
12

/ department of mathematics and computer scienceJJ J N I II 1/27JJ J N I II 1/27

GenSpect
A specification language for Petri Nets and process algebra

Aad Mathijssen

25th May 2005

12

/ department of mathematics and computer scienceJJ J N I II 2/27JJ J N I II 2/27

Motivation

Bring stand-alone developments of specification languages together.
Starting point: find a common base for Petri Nets and process algebra with data

x2 x2i k l j

It should be possible to translate Petri Nets to process algebra:

• places are unordered buffers

• transitions are memoryless input/output relations

• arcs define communication between places and transitions

12

/ department of mathematics and computer scienceJJ J N I II 3/27JJ J N I II 3/27

Motivation (2)

We would like to use µCRL as a target for this translation. Unfortunately, there
are a number of problems:

• all actions involved in the firing of transitions occur at the same time

• component-based approach enforces the need for local communication

• coloured Petri Nets often use a higher-order data language instead of a first-
order language

12

/ department of mathematics and computer scienceJJ J N I II 4/27JJ J N I II 4/27

GenSpect language

Distinguish two levels:

• low-level: µCRL-like language (developed by the OAS group)

• high-level: Petri Net-like language focusing on modular design (developed
by the IS group)

Requirement: every high-level specification can be translated to a low-level spec-
ification

12

/ department of mathematics and computer scienceJJ J N I II 5/27JJ J N I II 5/27

Low-level GenSpect

Process algebra with data, which is basically timed µCRL with the following
additions:

• true concurrency (concurrency in Petri Nets)

• local communication (modularity of HL-GenSpect)

• higher-order abstract data types (colours in Petri Nets)

We will call this language mCRL2.

12

/ department of mathematics and computer scienceJJ J N I II 6/27JJ J N I II 6/27

True concurrency

Changes with respect to µCRL:

• sync operator | does not communicate anymore

• a sync of actions is called a multi-action, e.g.
a, a|b, b|a, a|b|c, a|b|a, a(t)|b(u)|a(v)

• added communication operator Γ for the communication of multi-actions,
e.g. where t = u and t 6= v:
Γ{ a|b→c }(a(t)|b(u)) = c(t), Γ{ a|b→c }(a(t)|b(v)) = a(t)|b(v),
Γ{ a|b|c→d }(a|b|c|d) = d|d

• added visibility operator∇ to restrict behaviour of multi-actions, e.g.
∇{ a,b }(a ‖ b) = a · b + b · a, ∇{ a|b }(a ‖ b) = a|b,
∇{ a|b }(a|b|c) = δ, ∇{ a,b|c }(a ‖ b ‖ c) = a · (b|c) + (b|c) · a

Γ also implements local communication.

12

/ department of mathematics and computer scienceJJ J N I II 7/27JJ J N I II 7/27

mCRL2 process language

Process expressions have the following syntax:

p ::= a | δ | τ | p + p | p · p | p ‖ p | p T p | p|p |X
| a(~d) | (d = d) → p, p | p ↪ d |X(~d) |

∑
−→x:s p

| ∇V (p) | ΓC(p) | ∂H(p) | τI(p) | ρR(p)

Process equations are formed as follows:

pe ::= X = p |X(−−→x : s) = p

Process specifications:

sp ::= (act (a; | a : ~s;)+ | proc (pe;)+)∗ init p;

12

/ department of mathematics and computer scienceJJ J N I II 8/27JJ J N I II 8/27

Petri Net translation

Petri Nets can be expressed in mCRL2:

x2 x2i k l j

Translation to mCRL2:

Sqr i,o =
∑

n:N get i(n)|put o(n
2) · Sqr i,o

Pi,o(b : Bag(N)) =
∑

n:N put i(n) · Pi,o(b ∪ {n }) +∑
n:N n ∈ b → get o(n) · Pi,o(b \ {n })

DSqr i,j =∇V (ΓC(Sqr i,k ‖ Pk,l(∅) ‖ Sqr l,j))

where

C = { putk |putk → putk, get l |get l → get l }, V = { get i |putk, get l |put j }

12

/ department of mathematics and computer scienceJJ J N I II 9/27JJ J N I II 9/27

Beyond Petri Nets

Connected places:

i k j

P 2 =∇{ put i,passk,get j }(Γ{ getk|getk→passk }(Pi,k(∅) ‖ Pk,j(∅)))

Connected transitions:

dup

inc

mul

12

/ department of mathematics and computer scienceJJ J N I II 10/27JJ J N I II 10/27

mCRL2 data language

Problems with the current µCRL data language:

• first-order language (coloured Petri Nets)

• lack of concrete data types with a comfortable syntax

Problems with existing data languages:

• algebraic specification languages are often first-order and lack concrete data
types

• functional programming languages cannot handle open terms and are fo-
cused on evaluation only

• it is often hard to integrate an existing language in a toolset

12

/ department of mathematics and computer scienceJJ J N I II 11/27JJ J N I II 11/27

mCRL2 data language (2)

Conclusion: we define our own language.

Approach:

• define a core theory of higher-order algebraic specification

• add concrete data types:

– add syntax

– implement data types within the core theory

12

/ department of mathematics and computer scienceJJ J N I II 12/27JJ J N I II 12/27

Higher-order algebraic specification

Concepts: sorts, operations, terms and equations

Higher-order sorts are constructed as follows, where B is a set of base sorts:

S := B | S → S

An operation is of the form f : s, which means that all operations are constants.

Data terms are constructed from variables and operations:

d ::= x : s | f : s | d(d)

12

/ department of mathematics and computer scienceJJ J N I II 13/27JJ J N I II 13/27

Higher-order algebraic specification (2)

We use a conditional equational logic to express properties of data:

φ ::= ∀−→x:s. d = d ∧ · · · ∧ d = d → d = d

Data specification elements:

dse ::= sort (b;)+

| cons (f : s;)+

|map (f : s;)+

| (var (x : s;)+)? eqn (φ;)+

Data specification:
ds ::= dse∗

12

/ department of mathematics and computer scienceJJ J N I II 14/27JJ J N I II 14/27

Sugaring the data language

For the purpose of user-friendliness, we add sugar:

• s0 × · · · × sn → s is a shorthand for s0 → · · · → sn → s, where → is
right-associative

• t(t0, . . . , tn) is a shorthand for t(t0) · · · (tn), where application is left-
associative

• sort references can be defined:

sort B = C → D;

• add prefix, infix and mixfix notation for concrete data types, together with
operator precedence

12

/ department of mathematics and computer scienceJJ J N I II 15/27JJ J N I II 15/27

Concrete data types

General:

• equality d == d, inequality d 6= d and conditional if (d, d, d)

• lambda expressions λ−→x:s.d

• where clauses d whr x = d, . . . , x = d end

Basic data types:

• Booleans (B)
true, false,¬d, d ∧ d, d ∨ d, d ⇒ d,∀−→x:s.d,∃−→x:s.d

• Numbers (P, N and Z)
0, 1,−1, 2,−2, . . .
d < d, d ≤ d, d > d, d ≥ d,−d, d + d, d− d, d ∗ d, d div d, d mod d, . . .

12

/ department of mathematics and computer scienceJJ J N I II 16/27JJ J N I II 16/27

Concrete data types (2)

Type constructors:

• structured types (sum types and product types)

struct c1(pr 1,1 : A1,1, . . . , pr 1,k1
: A1,k1

)?is_c1

| c2(pr 2,1 : A2,1, . . . , pr 2,k2
: A2,k2

)?is_c2
...

| cn(prn,1 : An,1, . . . , prn,kn
: An,kn

)?is_cn

• lists (List(s))
[], [d, . . . , d], #d, d . d, d / d, d++d, d.d

• sets and bags (Set(s),Bag(s))
∅, { d, . . . , d }, { d:d, . . . , d:d }, {x:s | d }
#d, d ∈ d, d ⊆ d, d ⊂ d, d ∪ d, d \ d, d ∩ d, d

12

/ department of mathematics and computer scienceJJ J N I II 17/27JJ J N I II 17/27

Example: Sliding Window Protocol

12

/ department of mathematics and computer scienceJJ J N I II 18/27JJ J N I II 18/27

Example: Sliding Window Protocol (2)

12

/ department of mathematics and computer scienceJJ J N I II 19/27JJ J N I II 19/27

Tool support

Goals:

• provide functionality comparable to that of the µCRL toolset; in particular
the concept of linear process equations (LPEs) play a central role

• simplify the process of analysing specifications

Because of all changes and additions, reusing the existing µCRL toolset is almost
impossible. Furthermore, there are other changes:

• added time (discrete/continuous, absolute)

• added don’t care values

12

/ department of mathematics and computer scienceJJ J N I II 20/27JJ J N I II 20/27

Development status

Finished (mostly):

• parser (Aad)

• type checker (Yaroslav)

• implementation of concrete data types (Aad)

• lineariser (Jan Friso, Muck)

• rewriter (Muck)

• nextstate (Muck) (µCRL: stepper)

• findsolutions (Muck) (µCRL: enumerator)

• simulator (Muck) (both textual and graphical)

• instantiator (Muck)

12

/ department of mathematics and computer scienceJJ J N I II 21/27JJ J N I II 21/27

Development status (2)

To be implemented:

• LPE model checker using the techniques of parameterised boolean equation
systems (PBESs) (Jan Friso, Muck)

• LPE reduction tools (?)

• graphical analysis interface (Jan Friso, Aad, Muck)

• prover (Jaco)

• Petri Net to mCRL2 convertor (Yaroslav, Jofra)

12

/ department of mathematics and computer scienceJJ J N I II 22/27JJ J N I II 22/27

Implementation of concrete data types

General requirements:

• computability: reading the equations from left to right, we obtain a term
rewrite system that is confluent, terminating and complete (if possible)

• simplicity: internal representation should be unique

• efficiency:

– reduction lengths should be minimised

– the number of equations should be minimised

• provability: the number of properties that can be proved on open terms
should be maximised

12

/ department of mathematics and computer scienceJJ J N I II 23/27JJ J N I II 23/27

Implementation of concrete data types (2)

Data type specific:

• lambda expressions and where clauses are implemented as named func-
tions, e.g. λy:N.(x + y) becomes f (x), where f : N → N → N satisfies
f (x)(y) = x + y, for all x, y : N

• quantifications over sort s are implemented as functions of sort
(B → s) → s

• numbers have a unique binary representation:

– sort P has constructors 1 : P and cDub : B× P → P
– sort N has constructors 0 : N and cNat : P → N
– sort Z has constructors cInt : N → Z and cNeg : P → Z

• sets and bags over sort s are implemented as functions s → B and s → N

12

/ department of mathematics and computer scienceJJ J N I II 24/27JJ J N I II 24/27

Graphical simulator

Features: simulate LPEs, different views

12

/ department of mathematics and computer scienceJJ J N I II 25/27JJ J N I II 25/27

Analysis interface

Features:

• tree represents an analysis:

– each node is labelled with the result of an analysis step

– each analysis step corresponds to the execution of a tool

• parameters can be supplied to tools using a graphical interface

• analysis trees abstract from temporary files: treated as cache

12

/ department of mathematics and computer scienceJJ J N I II 26/27JJ J N I II 26/27

Analysis interface (2)

12

/ department of mathematics and computer scienceJJ J N I II 27/27JJ J N I II 27/27

Conclusions and future work

GenSpect brings together the worlds of Petri Nets and proces algebra.

µCRL is extended such that:

• Petri Nets can be facilitated

• the treshold for new users is lowered

Future work:

• formalise the syntax and semantics of mCRL2

• define a translation from HL-GenSpect to LL-GenSpect

• finish mCRL2 toolset and apply it to a number of real world cases

• find a connection between the toolsets of µCRL and mCRL2

