e.g. the term a is closed.

Write syntactic identity of terms t, u as t ≡ u. This emphasises
the difference from provable equality t = u, which is a logical
assertion, and object-level equality t ≈ u, which is a term.

2.2 Permutations and substitutions

A permutation π of atoms is a total bijection A → A with finite
support, meaning that for some finite set of atoms (which may be
empty) π(a) �= a, but for all atoms not in that set, π(a) = a. This
is a mathematical notion of ‘most’: π(a) = a for most a.

As usual, we write Id for the identity permutation, π-1 for the
inverse of π, and π ◦ π′ for the composition of π and π′, i.e.
(π ◦ π′)(a) = π(π′(a)). Id is also the identity of composition, i.e.
Id ◦ π = π and π ◦ Id = π. We may abbreviate Id ·X to X.

We write π · t for the action of a permutation on a term, defined
inductively on syntax by:

π · a ≡ π(a) π · (π′ ·X) ≡ (π ◦ π′) ·X
π · [a]t ≡ [π(a)](π · t) π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

LEMMA 2.1. (π ◦ π′) · t ≡ π · (π′ · t) and Id · t ≡ t.

190

(Ax)
φ, Φ �Δ Ψ, φ

(⊥L)
⊥, Φ �Δ Ψ

Φ �Δ Ψ, φ ψ, Φ �Δ Ψ
(⊃L)

φ ⊃ ψ, Φ �Δ Ψ

φ, Φ �Δ Ψ, ψ
(⊃R)

Φ �Δ Ψ, φ ⊃ ψ

φ[a �→ t], Φ �Δ Ψ
(∀L)

∀[a]φ, Φ �Δ Ψ

Φ �Δ Ψ, ψ
(∀R) (Δ � a#Φ,Ψ)

Φ �Δ Ψ, ∀[a]ψ

φ[a �→ t′], Φ �Δ Ψ
(≈L)

t′ ≈ t, φ[a �→ t], Φ �Δ Ψ

(≈R)
Φ �Δ Ψ, t ≈ t

φ′, Φ �Δ Ψ
(StructL)

φ, Φ �Δ Ψ
(Δ �SUB φ

′ = φ)
Φ �Δ Ψ, ψ′

(StructR)
Φ �Δ Ψ, ψ

(Δ �SUB ψ
′ = ψ)

Φ �Δ,a#X1,...,a#Xn
Ψ

(Fr) (a �∈ Φ,Ψ,Δ)
Φ �Δ Ψ

Φ �Δ Ψ, φ φ′, Φ �Δ Ψ
(Cut)

Φ �Δ Ψ
(Δ �SUB φ = φ′)

Figure 1. Sequent calculus for one-and-a-halfth-order logic

(Ax)
Q,P �∅ P

(⊃R)
P �∅ Q ⊃ P

(⊃R)
�∅ P ⊃ (Q ⊃ P)

(Ax)
P �a#P P

(StructR) (a#P �SUB P = P [a�→T])
P �a#P P [a �→ T]

(⊃R)
�a#P P ⊃ (P [a �→ T])

(Ax)
P �a#P P

(∀R) (a#P � a#P)
P �a#P ∀[a]P

(⊃R)
�a#P P ⊃ ∀[a]P

(Ax)
∀[a]P �a#P,b#P ∀[a]P

(StructR) (a#P, b#P �SUB ∀[a]P = ∀[b]P)
∀[a]P �a#P,b#P ∀[b]P

(⊃R)
�a#P,b#P (∀[a]P) ⊃ ∀[b]P

(Ax)
P �a#P Q,P

(Ax)
Q,P �a#P Q

(⊃L)
P,P ⊃ Q �a#P Q

(StructL) (a#P �SUB P ⊃ Q = (P ⊃ Q)[a �→ a])
P, (P ⊃ Q)[a �→ a] �a#P Q

(∀L)
P,∀[a](P ⊃ Q) �a#P Q

(∀R) (a#P � a#P, ∀[a](P ⊃ Q))
P,∀[a](P ⊃ Q) �a#P ∀[a]Q

(Ax)
P,Q �a#P,b#P,Q P

(StructR) (a#P, b#P,Q �SUB P = (a b) · P)
P,Q �a#P,b#P,Q (a b) · P

(∀R) (a#P, b#P,Q � b#P,Q)
P,Q �a#P,b#P,Q ∀[b](a b) · P

(StructR) (a#P, b#P,Q �SUB ∀[b](a b) · P = ∀[a]P)
P,Q �a#P,b#P,Q ∀[a]P

(Fr) (b �∈ P, Q, ∀[a]P, a#P)
P,Q �a#P ∀[a]P

(Ax)
P [b �→ c][a �→ c] �c#P P [b �→ c][a �→ c]

(∀L)
∀[a](P [b �→ c]) �c#P P [b �→ c][a �→ c]

(StructL) (c#P �SUB ∀[a](P [b �→ c]) = (∀[a]P)[b �→ c])
(∀[a]P)[b �→ c] �c#P P [b �→ a][a �→ c]

(∀L)
∀[b]∀[a]P �c#P P [b �→ c][a �→ c]

(∀R) (c#P � c#∀[b]∀[a]P)
∀[b]∀[a]P �c#P ∀[c](P [b �→ c][a �→ c])

(StructR) (c#P �SUB ∀[c](P [b �→ c][a �→ c]) = ∀[a](P [b �→ a]))
∀[b]∀[a]P �c#P ∀[a](P [b �→ a])

(Fr) (c �∈ ∀[b]∀[a]P, ∀[a](P [b �→ a]))
∀[b]∀[a]P �∅ ∀[a](P [b �→ a])

Figure 2. Example derivations in one-and-a-halfth-order logic

191

In this section we omit proofs of lemmas; they are all quite
routine. Full proofs are available elsewhere [7, 29].

A substitution σ is a finitely supported sort-respecting function
from unknowns to terms. Here, finitely supported means that for
some finite set of unknowns σ(X) �≡ Id · X, but for all other
unknowns σ(X) ≡ Id · X. Sort-respecting means that for each
X the term σ(X) should have the same sort as X.

Write [t1/X1, . . . , tn/Xn] for the substitution σ such that
σ(Xi) ≡ ti and σ(Y) ≡ Id ·Y , for all Y �≡ Xi, 1 ≤ i ≤ n. Write
[] for the empty substitution, which maps each X to Id ·X.

Write a ∈ σ if there exists an X such that a ∈ σ(X), and
similarly write a �∈ X if there is no such X.

A substitution σ has a natural action on terms t, inductively
defined by:

aσ ≡ a (π ·X)σ ≡ π · σ(X)

([a]t)σ ≡ [a](tσ) f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

Give substitution and permutation actions higher precedence
than abstraction and any of the sugared term-formers, and put
substitution before permutation.

Note how substitution interacts with permutation in the case of
an unknown, for example ((a b) ·X)[b/X] ≡ (a b) · b ≡ a. So π
inX is ‘waiting for a substitution to arrive’, as also made formal in
the following property:

LEMMA 2.2. π · tσ ≡ (π · t)σ.

Another permutation action will be useful. Write tπ for the
meta-level action of π on t, which is defined by:

aπ ≡ π(a) (π′ ·X)π ≡ (π′π) ·X
([a]t)π ≡ [π(a)](tπ) f(t1, . . . , tn)π ≡ f(t1

π , . . . , tn
π)

where π′π = π ◦ π′ ◦ π-1 (this is the conjugation action [9]).

LEMMA 2.3. Fix t and π, and let σ map X ∈ t to π · X, and σ′

map X ∈ t to π-1 ·X. Then π · t ≡ tπσ and tπ ≡ (π · t)σ′.

So the two permutation actions are interdefinable in the pres-
ence of substitution σ; however, sometimes one is more natural than
the other, we shall point out how, later.

2.3 Assertions, axioms and derivations

Nominal algebra has two forms of assertions:

1. A freshness (assertion) is a pair a#t of an atom and a term. If
t ≡ X we call the assertion primitive.

2. An equality (assertion) is a pair t = u where t and u are terms
of the same sort, we discuss them below.

Write Δ for a (possibly infinite) set of primitive freshnesses and call
it a freshness context. We may drop set brackets in freshnesses,
e.g. writing a#t, b#u for {a#t, b#u}. Also, we may write a#t, u
for a#t, a#u.

Extend the notions of occurrence, closedness, permutation ac-
tions and substitution action pointwise to assertions and freshness
contexts. Note that for a freshness context Δ, Δσ need not be a
freshness context since each unknownX in Δ is replaced by σ(X),
which is a term and need not be an unknown.

Call a pair Δ → t = u of a finite freshness context Δ and an
equality assertion t = u an axiom. If Δ = ∅, we may write the
axiom just t = u.

Nominal algebra (NA) [15] is the logic of equality between
nominal terms. We define the derivation rules of NA by the rules
in Figure 3.

In this figure f ranges over term-formers,1 t, u, v and t1, . . . , tn
range over terms, X ranges over unknowns, π over permutations,
σ over substitutions, Δ over freshness contexts, and a and b per-
mutatively range over atoms, i.e. a and b represent any two distinct
atoms. We use similar conventions henceforth. C[] is a context, it
is introduced later.

Write Δ � a#t when a derivation of a freshness assertion a#t
exists using the elements of Δ as assumptions, according to the
rules above. Say that Δ entails a#t or a#t is derivable from Δ.

Call a (possibly infinite) set of axioms T a theory. We write
Δ �T t = u when a derivation of t = u exists using the rules
above, such that every assumption used is a freshnesses from Δ,
and for every use of (axA) A is an axiom of T. Say that Δ entails
t = u or t = u is derivable from Δ.

For example, taking A ≡ a = b and B ≡ [a]X = [b]Y as
axioms, the derivations

(axA)
b = c

(axB)
[b]b = [a]a

are valid taking π = (a b c) and any σ, and π = (a b) and
σ = [b/X, a/Y], respectively. Note that it is not possible to derive
a = a using (axA).

Taking C ≡ a#X → [a]X = [b]X, of the derivations

(#ab)
a#b

(axC)
[a]b = [b]b

a#a
(axC)

[a]a = [b]a

the left one is valid, but the right one is not, because a#a is not
derivable.

So now we appear to have two derivation systems; the sequent
calculus for one-and-a-halfth-order logic from Figure 1 and nomi-
nal algebra from Figure 3, both using nominal terms! We shall soon
show that a particular nominal algebra theory gives rise to one-and-
a-halfth-order logic.

For the rest of this subsection we discuss the derivation rules of
Figure 3.

Contexts C[] is the usual notion of context as being a ‘term with
a hole’. Note that this notion may be represented directly in our
syntax taking a term C with a distinguished unknown X — call it
‘the hole’ — which occurs in C only as Id · X (so not under a
moderation, e.g. not as (a b) ·X or somesuch). We can then define
C[t] ≡ C[t/X]. The restriction on the moderation is to ensure that
t really does occur in C[t] and not some renamed version of it.

Note that C may contain abstractors, e.g. C ≡ [a][b]X , and
that the substitution [t/X] can capture under these abstractors, e.g.
C[a] = [a][b]a. See [7] for a fuller treatment of this observation.

For example, (a b)·X and g(X,X) (X is a shorthand for Id·X)
are not contexts. X and h(X) are contexts. Here g and h are term-
formers with arities of the form (τ, τ)τ ′ and (τ)τ ′, respectively.

The rule (fr) In (fr) square brackets denote discharge in the
sense of natural deduction (as in implication introduction [20]); Δ
denotes the other assumptions of the derivation of t = u.

The rule generates ‘fresh atoms’. Clearly a �∈ t, u,Δ manifests
this intuition, but also we must account for unknowns which (intu-
itively) represent unknown terms. Thus to generate an atom that is
really fresh, also for the unknown terms we use, we insist on this
explicitly with freshness conditions.

The axiom rule (axA) Where the axiom A is understood or
irrelevant we may write just (ax) (and (ax′), see below).

In (ax) atoms are permuted and unknowns are instantiated.
Thus atoms stand for any atoms but in a way which preserves their
distinctness, whereas unknowns stand for any term at all.

1 More precisely, f is a meta-variable ranging over term-formers.

192

(#ab)
a#b

π-1(a)#X
(#X)

a#π ·X
(#[]a)

a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong)

C[t] = C[u]

a#t b#t
(perm)

(a b) · t = t

Δπσ
(axA)

tπσ = uπσ
A ≡ Δ → t = u

[a#X1, . . . , a#Xn] Δ···
t = u

(fr) (a �∈ t, u,Δ)
t = u

Figure 3. Derivation rules of nominal algebra

Recall the discussion of π · t versus tπ above. Another axiom
rule is possible:

π · Δσ
(ax′

A)
π · tσ = π · uσ

A ≡ Δ → t = u

however in this case, atoms in the substitution σ are renamed
according to permutation π, which turns out to be rather mind-
bending. For example, from the axiom [a]X = [b]X it is im-
mediate that � [b]a = [a]a is derivable using (ax) where we
choose π = (b a) and σ = [a/X]. If we use (ax′) we must choose
π = (b a) and σ = [b/X].

3. Theories
Recall that a theory is a (possibly infinite) set of axioms. Write
CORE for the theory which is the empty set. Other theories of
interest are listed in Figures 4 and 5.

We use a shorthand in each of those figures that the theory
includes the axioms listed in the figure and the axioms of previous
theories:

CORE ⊂ SUB ⊂ FOL.

In the figures, f ranges over all term-formers of appropri-
ate sort, a, b are particular, but arbitrary, distinct atoms, P,Q,R
are unknowns of sort P, and T, U are unknowns of sort T, and
X,X1, . . . ,Xn are unknowns of appropriate sorts.

The theories have the following intuitive meaning:

1. CORE is a theory of α-equivalence.

2. SUB is a theory of capture-avoiding substitution.

3. FOL is first-order logic — with unknowns!

We will show how and why in the rest of this paper.
Theory SUB is discussed in detail in [14]. The rest of this

section discusses theory FOL.
In Figure 5 we should think of a term of the form ‘φ = �’

as meaning intuitively ‘φ is true’. Thus, it expresses a Hilbert-
style axiom. The first block of rules are then standard axioms
[21] of classical propositional logic, we call them propositional
axioms. The second block adds quantifiers, we call them quantifier
axioms; they exploit NA freshness conditions. The third block adds
object-level equality, we call them equational axioms. Together,
we call them the logical axioms.

Note that the quantifier axioms are not new! They appear in the
literature [10, page 5 (2)], just like the propositional ones. What
is new is that our axioms are not axiom-schemes but individual
axioms; this, because we have meta-variables. Using nominal terms
we can also represent such axiom schemes faithful to their ‘usual’

syntactic form. The next step is to show that they also admit a
proof-theory.

There are interesting theories besides FOL (see the Conclu-
sions).

4. Sequent-like admissible rules
For our first technical results we show that the rules like those of
Figure 1, are valid in theory FOL.

LEMMA 4.1. For all freshness contexts Δ and predicates φ, ψ:

1. Δ �FOL φ⇔ ψ = � if and only if Δ �FOL φ = ψ;

2. Δ �FOL φ ⊃ ψ = � if and only if Δ �FOL φ = φ ∧ ψ.

PROOF. We only prove the first part; the second is similar. For the
right-to-left implication, we reduce the consequent to φ⇔ φ = �
by congruence using φ = ψ; then the result follows easily.

For the left-to-right implication, suppose φ⇔ ψ = � is deriv-
able using Δ. Then

φ = φ ∧ � = φ ∧ (φ⇔ ψ) = φ ∧ ψ.
Similarly we can derive ψ = φ ∧ ψ whence φ = ψ as required. �

LEMMA 4.2. �FOL ∀[a]⊥ = ⊥ is derivable.

PROOF. It suffices to derive ∀[a]⊥ ⇔ ⊥ = �, by part 1 of
Lemma 4.1. Or without sugar for ⇔:

(∀[a]⊥ ⊃ ⊥) ∧ (⊥ ⊃ ∀[a]⊥) = �.
By standard calculations using the propositional axioms, this fol-
lows from ∀[a]⊥ ⊃ ⊥ = � and ⊥ ⊃ ∀[a]⊥ = �. The latter fol-
lows directly from the last propositional axiom. The former is de-
rived as follows:

(ax)
⊥[a�→T]=⊥

(symm)
⊥=⊥[a�→T]

(cong)
∀[a]⊥⊃⊥=∀[a]⊥⊃⊥[a�→T]

(ax)
∀[a]⊥⊃⊥[a�→T]=�

(tran)
∀[a]⊥⊃⊥=�

�
Note that by this result our intuition of FOL is that the denota-

tion of T is a non-empty set; if T has (intuitively) an empty set as
denotation then ∀[a]⊥ = � would be possible for some models
and ∀[a]⊥ = ⊥ should not be derivable. This is due to an interac-

193

(var �→) a[a �→ T] = T
(# �→) a#X → X[a �→ T] = X
(f �→) f(X1, . . . ,Xn)[a �→ T] = f(X1[a �→ T], . . . ,Xn[a �→ T])

(abs �→) b#T → ([b]X)[a �→ T] = [b](X[a �→ T])
(ren �→) b#X → X[a �→ b] = (b a) ·X

Figure 4. Axioms of SUB

P ⊃ Q ⊃ P = � ¬¬P ⊃ P = � (P ⊃ Q) ⊃ (Q ⊃ R) ⊃ (P ⊃ R) = � ⊥ ⊃ P = � (Props)

∀[a]P ⊃ P [a �→ T] = � ∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = � a#P → ∀[a](P ⊃ Q) ⇔ P ⊃ ∀[a]Q = � (Quants)

T ≈ T = � U ≈ T ∧ P [a �→ T] ⊃ P [a �→ U] = � (Eq)

Figure 5. Axioms of FOL

tion of the first quantifier axiom with the rest of the theory, and is
also present in most treatments of first-order logic [20].2

LEMMA 4.3. For all predicates φ, φ′, ψ, ψ′, θ, ε, atoms a, terms
t, t′ : T, and unknowns X1, . . . ,Xn:

1. Δ �FOL φ ∧ θ ⊃ ε ∨ φ = �
2. Δ �FOL ⊥ ∧ θ ⊃ ε = �
3. if Δ �FOL θ ⊃ ε ∨ φ = � and Δ �FOL ψ ∧ θ ⊃ ε = �

then Δ �FOL (φ ⊃ ψ) ∧ θ ⊃ ε = �
4. if Δ �FOL φ ∧ θ ⊃ ε ∨ ψ = �

then Δ �FOL θ ⊃ ε ∨ (φ ⊃ ψ) = �
5. if Δ �FOL φ[a �→ t] ∧ θ ⊃ ε = �

then Δ �FOL ∀[a]φ ∧ θ ⊃ ε = �
6. if Δ �FOL θ ⊃ ε ∨ ψ = � and Δ � a#θ, ε

then Δ �FOL θ ⊃ ε ∨ ∀[a]ψ = �
7. if Δ �FOL φ[a �→ t′] ∧ θ ⊃ ε = �

then Δ �FOL (t′ ≈ t) ∧ φ[a �→ t] ∧ θ ⊃ ε = �
8. Δ �FOL θ ⊃ ε ∨ (t ≈ t) = �
9. if Δ �FOL φ

′ ∧ θ ⊃ ε = � and Δ �SUB φ
′ = φ

then Δ �FOL φ ∧ θ ⊃ ε = �
10. if Δ �FOL θ ⊃ ε ∨ ψ′ = � and Δ �SUB ψ

′ = ψ
then Δ �FOL θ ⊃ ε ∨ ψ = �

11. if Δ, a#X1, . . . , a#Xn �FOL θ ⊃ ε = � and a �∈ θ, ε,Δ
then Δ �FOL θ ⊃ ε = �

12. if Δ �FOL θ ⊃ ε ∨ φ = �, Δ �FOL φ
′ ∧ θ ⊃ ε = �

and Δ �SUB φ = φ′ then Δ �FOL θ ⊃ ε = �
PROOF. The proofs of the first four items are standard and estab-
lish the equivalence of Hilbert- and sequent-style presentations of
propositional logic.

For item 5 we use item 2 of Lemma 4.1. Then we need to show
that Δ �FOL ∀[a]φ ∧ θ = ∀[a]φ ∧ θ ∧ ε follows from the assump-
tion Δ �FOL φ[a �→ t] ∧ θ = φ[a �→ t] ∧ θ ∧ ε. Also, by this item
and the first quantifier axiom, Δ �FOL ∀[a]φ = ∀[a]φ ∧ φ[a �→ t]
holds.

We reason algebraically, implicitly using associativity of ∧:

2 In item (4) on page 48, Hodges states that “Most authors require it to have
at least one member.”, where ‘it’ denotes the domain in terms of a pure set.
Also see Remark 6 on page 110 for a discussion on the implications for
Hilbert-style proof calculi.

∀[a]φ ∧ θ
= { Δ �FOL ∀[a]φ = ∀[a]φ ∧ φ[a �→ t] }

∀[a]φ ∧ φ[a �→ t] ∧ θ
= { Δ �FOL φ[a �→ t] ∧ θ = φ[a �→ t] ∧ θ ∧ ε }

∀[a]φ ∧ φ[a �→ t] ∧ θ ∧ ε
= { Δ �FOL ∀[a]φ = ∀[a]φ ∧ φ[a �→ t] }

∀[a]φ ∧ θ ∧ ε
The calculations for items 6 to 12 are in the same spirit, except for
item 11 which is trivially deduced using (fr). �

5. Sequent presentation
We are now ready to directly confront Figure 1.

Let (predicate) contexts Φ,Ψ be finite (possibly empty) sets of
predicates. A sequent is a triple Φ �Δ Ψ where Δ is a freshness
context and Φ and Ψ are predicate contexts; when a context appears
to the right of � we may call it a co-context.

We may write φ for {φ}, φ,Φ for {φ}∪Φ, and Φ,Φ′ for Φ∪Φ′,
and we may omit empty predicate contexts, e.g. writing �Δ for
∅ �Δ ∅.

Extend the notions of occurrence, closedness, permutation ac-
tions and substitution action elementwise to predicate contexts.

Define the sequent calculus for one-and-a-halfth-order logic to
be the set of sequents inductively specified by the derivation rules
in Figure 1. We may also call this set an entailment relation (that
of one-and-a-halfth-order logic, to be precise).

Call (StructL) and (StructR) structural rules. (Cut) can
emulate them, but we would lose cut-elimination. To see why (Fr)
is useful, consider the last two examples in Figure 2.

Our rules resemble those of Gentzen’s sequent calculus for
classical first-order logic with equality [6, 17, 26], but with the
following distinctive features:

• There is an explicit notion of unknown predicates given by the
unknowns of sort P, which models meta-variables in the sense
that, for example, ∀[a]P with [(a ≈ a)/P] is ∀[a](a ≈ a) (and
not ∀[a′](a ≈ a)).

• Freshness, α-equivalence and capture-avoiding substitution are
now explicit; they are represented by derivability of freshnesses
and equality in SUB as side-conditions.

As we used standard classical logic sugar like ¬P for P ⊃ ⊥,
so we also ‘use’ the standard sequent rules for them (as sugar for
‘macros’ of sequent rules) without comment.

194

The sequent calculus is able to mimick the logical axioms from
Figure 5:

LEMMA 5.1. The following are derivable:

1. �Δ φ ⊃ ψ ⊃ φ. 2. �Δ ¬¬φ ⊃ φ.

3. �Δ (φ ⊃ ψ) ⊃ (ψ ⊃ ρ) ⊃ (φ ⊃ ρ). 4. �Δ ⊥ ⊃ φ.

5. �Δ ∀[a]φ ⊃ φ[a �→ t].

6. �Δ ∀[a](φ ∧ ψ) ⇔ ∀[a]φ ∧ ∀[a]ψ.

7. If Δ � a#φ then �Δ ∀[a](φ ⊃ ψ) ⇔ φ ⊃ ∀[a]ψ.

8. �Δ t ≈ t. 9. �Δ u ≈ t ∧ φ[a �→ t] ⊃ φ[a �→ u].

PROOF. We consider just item 7. By (⇔R) and (⊃R) it suffices
to derive

(a) φ,∀[a](φ⊃ψ) �Δ ∀[a]ψ. (b) φ⊃∀[a]ψ �Δ ∀[a](φ⊃ψ).

We consider (a); showing (b) derivable follows similar lines:

(Ax)
φ �Δ ψ, φ

(Ax)
φ, ψ �Δ ψ

(⊃L)
φ, φ ⊃ ψ �Δ ψ

(StructL)
φ, (φ ⊃ ψ)[a �→ a] �Δ ψ

(∀L)
φ,∀[a](φ ⊃ ψ) �Δ ψ

(∀R)
φ,∀[a](φ ⊃ ψ) �Δ ∀[a]ψ

The uses of (StructL) and (∀R) are valid because the following
hold:

Δ �SUB (φ ⊃ ψ)[a �→ a] = (φ ⊃ ψ)

Δ � a#φ,∀[a](φ ⊃ ψ)

The corresponding calculations are interesting but have to do with
NA and SUB, not FOL. See elsewhere for details [14]. �

We conclude this section with two theorems describing how
derivations and their structure (for example the ones in Figure 2)
interact with atoms and unknowns. In brief: atoms can be permuted,
unknowns can be instantiated.

Extending notation for permutation action, we write Ππ for the
result of applying π to the terms in the syntax of Π.

THEOREM 5.2. If Π is a valid derivation of Φ �Δ Ψ then Ππ is a
valid derivation of Φπ �Δπ Ψπ .

Call this property meta-level equivariance.

PROOF. The statement

‘Π is a valid derivation of Φ �Δ Ψ’

has four free variables and so by FM equivariance [16] is invariant
under permuting atoms. The result follows. �

Write Π(σ,Δ′) for the substitution action on derivations. It is
inductively defined on the structure of Π:

• If Π concludes with a rule (R) different from (Fr), it is of the
form

Π1 · · · Πk
(R) (cond)

Φ �Δ Ψ

where k ∈ {0, 1, 2} and cond is Δ �SUB φ = ψ, Δ � a#Φ′ or
empty.

Then Π(σ,Δ′) is

Π1(σ,Δ
′) · · · Πk(σ,Δ′)

(R) (cond ′)
Φσ �

Δ′ Ψσ

where cond ′ is Δ′ �SUB φσ = ψσ, Δ′ � a#Φ′σ or empty,
respectively.

• Otherwise, the derivation concludes in

Π′
(Fr) (a �∈ Φ,Ψ,Δ)

Φ �Δ Ψ

where Π′ is a derivation of Φ �Δ,a#X1,...,a#Xn
Ψ.

Then Π(σ,Δ′) is

Π′(a′ a)(σ,Δ′′)
(Fr) (a′ �∈ Φσ,Ψσ,Δ′)

Φσ �
Δ′ Ψσ

where a′ is chosen fresh (i.e. a′ �∈ a, Φ, Ψ, Δ, Δ′, σ) and
Δ′′ = Δ′, a′#Y1, . . . , a

′#Ym, in which Y1, . . . , Ym are all
unknowns mentioned in σ(Xi), for 1 ≤ i ≤ n.

So σ is consistently applied throughout the predicate contexts
occurring in Π, Δ′ replaces Δ, and (Fr) may generate slightly
different freshness assumptions.

LEMMA 5.3. For any Δ′,Δ, σ, if Δ′ � Δσ then:

1. if Δ � a#t then Δ′ � a#tσ;

2. if Δ �T t = u then Δ′ �T tσ = uσ.

THEOREM 5.4. If Δ′ � Δσ and Π is a valid derivation of Φ �Δ Ψ
then Π(σ,Δ′) is a valid derivation of Φσ �

Δ′ Ψσ.

Call this property meta-level substitution.

PROOF. By induction on Π. We only treat the cases (∀R) and
(Fr). The other cases are similar to the (∀R) case or simpler.

1. The case of (∀R): Suppose Φ �Δ Ψ,∀[a]ψ is derived us-
ing (∀R). Then Δ � a#Φ,Ψ holds and Π′ is a derivation of
Φ �Δ Ψ, ψ. By Lemma 5.3 Δ′ � a#Φσ,Ψσ, and by inductive
hypothesis Π′(σ,Δ′) is a derivation of Φσ �

Δ′ Ψσ, ψσ. Then
we conclude that Φσ �

Δ′ Ψσ,∀[a]ψσ is derivable, by extend-
ing Π′(σ,Δ′) with (∀R), as required.

2. The case of (Fr): Suppose Φ �Δ Ψ is derived using (Fr).
Then Π′ is a derivation of Φ �Δ,a#X1,...,a#Xn

Ψ where we as-
sume a �∈ Φ,Ψ,Δ. By meta-level equivariance (Theorem 5.2)
also Π′(a′ a) is a derivation of Φ �

Δ,a′#X1,...,a′#Xn
Ψ, where

a′ is chosen fresh (i.e. a′ �∈ a,Φ,Ψ,Δ,Δ′, σ).
By FM equivariance validity of the property

‘Π′ has the inductive hypothesis’

is itself invariant under permuting atoms. So

‘Π′(a′ a) has the inductive hypothesis’

is also valid.
Take Δ′′ = Δ′, a′#Y1, . . . , a

′#Ym, where Y1, . . . , Ym are
all the unknowns mentioned in σ(Xi), 1 ≤ i ≤ n. It is easy
to deduce Δ′′ � (Δ, a′#X1, . . . , a

′#Xn)σ. By inductive hy-
pothesis Π′(a′ a)(σ,Δ′′) is a derivation of Φσ �

Δ′′ Ψσ. Since
a′ �∈ Φσ,Ψσ,Δ′ we may deduce Φσ �

Δ′ Ψσ using (Fr), as
required.

�
This use of FM equivariance is a powerful and general technique

which we do not expand on here. To our knowledge its first use to
obtain theorems in an actual paper (as opposed to being the object
of investigation itself [16, 11]) is in a paper on ‘Fresh Logic’ [12].
Here we shall use it repeatedly to rename atoms in the presence of
unknowns.

195

6. Cut-elimination
This technical section establishes a cut-elimination result (Theo-
rem 6.8) and a consistency corollary (Corollary 6.9).

We need some notation and technical lemmas. Call the depth
of a derivation the greatest number of derivation steps not counting
rules (Fr), (StructL) and (StructR) between its conclusion
and its leaves, over all paths. We do not count NA derivations
of freshnesses and equalities that occur as side-conditions. For
example, the last two derivations of Figure 2 have depth 2 and 4,
respectively.

LEMMA 6.1. If Δ � a#Φ,Ψ and Δ � b#Φ,Ψ then

Φ,Φ′ �Δ Ψ,Ψ′ if and only if Φ, (a b) · Φ′ �Δ Ψ, (a b) · Ψ′.

The derivation has the same depth as the original one, and no more
instances of cut.3

Call this property object-level equivariance.

PROOF. By repeated use of (StructL) and (StructR). �
The following results are not normally problematic but we have

internalised both α-equivalence and being fresh — so renaming
and freshening must be represented in the derivation. First, a tech-
nical lemma:

LEMMA 6.2. If Δ ⊆ Δ′ then:

1. if Δ � a#t then Δ′ � a#t;
2. if Δ �T t = u then Δ′ �T t = u.

LEMMA 6.3. If Φ �Δ Ψ and Δ ⊆ Δ′ then Φ �
Δ′ Ψ. The deriva-

tion has the same depth as the original one, and no more instances
of cut.

Call this property meta-level weakening.

PROOF. We work by induction on the structure of the derivation.
The conditions on preserving depth and number of cuts can easily
be verified from the structure of the reasoning which follows, and
we do not mention them further.

We only treat the cases (∀R) and (Fr). The other cases are
trivial or similar to the (∀R) case.

1. The case of (∀R): Suppose Φ �Δ Ψ,∀[a]ψ is derived using
(∀R). Then Δ � a#Φ,Ψ and Φ �Δ Ψ, ψ are derivable. Then
Δ′ � a#Φ,Ψ by Lemma 6.2, and Φ �

Δ′ Ψ, ψ is derivable
by inductive hypothesis. Extending derivations of the latter
with (∀R) we conclude that Φ �

Δ′ Ψ,∀[a]ψ is derivable, as
required.

2. The case of (Fr): Suppose Φ �Δ,a#X1,...,a#Xn
Ψ where

a �∈ Φ,Ψ,Δ. Choose a′ fresh (i.e. a′ �∈ Φ,Ψ,Δ′ — note the
prime on the Δ′), then Φ �

Δ,a′#X1,...,a′#Xn
Ψ is derivable by

meta-level equivariance .
By FM equivariance we retain the inductive hypothesis, so it
follows that Φ �

Δ′,a′#X1,...,a′#Xn
Ψ. Then we may deduce

Φ �
Δ′ Ψ using (Fr), as required.

�
Write U(Stuff) for the unknowns mentioned in the Stuff .

LEMMA 6.4. If a �∈ u and a#U(u) ⊆ Δ then Δ � a#u.

LEMMA 6.5. If Φ �Δ Ψ and Φ ⊆ Φ′ and Ψ ⊆ Ψ′ then Φ′ �Δ Ψ′.
The new derivation has the same depth as the original one, and no
more instances of cut.

3 It may mention more structural rules but by an astounding coincidence we
have excluded them from our notion of depth.

Call this property object-level weakening.

PROOF. We work by strong induction on the pair of the depth
of the derivation and its structure, lexicographically ordered. We
consider only nontrivial cases.

1. The case of (∀R): Suppose Φ �Δ Ψ, ∀[a]ψ is derived using
(∀R) and suppose the inductive hypothesis of all strictly lesser
derivations.
By assumption Φ �Δ Ψ, ψ has a derivation of strictly lesser
depth, and also Δ � a#Φ,Ψ holds.
Choose some a′′ fresh (i.e. a′′ �∈ a, ψ,Φ′,Ψ′,Δ), and take
Δ′′ = Δ, a′′#U(Φ′,Ψ′,Δ, ψ).
By NA weakening (Lemma 6.2) Δ′′ � a#Φ,Ψ and by meta-
level weakening (Lemma 6.3)4 Φ �

Δ′′ Ψ, ψ. Then by object-
level equivariance (Lemma 6.1) also Φ �

Δ′′ Ψ, (a′′ a) · ψ,
and by inductive hypothesis (the derivation still has strictly
lesser depth) there exists a derivation Π of

Φ′ �
Δ′′ Ψ′, (a′′ a) · ψ.

By Lemma 6.4 also Δ′′ � a′′#Φ′,Ψ′, and by simple calcu-
lations we observe Δ′′ �SUB ∀[a′′](a′′ a) · ψ = ∀[a]ψ (we use
(perm), and the freshness information we have assumed of
a′′).
Now we can conclude Φ′ �Δ Ψ′, ∀[a]ψ as follows:

Π
(∀R)

Φ′ �
Δ′′ Ψ′, ∀[a′′](a′′ a) · ψ

(StructR)
Φ′ �

Δ′′ Ψ′, ∀[a]ψ
(Fr)

Φ′ �Δ Ψ′, ∀[a]ψ

2. The case of (Fr): Suppose Φ �Δ,a#X1,...,a#Xn
Ψ where

a �∈ Φ,Ψ,Δ. In case a �∈ Φ′,Ψ′ then things are easy and we
use (Fr). If however a ∈ Φ′,Ψ′ then we use FM equivariance
to rename a to some a′ �∈ Φ′,Ψ′,Δ in the whole derivation
to obtain one of Φ �

Δ,a′#X1,...,a#Xn
Ψ. We can now apply

the inductive hypothesis (which, as discussed above, is also
preserved by the permutative renaming) to weaken to Φ′ and
Ψ′, and finish off with (Fr).

�
Write Φ[b �→ u] for the elementwise application of the explicit

substitution to the elements of predicate context Φ.

LEMMA 6.6. If Φ �Δ Ψ then Φ[b �→ u] �Δ Ψ[b �→ u]. The depth
of the derivation does not increase, and neither does the number of
cuts it contains.

Call this property object-level substitution.

PROOF. By induction on the depth and structure of the derivation
of Φ �Δ Ψ, lexicographically ordered. Most cases are easy, we
consider only the case of (∀R).

Suppose Φ �Δ Ψ, ∀[a]ψ is derived using (∀R), and suppose
the inductive hypothesis of all strictly lesser derivations.

By assumption Φ �Δ Ψ, ψ is derivable and Δ � a#Φ,Ψ
holds.

Choose some a′ fresh (i.e. a′ �∈ a, b, u, ψ,Φ,Ψ,Δ) and let
Δ′ = Δ, a′#U(u, ψ,Φ,Ψ,Δ). We use meta-level weakening,
object-level equivariance and the inductive hypothesis to conclude
that there exists a derivation Π of

Φ[b �→ u] �
Δ′ Ψ[b �→ u], ((a′ a) · ψ)[b �→ u],

4 It appears convenient to prove meta-level weakening first separately; we
do not want to weaken Φ and Ψ to Φ′ and Ψ′ until we have renamed a to
a′′, in a moment.

196

which has the same depth and number of cuts.
By Lemma 6.4 also Δ′ � a′#((a′ a) · ψ)[b �→ u]. Further-

more, by simple calculations we observe

Δ′ �SUB ∀[a′]((a′ a) · ψ)[b �→ u] = (∀[a]ψ)[b �→ u].

We finish the derivation:
Π

(∀R)
Φ[b �→ u] �

Δ′ Ψ[b �→ u], ∀[a′]((a′ a) · ψ)[b �→ u]
(StructR)

Φ[b �→ u] �
Δ′ Ψ[b �→ u], (∀[a]ψ)[b �→ u]

(Fr)
Φ[b �→ u] �Δ Ψ[b �→ u], (∀[a]ψ)[b �→ u]

�

LEMMA 6.7. (Fr) may be commuted down through all other rules.
The transformations involved do not increase the depth of a deriva-
tion or its number of cuts.

PROOF. We consider only one case. Suppose (Fr) is followed by
(≈L). It is not immediate that we may swap the derivation rules
round, since perhaps t in (≈L) mentions a and t′ does not (we
use notation from the rules in Figure 1). However, we may rename
atoms in the derivation up to the use of (Fr) changing a to some a′

which does not occur also in t, and then proceed. That the inductive
hypothesis is preserved follows by FM equivariance. �

THEOREM 6.8 (Cut-elimination). If Φ �Δ Ψ has a derivation in
the system above, then it has one which does not use (Cut).

PROOF. The commutation cases and essential cases for the propo-
sitional part are standard [17, 26], we use Lemma 6.5 for the essen-
tial case for ⊃. The essential case for ∀ is handled by Lemma 6.6.
Commutation cases are standard (except for the extra case of (Fr),
which is handled by Lemma 6.7). �

COROLLARY 6.9. The sequent calculus of one-and-a-halfth-order
logic is consistent, i.e. �Δ can never be derived.

PROOF. By contradiction. Suppose �Δ is derivable, then by Theo-
rem 6.8 a cut-free derivation exists. Let Π be the shortest derivation
of �Δ for all possible Δ. We check through all possible deriva-
tion rules and see by their syntax-directed nature that the derivation
must conclude in (Fr). But then we have a shorter derivation of
some �

Δ′ , which is a contradiction. �

7. Equivalence of �Δ and �
FOL

This section shows how derivability in the sequent calculus of
one-and-a-halfth-order logic relates to derivability in theory FOL
(Theorem 7.5).

We need some notation.
For a context Φ = {φ1, . . . , φn}, define its conjunctive form

Φ∧ to be � when n = 0, and φ1 ∧ · · · ∧ φn when n > 0. Analo-
gously, define the disjunctive form Φ∨ to be ⊥ when n = 0, and
φ1 ∨ · · · ∨ φn when n > 0. The order of the φi is irrelevant; we
(promise) never (to) do anything where it matters.

Sequent derivability translates to FOL derivability in the follow-
ing way:

LEMMA 7.1. If Φ �Δ Ψ then Δ �FOL Φ∧ ⊃ Ψ∨ = �.

PROOF. By induction on derivations of Φ �Δ Ψ. For every rule
(R), the derivation has the following format:

Π1 · · · Πk
(R) (cond)

Φ �Δ Ψ

Here k ∈ {0, 1, 2}, Πi are derivations of Φi �Δi
Ψi, 1 ≤ i ≤ k,

and cond is a (possibly empty) side-condition.
So Φi �Δi

Ψi are derivable, then by inductive hypothesis
Δi �FOL Φi

∧ ⊃ Ψi
∨ = � holds. We use this together with cond

to prove Δ �FOL Φ∧ ⊃ Ψ∨ = �. For each inference rule (R),
this is an instance of an item of Lemma 4.3.

For example, in case (R) is (Cut) Δ �FOL Φ∧ ⊃ Ψ∨ = �
should follow from the assumptions Δ �FOL Φ∧ ⊃ Ψ∨ ∨ φ = �,
Δ �FOL φ

′ ∧ Φ∧ ⊃ Ψ∨ = � and Δ �SUB φ = φ′. This is an in-
stance of item 12 of Lemma 4.3, using θ ≡ Φ∧ and ε ≡ Ψ∨.

In case (R) is (∀R) Δ �FOL Φ∧ ⊃ Ψ∨ ∨ ∀[a]ψ = � should
follow from Δ �FOL Φ∧ ⊃ Ψ∨ ∨ ψ = � and Δ � a#Φ∧,Ψ∨.
This is an instance of item 6, again using θ ≡ Φ∧ and ε ≡ Ψ∨. �

For the reverse of the above, we need a number of technical
lemmas.

LEMMA 7.2. Bi-implication ⇔ is an equivalence relation.5 Also,
�Δ � ⇔ φ if and only if �Δ φ if and only if �Δ φ⇔ �.

LEMMA 7.3. For all sorts τ , terms t, u : τ , freshness contexts Δ
and contexts C[] : P:

if Δ �FOL t = u then �Δ C[t] ⇔ C[u]

PROOF. By induction on the structure of FOL derivations of t = u
from Δ.
(refl): �Δ C[t] ⇔ C[t] follows by reflexivity of ⇔.
(symm): �Δ C[u] ⇔ C[t] follows from �Δ C[t] ⇔ C[u] by
symmetry of ⇔. By inductive hypothesis this follows from the
assumption. The case of (tran) is similar.
(cong): �Δ C[D[t]] ⇔ C[D[v]] follows by inductive hypothesis
from the assumption taking C[] := C[D[]].
(perm): we show �Δ C[(a b) · t] ⇔ C[t] as follows:

(Ax)
�Δ C[(a b) · t] ⇔ C[(a b) · t]

(StructR)
�Δ C[(a b) · t] ⇔ C[t]

where Δ �SUB C[(a b) · t] ⇔ C[(a b) · t] = C[(a b) · t] ⇔ C[t]
is the side-condition of (StructR). By (cong), this follows from
the assumption Δ �SUB (a b) · t = t.
(fr): By (Fr) derivability of �Δ C[t] ⇔ C[u] follows from that
of �Δ,a#X1,...,a#Xn

C[t] ⇔ C[u] and a �∈ C[t] ⇔ C[u],Δ. The
former follows by inductive hypothesis, and the latter from the
assumption a �∈ C[t], C[u],Δ.
(axA): If A is an axiom of SUB (one from Figure 4), the proof is
analogous to the (perm) case. If A is a logical axiom (one from
Figure 5) then, looking at the structure of the axioms, the derivation
is of the form

Π
(axA)

φπσ = �
where A is Δ′ → φ = � and Π is a derivation of Δ′πσ. We need
to show �Δ C[φπσ] ⇔ C[�]. By congruence and right identity of
⇔, this follows from �Δ φπσ. For each logical axiom A, this is an
instance of an item of Lemma 5.1, using the assumption Δ � Δ′πσ.
�

LEMMA 7.4. If �Δ Φ∧ ⊃ Ψ∨ then Φ �Δ Ψ.

PROOF. By (Cut) Φ �Δ Ψ follows from Φ �Δ Ψ, Φ∧ ⊃ Ψ∨

and Φ∧ ⊃ Ψ∨, Φ �Δ Ψ. The former follows from the assumption
using Lemma 6.5. The latter follows from Φ �Δ Ψ, Φ∧ and
Ψ∨, Φ �Δ Ψ using (⊃L). We prove the former, the latter is
analogous. We know Φ = {φ1, . . . , φn}, where n ≥ 0. If n = 0

5 ⇔ is a reflexive symmetric transitive congruence.

197

then Φ∧ = � and we derive �Δ Ψ,� using (⊃R) and (Ax).
If n > 0 then Φ∧ = φ1 ∧ . . . ∧ φn, and it suffices to derive
Φ �Δ Ψ, φi for all i < n using (∧R) (n − 1 times). For each
i, this follows by (Ax), since φi ∈ Φ. �

Sequent derivability is equivalent to FOL derivability:

THEOREM 7.5. Φ �Δ Ψ if and only if Δ �FOL Φ∧ ⊃ Ψ∨ = �.

PROOF. The left-to-right part is handled by Lemma 7.1.
For the right-to-left part, we assume Δ �FOL Φ∧ ⊃ Ψ∨ = �.

Then by Lemma 7.3 �Δ Φ∧ ⊃ Ψ∨ ⇔ � is derivable. By the
right identity of ⇔, also �Δ Φ∧ ⊃ Ψ∨. By Lemma 7.4 we obtain
the consequent Φ �Δ Ψ. �

This theorem has some nice corollaries.

COROLLARY 7.6. For any Δ, φ, ψ:

Δ �FOL φ = ψ if and only if φ �Δ ψ and ψ �Δ φ.

PROOF. By Theorem 7.5 φ �Δ ψ and ψ �Δ φ are equivalent to
Δ �FOL φ ⊃ ψ = � and Δ �FOL ψ ⊃ φ = �. These can easily be
shown equivalent to Δ �FOL φ = ψ using item 2 of Lemma 4.1. �

COROLLARY 7.7. FOL is consistent, i.e. Δ �FOL � = ⊥ does not
hold for any Δ.

PROOF. By contradiction. Suppose Δ �FOL � = ⊥. Using the
propositional axioms and some simple equational reasoning, also
Δ �FOL � ⊃ ⊥ = �. Note that � ≡ ∅∧ and ⊥ ≡ ∅∨, so by Theo-
rem 7.5 �Δ is derivable, which contradicts Corollary 6.9. �

8. First-order logic
Call a term ground if it does not mention unknowns (it is closed)
and it does not mention explicit substitutions.

In this section we show formally how a syntax for a first-
order logic ‘lives inside’ one-and-a-halfth-order logic, given by the
ground terms of sort P (the predicates) taken up to α-equivalence
of ∀-abstracted atoms, and the ground terms of sort T (the term-
language). The precise term-language depends on the set of object-
level term-formers and atomic predicate-formers with which we
built our one-and-a-halfth-order logic in Section 2. As mentioned
before, we let of and op vary over object-level term-formers and
atomic predicate-formers.

8.1 Properties of ground terms

We may write the term ∀[a]φ where φ is ground just as ∀a.φ
(consistent with standard notation). Recall that a in ∀[a]P may not
be renamed in general, e.g. to ∀[b]P . Intuitively P represents an
unknown formula which might mention a (if we know b#P we
can at least rename to ∀[b](b a).P). To emphasise this we retained
the notation [a] until now. In ∀a.φ where φ is ground, we know all
atoms in φ and this issue does not arise.

Write fn(t) and fn(φ) for the free names of ground terms t : T

and φ : P respectively, inductively defined by:

fn(a) = {a} fn(of(t1, . . . , tk)) =
[

1≤i≤k

fn(ti)

fn(⊥) = ∅ fn(φ ⊃ ψ) = fn(φ) ∪ fn(ψ)

fn(∀a.φ) = fn(φ) \ {a} fn(op(t1, . . . , tk)) =
[

1≤i≤k

fn(ti)

LEMMA 8.1. � a#φ if and only if a �∈ fn(φ), for all ground pred-
icates φ.

PROOF. By simple induction on derivations of a#φ on the one
hand, and by induction on the definition of fn on the other. �

Define α-equivalence =α as syntactic identity plus

b �∈ fn(φ) (a b)·φ =α ψ

∀a.φ =α ∀b.ψ
.

The reader might have expected the clause for ∀ to read something

like
φc =α ψc

∀a.φa =α ∀b.ψb

where here φc is informal notation for φ with

every a replaced throughout by a freshly chosen c, and similarly
for ψc. The two notions of α-equivalence are identical [11]. The
definition we adopt gives a closer match to how equality is defined
in NA (specifically to (perm)).

LEMMA 8.2. �CORE φ = ψ if and only if φ =α ψ, for all ground
predicates φ, ψ.

PROOF. By known arguments of nominal results [15, 16]. �
For each finite set of atoms make an arbitrary but canonical

choice of a fresh (that is, not in the set) atom. In a given context of
some finite collection of terms and predicates, which being finite
mentions finitely many atoms, write ‘a fresh’ for the canonical but
arbitrarily chosen a which is fresh for the atoms in that collection.

In the following definition we elide the context, which is the
terms and formulae mentioned to the left of ≡.

For ground terms t, u : T and φ : P, write u�a �→ t� and
φ�a �→ t� for u and φ with a replaced by t, inductively defined
by:

a�a �→ t� ≡ t b�a �→ t� ≡ b

of(t1, . . . , tk)�a �→ t� ≡ of(t1�a �→ t�, . . . , tk�a �→ t�)

⊥�a �→ t� ≡ ⊥ (φ ⊃ ψ)�a �→ t� ≡ φ�a �→ t� ⊃ ψ�a �→ t�

(∀a.φ)�a �→ t� ≡ ∀a.φ
(∀b.φ)�a �→ t� ≡ ∀b′.φ�b �→ b′��a �→ t� (b′ fresh)

op(t1, . . . , tk)�a �→ t� ≡ op(t1�a �→ t�, . . . , tk�a �→ t�)

LEMMA 8.3. For all ground terms t, u, v : T and φ,ψ : P:

�SUB u[a �→ t] = u�a �→ t� and �SUB φ[a �→ t] = φ�a �→ t�

PROOF. By induction on the depths of u and φ. For the case
u ≡ f(t1, . . . , tn), we must prove

�SUB f(t1, . . . , tn)[a �→ t] = f(t1�a �→ t�, . . . , tn�a �→ t�),

for which we use axiom (f �→) of SUB and the inductive hypothe-
sis.

The only difficult case is φ ≡ ∀b.φ′ because there is no directly
corresponding axiom of SUB. By calculation of (∀b.φ′)�a �→ t�,
we obtain ∀b′.φ′�b �→ b′��a �→ t�, where b′ is fresh. By the induc-
tive hypothesis we have

�SUB φ
′[b �→ b′] = φ′�b �→ b′�

�SUB φ
′�b �→ b′�[a �→ t] = φ′�b �→ b′��a �→ t�.

We need to prove

�SUB (∀b.φ′)[a �→ t] = ∀b′.φ′�b �→ b′��a �→ t�,

which follows by easy calculations using the above assumptions. �

LEMMA 8.4. For all ground terms t, u, v : T and φ,ψ : P:

1. �SUB u[a �→ t] = v if and only if u�a �→ t� ≡ v;6

2. �SUB φ[a �→ t] = ψ if and only if φ�a �→ t� =α ψ.

6 If we had binders in terms of sort T then the ≡ would become an α-
equivalence.

198

PROOF. By lemmas 8.2 and 8.3, using the fact that SUB is conser-
vative over CORE (see [14]). �

8.2 Derivability in First-Order Logic

A first-order context is a finite and possibly empty set of ground
predicates Φ or Ψ. A first-order sequent is a pair Φ � Ψ. The
valid judgements of Gentzen’s sequent calculus for first-order
logic are inductively derived by:

(Ax)
φ, Φ � Ψ, φ

(⊥L)
⊥, Φ � Ψ

Φ � Ψ, φ ψ, Φ � Ψ
(⊃L)

φ ⊃ ψ, Φ � Ψ

φ, Φ � Ψ, ψ
(⊃R)

Φ � Ψ, φ ⊃ ψ

φ�a �→ t�, Φ � Ψ
(∀L)

∀a.φ, Φ � Ψ

Φ � Ψ, φ
(∀R)

Φ � Ψ, ∀a.φ
(a �∈ fn(Φ,Ψ))

φ�a �→ t′�, Φ � Ψ
(≈L)

t′ ≈ t, φ�a �→ t�, Φ � Ψ

(≈R)
Φ � Ψ, t ≈ t

Here we take predicates up to α-equivalence, e.g. if p : (T)P is
an atomic predicate term-former then ∀a.p(a) � ∀b.p(b) follows
directly by (Ax) since ∀a.p(a) =α ∀b.p(b).

THEOREM 8.5. Φ � Ψ is derivable in the system above, if and
only if Φ �∅ Ψ is derivable in the sequent calculus for one-and-a-
halfth-order logic.

PROOF. By induction on the structure of derivations, using cut-
elimination (Theorem 6.8) and the results from Subsection 8.1
(Lemmas 8.1 and 8.4). �

COROLLARY 8.6. �FOL φ = ψ if and only if φ � ψ and ψ � φ are
derivable in system above.

PROOF. By Corollary 7.6 and Theorem 8.5. �

9. Conclusions
Explicitly representing meta-variables has a long pedigree.

Monadic second-order logic [5] enriches first-order logic ex-
plicitly with n-ary relation variables, representing ‘unknown n-
ary predicates’. The stronger second-order and higher-order logics
[30, 27] represent unknowns as function variables.

These approaches share two characteristic features inherited
from their intended functional semantics. First, you have to choose

the arity of your unknown in advance, e.g. f :

nz }| {
T → · · · → T → P

can be interpreted as an unknown n-ary predicate — but which n?
— thus these logics distribute ‘unknown predicates’ across many
types. Second, and perhaps more importantly, instantiation of these
variables avoids capture. Instantation of our unknowns does not,
which accurately reflects our intention when we write ∀a.φ, where
φmay be instantiated in a capturing manner. This lends a distinctive
style to our nominal algebra theory FOL (see Figure 5), and to
the sequent rules of one-and-a-halfth-order logic (see Figure 1),
which accurately reflects informal practice (see [10, 20] and the
examples of the Introduction) and as we have seen has allowed us
to import elements of first-order proof theory quite directly into an
augmented setting.

Note that second-order logic is far more expressive. One-and-
a-halfth-order logic by design expresses universal quantification at
top level only. For example, the following second-order theorem
cannot be expressed: ∀P.(∀P.P) ⊃ P . On the other hand one-and-
a-halfth-order logic can express some things which second-order

logic cannot, e.g. ∀[a]P �a#P P is derivable. It is not presently
clear what the intersection of these two logics is.

Our ambient nominal algebra framework can express certain
strong ‘second-order’ principles, for instance an inductive principle
on natural numbers may be expressed as a single axiom (assuming
suitable term-formers 0 and succ)

P [a �→ 0] ∧ ∀[a](P ⊃ P [a �→ succ(a)]) ⊃ ∀[a]P = �
rendered in second-order logic as

∀P.(P (0) ∧ ∀a.(P (a) ⊃ P (succ(a))) ⊃ ∀a.P).

Our work is one (more) element in a very long line of investiga-
tions into algebraic logic [1]; for example cylindric [19], polyadic
[18], and quantifier [25] algebra. There too, unknowns are syn-
tax representing unknown elements quantified universally at top
level, and abstraction [a]- (our notation) is clearly visible, e.g. as
the ci of cylindric algebra. Our treatment of substitution is perhaps
cleaner; cylindric and quantifier algebras axiomatise logic whose
terms are in a suitable sense restricted to being atoms (our terminol-
ogy), whereas we could easily extend our logic to talk about, say,
λ-calculus terms just by postulating term-formers λ : ([A]T)T and
app : (T,T)T plus a few nominal equalities [15, 7] (here, interest-
ing work by Beeson is also relevant [3]). Arguably our treatment of
substitution is also more systematic than polyadic algebras, at least
in the sense that we define it in terms of more primitive constructs
and can so study substitution in its own right [14].

Probably more important is our use of freshness contexts and
permutations, by means of which we can express properties such
as b#P �FOL ∀[a]P = ∀[b](b a) · P , and of course the examples
of the Introduction, directly. These assertions are valid in, say,
cylindric algebra, but only by recourse to quantification over closed
terms, thus, they cannot be stated within that framework. The extra
expressivity we enjoy thanks to a slightly richer term-language and
judgement-form is significant, because we can exploit it to extract
a sequent presentation of derivability, namely the sequent system
of Figure 1. In other words, our nominal management of binding
permits us to construct an account of first-order logic which in a
suitable sense is simultaneously algebraic and sequent-style.

It is possible to represent the syntax of a logic in a ‘frame-
work’ logical system, at ‘object-level’, i.e. as an inductive datatype.
Then meta-variables are easily representable as meta-variables of
the framework. This path is taken by Higher-Order Abstract Syn-
tax [24], Fraenkel-Mostowski syntax [16], and other systems ([23]
is just one of very many). That is a separate enterprise from that un-
dertaken in this paper; one-and-a-halfth-order logic is about extend-
ing the syntax of the logic itself so it contains something which be-
haves very much like a meta-variable ranging over unknown formu-
lae, without losing logical properties such as cut-elimination. Per-
haps one day one-and-a-halfth-order logic too will be formalised in
a framework!

The technical tools used in this paper were developed based
on work on Nominal Unification by the first author with Urban
and Pitts [29], which introduced the theory of nominal terms up to
CORE (our terminology). This was extended with Fernández [7] to
Nominal Rewriting, a theory of rewriting on nominal terms, again
up to CORE, and recently investigated with the second author, as a
general framework of nominal algebra [15, 14].

For future work we are particularly interested in the following
topics:

We can return to theory and be inspired by higher-order logic
to ask whether we could permit abstraction over meta-variables,
introducing an infinite hierarchy of stronger meta-variables such
that at each level a meta-variable of higher level behaves to the
lower level as X behaves to a (see the NEW calculus of contexts
[13]). This might recover some or all of the power which one-and-

199

a-halfth-order logic lacks compared to higher-order logic, but in
a different way. In short, we envisage two- three- four- and ω-
and-a-halfth-order logic. This would involve interesting extensions
to the ‘nominal theme’. Another direction is to allow unknowns
ranging over derivations of sequents, which may have interesting
interactions with (∀R), which would abstract in such an unknown.

The semantics of one-and-a-halfth-order logic are interesting
and raise the questions ‘what is an appropriate semantics for X’,
and ‘what is an appropriate semantics for a’? Note that it is not
possible to directly evaluate X to an element of a set underlying
domain, because intuitively X ‘can mention a’. Thus we can use
domains in which atoms can appear (à la Fraenkel-Mostowski sets
[15, 16] or other approaches [3, 8]). The simplest solution, and
perhaps the best one, is to evaluate X to terms (a ‘substitutional
semantics’ [22, Section 2] faithful to its intuition as an ‘unknown
term’) and then a to elements of a set underlying domain.

References
[1] H. Andréka, I. Németi, and I. Sain. Algebraic logic. In D. Gabbay

and F. Guenthner, editors, Handbook of Philosophical Logic, 2nd
Edition, volume 2, pages 133–249. Kluwer, 2001.

[2] J. Barwise. An introduction to first-order logic. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 5–46. North Holland, 1977.

[3] M. Beeson. Lambda logic. In Second International Joint Conference
on Automated Reasoning (IJCAR 2004), volume 3097 of LNCS, pages
460–474. Springer, 2004.

[4] J. Bell and M. Machover. A course in mathematical logic. North-
Holland, 1977.

[5] C. Bruno. The expression of graph properties in some fragments
of monadic second-order logic. DIMACS Series in Discrete
Mathematics, 31, 1997.

[6] A. Degtyarev and A. Voronkov. Equality reasoning in sequent-based
calculi. In J. A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, pages 611–706. Elsevier and MIT Press, 2001.

[7] M. Fernández and M. J. Gabbay. Nominal rewriting. Journal version,
submitted Information and Computation, 2005.

[8] K. Fine. Reasoning with Arbitrary Objects. Blackwell, 1985.

[9] J. B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley,
7th edition, 2002.

[10] D. M. Gabbay and G. Malod. Naming worlds in modal and temporal
logic. Journal of Logic, Language and Information, 11(1):29–65,
2002.

[11] M. J. Gabbay. A Theory of Inductive Definitions with alpha-
Equivalence. PhD thesis, Cambridge, UK, 2000.

[12] M. J. Gabbay. Fresh logic. Journal of Logic and Computation, July
2003. Accepted for publication.

[13] M. J. Gabbay. A new calculus of contexts. In Proc. 7th Int.
ACM SIGPLAN Conf. on Principles and Practice of Declarative
Programming (PPDP’2005). ACM, 2005.

[14] M. J. Gabbay and A. Mathijssen. Capture-avoiding substitution as a
nominal algebra. Submitted ICTAC’06.

[15] M. J. Gabbay and A. Mathijssen. Nominal algebra. Submitted
CSL’06.

[16] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13(3–5):341–363,
2001.

[17] G. Gentzen. Untersuchungen über das logische schließen [Investi-
gations into logical deduction]. Mathematische Zeitschrift 39, pages
176–210,405–431, 1935. Translated in [28], pages 68–131.

[18] P. Halmos. Algebraic logic, ii. homogeneous locally finite polyadic
boolean algebras of infinite degree. Fundamenta Mathematicae,
43:255–325, 1956.

[19] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras. North
Holland. Part I (1971), Part II (1985).

[20] W. Hodges. Elementary predicate logic. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, 2nd Edition,
volume 1, pages 1–131. Kluwer, 2001.

[21] P. T. Johnstone. Notes on logic and set theory. Cambridge University
Press, 1987.

[22] H. Leblanc. Alternatives to standard first-order semantics. In
D. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, 2nd Edition, volume 2, pages 53–132. Kluwer, 2001.

[23] M. Miculan. Developing (meta)theory of lambda-calculus in the
theory of contexts. ENTCS, 1(58), 2001.

[24] F. Pfenning and C. Elliot. Higher-order abstract syntax. In SIGPLAN
Conference on Programming Language Design and Implementation,
pages 199–208, 1988.

[25] C. Pinter. A simple algebra of first-order logic. Notre Dame Journal
of Formal Logic, 14(3):361–366, 1973.

[26] D. Prawitz. Natural Deduction: A Proof Theoretical Study. Almqvist
and Wiksell, Stockholm, 1965.

[27] S. Shapiro. Systems between first-order and second-order logics. In
D. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, 2nd Edition, volume 1, pages 131–188. Kluwer, 2001.

[28] M. Szabo, editor. Collected Papers of Gerhard Gentzen. North
Holland, 1969.

[29] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification.
Theoretical Computer Science, 323(1–3):473–497, 2004.

[30] J. van Benthem. Higher-order logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, 2nd Edition, volume 1,
pages 189–244. Kluwer, 2001.

200

