GenSpect

A specification language for Petri Nets and process algebra

Aad Mathijssen

$$
\text { 25th May } 2005
$$

TU/e

Motivation

Bring stand-alone developments of specification languages together. Starting point: find a common base for Petri Nets and process algebra with data

It should be possible to translate Petri Nets to process algebra:

- places are unordered buffers
- transitions are memoryless input/output relations
- arcs define communication between places and transitions

Motivation (2)

We would like to use μ CRL as a target for this translation. Unfortunately, there are a number of problems:

- all actions involved in the firing of transitions occur at the same time
- component-based approach enforces the need for local communication
- coloured Petri Nets often use a higher-order data language instead of a firstorder language

GenSpect language

Distinguish two levels:

- low-level: μ CRL-like language (developed by the OAS group)
- high-level: Petri Net-like language focusing on modular design (developed by the IS group)

Requirement: every high-level specification can be translated to a low-level specification

Low-level GenSpect

Process algebra with data, which is basically timed μ CRL with the following additions:

- true concurrency (concurrency in Petri Nets)
- local communication (modularity of HL-GenSpect)
- higher-order abstract data types (colours in Petri Nets)

We will call this language mCRL2.

True concurrency

Changes with respect to $\mu \mathrm{CRL}$:

- sync operator | does not communicate anymore
- a sync of actions is called a multi-action, e.g. $a, a|b, b| a, a|b| c, a|b| a, a(t)|b(u)| a(v)$
- added communication operator Γ for the communication of multi-actions, e.g. where $t=u$ and $t \neq v$:
$\Gamma_{\{a \mid b \rightarrow c\}}(a(t) \mid b(u))=c(t), \Gamma_{\{a \mid b \rightarrow c\}}(a(t) \mid b(v))=a(t) \mid b(v)$,
$\Gamma_{\{a|b| c \rightarrow d\}}(a|b| c \mid d)=d \mid d$
- added visibility operator ∇ to restrict behaviour of multi-actions, e.g.

$$
\begin{aligned}
& \nabla_{\{a, b\}}(a \| b)=a \cdot b+b \cdot a, \nabla_{\{a \mid b\}}(a \| b)=a \mid b, \\
& \nabla_{\{a \mid b\}}(a|b| c)=\delta, \nabla_{\{a, b \mid c\}}(a\|b\| c)=a \cdot(b \mid c)+(b \mid c) \cdot a
\end{aligned}
$$

Γ also implements local communication.

mCRL2 process language

Process expressions have the following syntax:

$$
\begin{aligned}
p::= & a|\delta| \tau|p+p| p \cdot p|p\|p|p \| p| p|p| X \\
& |a(\vec{d})|(d=d) \rightarrow p, p|p \cdot d| X(\vec{d}) \mid \sum_{\overrightarrow{x: s}} p \\
& \left|\nabla_{V}(p)\right| \Gamma_{C}(p)\left|\partial_{H}(p)\right| \tau_{I}(p) \mid \rho_{R}(p)
\end{aligned}
$$

Process equations are formed as follows:

$$
p e::=X=p \mid X(\overrightarrow{x: s})=p
$$

Process specifications:

$$
s p::=\left(\boldsymbol{\operatorname { a c t }}(a ; \mid a: \vec{s} ;)^{+} \mid \operatorname{proc}(p e ;)^{+}\right)^{*} \text { init } p ;
$$

Petri Net translation

Petri Nets can be expressed in mCRL2:

Translation to mCRL2:

$$
\begin{aligned}
\operatorname{Sqr}_{i, o} & =\sum_{n: \mathbb{N}} \overline{\text { get }_{i}}(n) \mid \overline{\operatorname{put}_{o}}\left(n^{2}\right) \cdot S q r_{i, o} \\
P_{i, o}(b: \operatorname{Bag}(\mathbb{N}))= & \sum_{n: \mathbb{N}} \underline{p u t_{i}}(n) \cdot P_{i, o}(b \cup\{n\})+ \\
& \sum_{n: \mathbb{N}} n \in b \rightarrow \operatorname{get}_{o}(n) \cdot P_{i, o}(b \backslash\{n\}) \\
= & \nabla_{V}\left(\Gamma_{C}\left(S q r_{i, k}\left\|P_{k, l}(\emptyset)\right\| S q r_{l, j}\right)\right)
\end{aligned}
$$

where

$$
C=\left\{\overline{\text { put }_{k}}\left|\underline{\text { put }_{k}} \rightarrow p u t_{k}, \overline{\text { get }_{l}}\right| \underline{\text { get }_{l}} \rightarrow \text { get }_{l}\right\}, V=\left\{\overline{\text { get }_{i}} \mid \text { put }_{k}, \text { get }_{l} \mid \overline{\text { put }_{j}}\right\}
$$

Beyond Petri Nets

Connected places:

$$
P^{2}=\nabla_{\left\{\underline{\text { put }}, t_{i}, p a s s_{k}, \underline{g e t_{j}}\right\}}\left(\Gamma_{\{\underline{\text { get }}} \mid \underline{\left.g e t_{k} \rightarrow p a s s_{k}\right\}}\left(P_{i, k}(\emptyset) \| P_{k, j}(\emptyset)\right)\right)
$$

Connected transitions:

mCRL2 data language

Problems with the current μ CRL data language:

- first-order language (coloured Petri Nets)
- lack of concrete data types with a comfortable syntax

Problems with existing data languages:

- algebraic specification languages are often first-order and lack concrete data types
- functional programming languages cannot handle open terms and are focused on evaluation only
- it is often hard to integrate an existing language in a toolset

mCRL2 data language (2)

Conclusion: we define our own language.
Approach:

- define a core theory of higher-order algebraic specification
- add concrete data types:
- add syntax
- implement data types within the core theory

Higher-order algebraic specification

Concepts: sorts, operations, terms and equations
Higher-order sorts are constructed as follows, where B is a set of base sorts:

$$
S:=B \mid S \rightarrow S
$$

An operation is of the form $f: s$, which means that all operations are constants.
Data terms are constructed from variables and operations:

$$
d::=x: s|f: s| d(d)
$$

Higher-order algebraic specification (2)

We use a conditional equational logic to express properties of data:

$$
\phi::=\forall \overrightarrow{x: s} \cdot d=d \wedge \cdots \wedge d=d \rightarrow d=d
$$

Data specification elements:

$$
\begin{aligned}
d s e:: & =\operatorname{sort}(b ;)^{+} \\
& \mid \operatorname{cons}(f: s ;)^{+} \\
& \mid \operatorname{map}(f: s ;)^{+} \\
& \mid\left(\operatorname{var}(x: s ;)^{+}\right) ? \mathbf{e q n}(\phi ;)^{+}
\end{aligned}
$$

Data specification:

$$
d s::=d s e^{*}
$$

Sugaring the data language

For the purpose of user-friendliness, we add sugar:

- $s_{0} \times \cdots \times s_{n} \rightarrow s$ is a shorthand for $s_{0} \rightarrow \cdots \rightarrow s_{n} \rightarrow s$, where \rightarrow is right-associative
- $t\left(t_{0}, \ldots, t_{n}\right)$ is a shorthand for $t\left(t_{0}\right) \cdots\left(t_{n}\right)$, where application is leftassociative
- sort references can be defined:

$$
\text { sort } B=C \rightarrow D
$$

- add prefix, infix and mixfix notation for concrete data types, together with operator precedence

Concrete data types

General:

- equality $d==d$, inequality $d \neq d$ and conditional if (d, d, d)
- lambda expressions $\lambda \overrightarrow{x: s} . d$
- where clauses d whr $x=d, \ldots, x=d$ end

Basic data types:

- Booleans (\mathbb{B})
true, false $, \neg d, d \wedge d, d \vee d, d \Rightarrow d, \forall \overrightarrow{x: s} . d, \exists \overrightarrow{x: s} . d$
- Numbers $(\mathbb{P}, \mathbb{N}$ and $\mathbb{Z})$
$0,1,-1,2,-2, \ldots$
$d<d, d \leq d, d>d, d \geq d,-d, d+d, d-d, d * d, d \operatorname{div} d, d \bmod d, \ldots$

Concrete data types (2)

Type constructors:

- structured types (sum types and product types)

$$
\begin{gathered}
\text { struct } c_{1}\left(p r_{1,1}: A_{1,1}, \ldots, p r_{1, k_{1}}: A_{1, k_{1}}\right) ? ? s_{_} c_{1} \\
\mid c_{2}\left(p r_{2,1}: A_{2,1}, \ldots, p r_{2, k_{2}}: A_{2, k_{2}}\right) ? i s_{-} c_{2} \\
\vdots \\
\mid c_{n}\left(p r_{n, 1}: A_{n, 1}, \ldots, p r_{n, k_{n}}: A_{n, k_{n}}\right) ? i s_{-} c_{n}
\end{gathered}
$$

- lists (List(s))
[]$,[d, \ldots, d], \# d, d \triangleright d, d \triangleleft d, d+d, d . d$
- sets and bags (Set $(s), \operatorname{Bag}(s))$
$\emptyset,\{d, \ldots, d\},\{d: d, \ldots, d: d\},\{x: s \mid d\}$
$\# d, d \in d, d \subseteq d, d \subset d, d \cup d, d \backslash d, d \cap d, \bar{d}$

Example: Sliding Window Protocol

```
map n: Pos;
sort D = struct d1 | d2;
    Buf = Nat -> struct data(getdata:D) | empty;
map emptyBuf: Buf;
    insert: D#Nat#Buf -> Buf;
    remove: Nat#Buf -> Buf;
    release: Nat#Nat#Buf -> Buf;
    nextempty: Nat#Buf -> Nat;
    inWindow: Nat#Nat#Nat -> Bool;
    i,j,k: Nat; d: D; G: Buf;
    emptyBuf = lambda j:Nat.empty;
    insert(d,i,q) = lambda j:Nat.if(i==j,data(d), q(j));
    remove(i,q) = lambda j:Nat.if(i==j,empty,q(j));
    release(i,j,g) =
        if({i mod 2*n)== (j mod 2*n),
            G,
            release({i+1) mod 2*n,j,remove(i,q)));
    nextempty(i,G) = if(c(i)==empty,i,nextempty((i+1) mod n,qi);
    inWindow(i,j,k) = {i<=j && j<k) || {k<i && i<=j) || {j<k && k<i);
```


Example: Sliding Window Protocol (2)

```
act sù,rà,sD,rD: D;
    sB,rB,cB,sC,rC,cC: D#Nat;
    sE,rE,CE,sF,rF,CF: Nat;
    j;
proc S(l,m:Nat,q:Buf) =
    sum d:D. inWindow (l,m, (l+n) mod 2*n) ->
            rA(d).S(l, (m+1) mod 2*n,insert(d,m,G))+
    sum k:Nat. {G(k)!=empty) -> sB(getdata(q(k)),k}.S(l,m,Gi)+
    sum k:Nat. rF(k).S(k,m,release{l,k,q));
    R(l:Nat,G:Buf) =
        sum d:D,k:Nat. rC(d,k).
            {inWindow(l,k, (l+n) mod 2#n) -> R(l,insert(d,k,qi), R(l,qi) +
        (q(l)!=empty) -> sD(getdata(q(l))).R({l+1) mod 2*n, remove(l,qi) )+
    sE (nextempty (l, ci)).R(l, ci);
K = sum d:D,k:Nat. rB (d,k).{j.sC (d,k)+j).K;
L = sum k:Nat. rE (k) . (j.sF (k)+j).L;
init allow{{CB,CC,CE,CF,j,r欴, SD},
    commi{rB|sB->cB, rC|sC->cC, rE|sE->cE, rF|sF->cF},
        S{0,0, emptyBuf) || K || L || R{0, emptyBufi)j;
```


Tool support

Goals:

- provide functionality comparable to that of the μ CRL toolset; in particular the concept of linear process equations (LPEs) play a central role
- simplify the process of analysing specifications

Because of all changes and additions, reusing the existing μ CRL toolset is almost impossible. Furthermore, there are other changes:

- added time (discrete/continuous, absolute)
- added don't care values

Development status

Finished (mostly):

- parser (Aad)
- type checker (Yaroslav)
- implementation of concrete data types (Aad)
- lineariser (Jan Friso, Muck)
- rewriter (Muck)
- nextstate (Muck) (μ CRL: stepper)
- findsolutions (Muck) (μ CRL: enumerator)
- simulator (Muck) (both textual and graphical)
- instantiator (Muck)

Development status (2)

To be implemented:

- LPE model checker using the techniques of parameterised boolean equation systems (PBESs) (Jan Friso, Muck)
- LPE reduction tools (?)
- graphical analysis interface (Jan Friso, Aad, Muck)
- prover (Jaco)
- Petri Net to mCRL2 convertor (Yaroslav, Jofra)

Implementation of concrete data types

General requirements:

- computability: reading the equations from left to right, we obtain a term rewrite system that is confluent, terminating and complete (if possible)
- simplicity: internal representation should be unique
- efficiency:
- reduction lengths should be minimised
- the number of equations should be minimised
- provability: the number of properties that can be proved on open terms should be maximised

Implementation of concrete data types (2)

Data type specific:

- lambda expressions and where clauses are implemented as named functions, e.g. $\lambda y: \mathbb{N}$. $(x+y)$ becomes $f(x)$, where $f: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ satisfies $f(x)(y)=x+y$, for all $x, y: \mathbb{N}$
- quantifications over sort s are implemented as functions of sort $(\mathbb{B} \rightarrow s) \rightarrow s$
- numbers have a unique binary representation:
- sort \mathbb{P} has constructors $1: \mathbb{P}$ and $c D u b: \mathbb{B} \times \mathbb{P} \rightarrow \mathbb{P}$
- sort \mathbb{N} has constructors $0: \mathbb{N}$ and $c N a t: \mathbb{P} \rightarrow \mathbb{N}$
- sort \mathbb{Z} has constructors c Int $: \mathbb{N} \rightarrow \mathbb{Z}$ and $c N e g: \mathbb{P} \rightarrow \mathbb{Z}$
- sets and bags over sort s are implemented as functions $s \rightarrow \mathbb{B}$ and $s \rightarrow \mathbb{N}$

Graphical simulator

Features: simulate LPEs, different views

Analysis interface

Features:

- tree represents an analysis:
- each node is labelled with the result of an analysis step
- each analysis step corresponds to the execution of a tool
- parameters can be supplied to tools using a graphical interface
- analysis trees abstract from temporary files: treated as cache

Analysis interface (2)

Conclusions and future work

GenSpect brings together the worlds of Petri Nets and proces algebra.
μ CRL is extended such that:

- Petri Nets can be facilitated
- the treshold for new users is lowered

Future work:

- formalise the syntax and semantics of mCRL2
- define a translation from HL-GenSpect to LL-GenSpect
- finish mCRL2 toolset and apply it to a number of real world cases
- find a connection between the toolsets of μ CRL and mCRL2

