TU/e

One-and-a-halfth-order Logic

Aad Mathijssen Murdoch J. Gabbay

24th May 2006

Motivation

Consider the following valid assertions in first-order logic:

- $\bullet \ \phi \supset \psi \supset \phi$
- if $a \notin fn(\phi)$ then $\phi \supset \forall a.\phi$
- if $a \notin fn(\phi)$ then $\phi \supset \phi[\![a \mapsto t]\!]$
- if $b \notin fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket$

These are not valid syntax in first-order logic, because of meta-level concepts:

- meta-variables *varying* over syntax: ϕ , ψ , a, b, t
- properties of syntax: $a \notin fn(\phi)$, $\phi \llbracket a \mapsto t \rrbracket$, α -equivalence

Is there a logic in which the above assertions can be expressed directly in the syntax?

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

And for $b \notin fn(\phi)$:

$$\frac{\overline{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket}}{\vdash \forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})} \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{A}\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{x})} \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{x})} \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{x})} \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)} (\mathbf{x})} (\mathbf{x})} \qquad \qquad \frac{\overline{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(c)} (\mathbf{x})}{\vdash \forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(c)} (\mathbf{x})} (\mathbf{x})}$$

The left ones are not derivations, they are *schemas* of derivations. When p is a *specific* atomic predicate and *c* and *d* are *specific* variables, the right ones are derivations; they are *instances* of the schemas on the left.

Is there a logic in which the derivation on the left is a derivation too?

Motivation (3)

First-order logic and its sequent calculus formalises *reasoning*.

But also a lot of reasoning is *about* first-order logic.

So why shouldn't that be formalised?

One-and-a-halfth-order logic does this by means of:

- formalising meta-variables;
- making properties of syntax explicit.

TU/e

• Introduction to one-and-a-halfth-order logic

technische universiteit eindhoven

- Syntax of one-and-a-halfth-order logic
- Sequent calculus for one-and-a-halfth-order logic
- Relation to first-order logic
- Axiomatisation of one-and-a-halfth-order logic
- Conclusions, related and future work

Introduction

In the syntax of one-and-a-halfth-order logic:

- Unknowns P , Q and T represent meta-level variables ϕ , ψ and t.
- Atoms a and b represent meta-level variables a and b.
- Freshness a # P represents $a \notin fn(\phi)$.
- Explicit substitution $P[a \mapsto T]$ represents $\phi \llbracket a \mapsto t \rrbracket$.

Introduction (2)

The meta-level assertions in first-order logic

 $\bullet \ \phi \supset \psi \supset \phi$

TU/

- if $a \notin fn(\phi)$ then $\phi \supset \forall a.\phi$
- if $a \notin fn(\phi)$ then $\phi \supset \phi[\![a \mapsto t]\!]$
- if $b \not\in fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket$

correspond to valid assertions in the syntax of one-and-a-halfth-order logic:

- $P \supset Q \supset P$
- $a \# P \to P \supset \forall [a] P$
- $a \# P \to P \supset P[a \mapsto T]$
- $b \# P \to \forall [a] P \supset \forall [b] P[a \mapsto b]$

Introduction (3)

In derivations of one-and-a-halfth-order logic:

- *Contexts of freshnesses* are added to the sequents.
- *Derivability of freshnesses* are added as side-conditions.
- Substitutional equivalence on terms is added as two derivation rules, taking care of α -equivalence and substitution.

Introduction (4)

TU/e

The (schematic) derivations in first-order logic

correspond to valid derivations in one-and-a-halfth-order logic:

Introduction (5)

The (schematic) derivations in first-order logic, where $b \not\in fn(\phi)$,

$$\frac{\overline{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket} (\mathbf{A}\mathbf{x})}{[\forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\supset \mathbf{R}) \qquad \qquad \frac{\overline{\forall c.p(c) \vdash \forall d.p(d)} (\mathbf{A}\mathbf{x})}{[\vdash \forall c.p(c) \supset \forall d.p(d)} (\supset \mathbf{R})}$$

correspond to valid derivations in one-and-a-halfth-order logic:

$$\begin{array}{l} & \frac{\forall [a]P \vdash_{_{b\#P}} \forall [a]P}{\forall [a]P \vdash_{_{b\#P}} \forall [b]P[a \mapsto b]} \left(\mathbf{StructR} \right) & (b\#P \vdash_{_{\mathsf{SUB}}} \forall [a]P = \forall [b]P[a \mapsto b] \right) \\ \hline & \forall [a]P \supset \forall [b]P[a \mapsto b] \left(\supset \mathbf{R} \right) \\ & \frac{\forall [c]\mathbf{p}(c) \vdash_{_{\emptyset}} \forall [c]\mathbf{p}(c)}{\forall [c]\mathbf{p}(c) \vdash_{_{\emptyset}} \forall [d]\mathbf{p}(d)} \left(\mathbf{StructR} \right) & (\emptyset \vdash_{_{\mathsf{SUB}}} \forall [c]\mathbf{p}(c) = \forall [d]\mathbf{p}(d) \right) \\ & \frac{\forall [c]\mathbf{p}(c) \vdash_{_{\emptyset}} \forall [d]\mathbf{p}(d)}{\vdash_{_{\emptyset}} \forall [c]\mathbf{p}(c) \supset \forall [d]\mathbf{p}(d)} \left(\supset \mathbf{R} \right) \end{array}$$

Syntax of one-and-a-halfth-order logic

We use **Nominal Terms** to specify the syntax.

Nominal terms have built-in support for:

- meta-variables
- freshness
- binding

Nominal terms allow for a *direct* and *natural* representation of systems with binding.

Nominal terms are *first-order*, not higher-order.

Sorts

Base sorts \mathbb{P} for 'predicates' and \mathbb{T} for 'terms'.

Atomic sort \mathbb{A} for the object-level variables.

Sorts τ :

 $\tau ::= \mathbb{P} \mid \mathbb{T} \mid \mathbb{A} \mid [\mathbb{A}] \tau$

Terms

TU

Atoms a, b, c, \ldots have sort \mathbb{A} ; they represent *object-level* variable symbols.

Unknowns X, Y, Z, \ldots have sort τ ; they represent *meta-level* variable symbols. Let P, Q, R be unknowns of sort \mathbb{P} , and T, U of sort \mathbb{T} .

We call $\pi \cdot X$ a **moderated unknown**. This represents the **permutation of atoms** π acting on an unknown term.

Term-formers f_{ρ} have an associated **arity** $\rho = (\tau_1, \ldots, \tau_n)\tau$. f : ρ means 'f with arity ρ '.

Terms *t*, subscripts indicate sorting rules:

$$t ::= a_{\mathbb{A}} \mid (\pi \cdot X_{\tau})_{\tau} \mid ([a_{\mathbb{A}}]t_{\tau})_{[\mathbb{A}]\tau} \mid (\mathsf{f}_{(\tau_{1},...,\tau_{n})\tau}(t_{\tau_{1}}^{1},\ldots,t_{\tau_{n}}^{n}))_{\tau}$$

Write f for f() if n = 0.

Terms (2)

TU

Term-formers for one-and-a-halfth-order logic:

- \bot : () \mathbb{P} represents *falsity*;
- \supset : $(\mathbb{P}, \mathbb{P})\mathbb{P}$ represents *implication*, write $\phi \supset \psi$ for $\supset (\phi, \psi)$;
- \forall : $([\mathbb{A}]\mathbb{P})\mathbb{P}$ represents universal quantification, write $\forall [a]\phi$ for $\forall ([a]\phi)$;
- \approx : $(\mathbb{T}, \mathbb{T})\mathbb{P}$ represents object-level equality, write $t \approx u$ for $\approx (t, u)$;
- var : (A)T is variable casting, forced upon us by the sort system, write a for var(a);
- sub : $([\mathbb{A}]\tau, \mathbb{T})\tau$, where $\tau \in \{\mathbb{T}, [\mathbb{A}]\mathbb{T}, \mathbb{P}, [\mathbb{A}]\mathbb{P}\}$, is explicit substitution, write $v[a \mapsto t]$ for sub([a]v, t);
- \bullet $p_1,\ldots,p_n:(\mathbb{T},\ldots,\mathbb{T})\mathbb{P}$ are object-level predicate term-formers;
- $f_1,\ldots,f_m:(\mathbb{T},\ldots,\mathbb{T})\mathbb{T}$ are object-level term-formers.

Terms (3)

Sugar:

Descending order of operator precedence:

$$[a]_{-},\ _[_\mapsto _],\ \approx,\ \{\neg,\forall,\exists\},\ \{\wedge,\vee\},\ \supset,\ \Leftrightarrow$$

 \land , \lor , \supset and \Leftrightarrow associate to the right.

Example terms of sort \mathbb{P} :

 $P \supset Q \supset P \qquad P \supset \forall [a] P \qquad P \supset P[a \mapsto T] \qquad \forall [a] P \supset \forall [b] P[a \mapsto b]$

Freshness

TU

Freshness (assertions) a # t, which means 'a is fresh for t. If t is an unknown X, the freshness is called **primitive**.

Write Δ for a set of *primitive* freshnesses and call it a **freshness context**. We may leave out set brackets, writing a # X, b # Y instead of $\{a \# X, b \# Y\}$. We may also write a # X, Y for a # X, a # Y.

We call $\Delta \to t$ a **term-in-context**. We may write t if $\Delta = \emptyset$.

Example terms-in-context of sort \mathbb{P} :

$$\begin{split} P \supset Q \supset P & a \# P \rightarrow P \supset \forall [a] P \\ a \# P \rightarrow P \supset P[a \mapsto T] & b \# P \rightarrow \forall [a] P \supset \forall [b] P[a \mapsto b] \end{split}$$

Derivability of freshness

$$\frac{\overline{a\#b}}{a\#a} (\#\mathbf{ab}) \quad \frac{\pi^{-1}(a)\#X}{a\#\pi \cdot X} (\#\mathbf{X})$$
$$\frac{\overline{a\#b}}{a\#[a]t} (\#[]\mathbf{a}) \quad \frac{a\#t}{a\#[b]t} (\#[]\mathbf{b}) \quad \frac{a\#t_1 \cdots a\#t_n}{a\#\mathbf{f}(t_1, \dots, t_n)} (\#\mathbf{f})$$

 \boldsymbol{a} and \boldsymbol{b} range over distinct atoms.

Write $\Delta \vdash a \# t$ when there exists a derivation of a # t using the elements of Δ as assumptions. Say that a # t is derivable from Δ .

Examples:

TU/e

$$\vdash a \# \forall [a] P \qquad a \# P \vdash a \# \forall [b] P \qquad a \# T, U \vdash a \# T \approx U$$

Derivability of equality

Equality (assertions) t = u, where t and u are of the same sort.

Derivability:

TU/e

$$\begin{split} \overline{t = t} & (\mathbf{refl}) \quad \frac{t = u}{u = t} (\mathbf{symm}) \quad \frac{t = u \quad u = v}{t = v} (\mathbf{tran}) \\ \frac{t = u}{C[t] = C[u]} (\mathbf{cong}) \quad \frac{a \# t \quad b \# t}{(a \ b) \cdot t = t} (\mathbf{perm}) \\ \frac{\Delta^{\pi} \sigma}{t^{\pi} \sigma = u^{\pi} \sigma} (\mathbf{ax_A}) A \text{ is } \Delta \to t = u \quad \begin{bmatrix} a \# X_1, \dots, a \# X_n \end{bmatrix} \quad \Delta \\ \vdots \\ \frac{t = u}{t = u} (\mathbf{fr}) \quad (a \notin t, u, \Delta) \end{split}$$

Write $\Delta \vdash_{\tau} t = u$ when t = u is derivable from Δ using axioms A from T only.

Derivability of equality (2)

Nominal Algebra is the logic of equality between nominal terms.

Nominal algebraic theory SUB of explicit substitution:

$$\begin{array}{ll} (\mathbf{var} \mapsto) & a[a \mapsto T] = T \\ (\# \mapsto) & a\#X \to X[a \mapsto T] = X \\ (\mathbf{f} \mapsto) & \mathbf{f}(X_1, \dots, X_n)[a \mapsto T] = \mathbf{f}(X_1[a \mapsto T], \dots, X_n[a \mapsto T]) \\ (\mathbf{abs} \mapsto) & b\#T \to ([b]X)[a \mapsto T] = [b](X[a \mapsto T]) \\ (\mathbf{ren} \mapsto) & b\#X \to X[a \mapsto b] = (b \ a) \cdot X \end{array}$$

Examples:

TU/e

$$\begin{array}{c} b\#P\vdash_{\mathrm{sub}}\forall[a]P=\forall[b]P[a\mapsto b]\\ \vdash_{\mathrm{sub}}X[a\mapsto a]=X\\ a\#Y\vdash_{\mathrm{sub}}Z[a\mapsto X][b\mapsto Y]=Z[b\mapsto Y][a\mapsto X[b\mapsto Y]] \end{array}$$

Sequent calculus for one-and-a-halfth-order logic

We may call terms of sort \mathbb{P} **predicates**, and denote them by ϕ and ψ .

Let **(predicate) contexts** Φ, Ψ be finite sets of predicates. We may write ϕ for $\{\phi\}$, ϕ, Φ for $\{\phi\} \cup \Phi$, and Φ, Φ' for $\Phi \cup \Phi'$.

A sequent is a triple $\Phi \vdash_{\Delta} \Psi$. We may omit empty predicate contexts, e.g. writing \vdash_{Δ} for $\emptyset \vdash_{\Delta} \emptyset$.

Define derivability on sequents...

TU

Sequent calculus (2)

TU/e

Rules resembling Gentzen's sequent calculus for first-order logic:

$$\begin{split} \overline{\phi, \Phi \vdash_{\Delta} \Psi, \phi} (\mathbf{A}\mathbf{x}) & \overline{\perp, \Phi \vdash_{\Delta} \Psi} (\bot \mathbf{L}) \\ \frac{\Phi \vdash_{\Delta} \Psi, \phi - \psi, \Phi \vdash_{\Delta} \Psi}{\phi \supset \psi, \Phi \vdash_{\Delta} \Psi} (\supset \mathbf{L}) & \frac{\phi, \Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \phi \supset \psi} (\supset \mathbf{R}) \\ \frac{\phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi}{\forall [a] \phi, \Phi \vdash_{\Delta} \Psi} (\forall \mathbf{L}) & \frac{\Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \forall [a] \psi} (\forall \mathbf{R}) \quad (\Delta \vdash a \# \Phi, \Psi) \\ \frac{\phi[a \mapsto t'], \Phi \vdash_{\Delta} \Psi}{t' \approx t, \phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi} (\approx \mathbf{L}) & \overline{\Phi \vdash_{\Delta} \Psi, t \approx t} (\approx \mathbf{R}) \end{split}$$

Sequent calculus (3)

Other rules:

TU/e

$$\begin{split} \frac{\phi', \Phi \vdash_{\scriptscriptstyle \Delta} \Psi}{\phi, \Phi \vdash_{\scriptscriptstyle \Delta} \Psi} \left(\mathbf{StructL} \right) & \left(\Delta \vdash_{_{\mathsf{SUB}}} \phi' = \phi \right) \\ \frac{\Phi \vdash_{\scriptscriptstyle \Delta} \Psi, \psi'}{\Phi \vdash_{\scriptscriptstyle \Delta} \Psi, \psi} \left(\mathbf{StructR} \right) & \left(\Delta \vdash_{_{\mathsf{SUB}}} \psi' = \psi \right) \\ \frac{\Phi \vdash_{\scriptscriptstyle \Delta \sqcup \{a \# X_1, \dots, a \# X_n\}} \Psi}{\Phi \vdash_{\scriptscriptstyle \Delta} \Psi} \left(\mathbf{Fresh} \right) & \left(a \not\in \Phi, \Psi, \Delta \right) \\ \frac{\Phi \vdash_{\scriptscriptstyle \Delta} \Psi, \phi - \phi', \Phi \vdash_{\scriptscriptstyle \Delta} \Psi}{\Phi \vdash_{\scriptscriptstyle \Delta} \Psi} \left(\mathbf{Cut} \right) & \left(\Delta \vdash_{_{\mathsf{SUB}}} \phi = \phi' \right) \end{split}$$

Example derivations

TU/e

Derivation of $a \# P \to P \supset \forall [a] P$:

$$\frac{\overline{P \vdash_{a \# P} P}(\mathbf{A}\mathbf{x})}{\frac{P \vdash_{a \# P} \forall [a] P}{\vdash_{a \# P} \forall [a] P} (\forall \mathbf{R})} (a \# P \vdash a \# P)$$

Derivation of $a \# P \to P \supset P[a \mapsto T]$:

$$\frac{\overline{P \vdash_{a \# P} P}\left(\mathbf{Ax}\right)}{\frac{P \vdash_{a \# P} P\left[a \mapsto T\right]}{\vdash_{a \# P} P \supset P\left[a \mapsto T\right]} \left(\mathbf{StructR}\right) \quad \left(a \# P \vdash_{\mathsf{sub}} P = P[a \mapsto T]\right)$$

Properties of the sequent calculus

We may *instantiate* unknowns and *permute* atoms in derivations.

Theorem 1 If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$ and $\Delta' \vdash \Delta^{\pi} \sigma$, then $\Pi^{\pi}(\sigma, \Delta')$ is a valid derivation of $\Phi^{\pi} \sigma \vdash_{\Delta'} \Psi^{\pi} \sigma$.

 $\Pi^{\pi}(\sigma,\Delta')$ is Π in which:

TU

- each atom a is replaced by $\pi(a)$;
- each moderated unknown $\pi' \cdot X$ is replaced by $\pi' \cdot \sigma(X)$;
- each freshness context Δ is replaced by Δ' .

Properties of the sequent calculus (2)

technische universiteit eindhoven

For example, Π is the derivation of $a \# P \to P \supset P[a \mapsto T]$:

$$\frac{\overline{P \vdash_{a \# P} P}\left(\mathbf{Ax}\right)}{\frac{P \vdash_{a \# P} P[a \mapsto T]}{\vdash_{a \# P} P[a \mapsto T]} (\mathbf{StructR}) \quad (a \# P \vdash_{\mathsf{sub}} P = P[a \mapsto T])} (\supseteq \mathbf{R})$$

Take $\pi = (a \ b)$, $\sigma = [\mathbf{p}(a)/P, a/T]$ and $\Delta' = \emptyset$, then:

• $\Delta' \vdash \Delta^{\pi} \sigma$, i.e. $\emptyset \vdash b \# \mathbf{p}(a)$;

TU/

• $\Pi^{\pi}(\sigma, \Delta')$ is the following valid derivation of $p(a) \supset p(a)[b \mapsto a]$:

$$\begin{array}{c} \frac{\overline{\mathsf{p}(a) \vdash_{\scriptscriptstyle \emptyset} \mathsf{p}(a)} \left(\mathbf{A} \mathbf{x} \right) }{ \frac{\mathsf{p}(a) \vdash_{\scriptscriptstyle \emptyset} \mathsf{p}(a) [b \mapsto a]}{\vdash_{\scriptscriptstyle \emptyset} \mathsf{p}(a) \supset \mathsf{p}(a) [b \mapsto a]} (\mathbf{StructR}) \quad (\emptyset \vdash_{\mathsf{sub}} \mathsf{p}(a) = \mathsf{p}(a) [b \mapsto a]) \end{array}$$

TU/

Properties of the sequent calculus (3)

Theorem 2 [Cut elimination] The (Cut) rule is admissible in the system without it.

Corollary 3 The sequent calculus is **consistent**, i.e. \vdash_{Δ} can never be derived.

Relation to First-order Logic

TU/e

Call a term or a predicate context **ground** if it does not contain unknowns or explicit substitutions.

Call $\Phi \vdash \Psi$ a **first-order sequent**, when Φ and Ψ are ground predicate contexts.

Genzten's sequent calculus for first-order logic:

$$\begin{array}{ccc} \overline{\phi, \ \Phi \vdash \Psi, \ \phi} \ (\mathbf{A}\mathbf{x}) & \overline{\perp, \ \Phi \vdash \Psi} \ (\perp \mathbf{L}) \\ \\ \frac{\Phi \vdash \Psi, \ \phi & \psi, \ \Phi \vdash \Psi}{\phi \supset \psi, \ \Phi \vdash \Psi} \ (\supset \mathbf{L}) & \frac{\phi, \ \Phi \vdash \Psi, \ \psi}{\Phi \vdash \Psi, \ \phi \supset \psi} \ (\supset \mathbf{R}) \\ \\ \frac{\phi \llbracket a \mapsto t \rrbracket, \ \Phi \vdash \Psi}{\forall a.\phi, \ \Phi \vdash \Psi} \ (\forall \mathbf{L}) & \frac{\Phi \vdash \Psi, \ \phi}{\Phi \vdash \Psi, \ \forall a.\phi} \ (\forall \mathbf{R}) \quad (a \not\in fn(\Phi, \Psi)) \\ \\ \\ \frac{\phi \llbracket a \mapsto t' \rrbracket, \ \Phi \vdash \Psi}{t' \approx t, \ \phi \llbracket a \mapsto t \rrbracket, \ \Phi \vdash \Psi} \ (\approx \mathbf{L}) & \overline{\Phi \vdash \Psi, \ t \approx t} \ (\approx \mathbf{R}) \end{array}$$

Relation to First-order Logic (2)

Note that:

TU

- we write $\forall a.\phi$ for $\forall [a]\phi$;
- $[\![a\mapsto t]\!]$ is capture-avoiding substitution;
- $a \notin fn(\phi)$ is '*a* does not occur in the free names of ϕ ';
- We take predicates up to α -equivalence.

Theorem 4 $\Phi \vdash \Psi$ is derivable in the sequent calculus for first-order logic, iff $\Phi \vdash_{\theta} \Psi$ is derivable in the sequent calculus for one-and-a-halfth-order logic.

So on ground terms, one-and-a-halfth-order logic *is* first-order logic.

Theory FOL extends theory SUB with the following axioms:

technische universiteit eindhoven

TU/e

$$P \supset Q \supset P = \top \quad \neg \neg P \supset P = \top \quad \text{(Props)}$$

$$(P \supset Q) \supset (Q \supset R) \supset (P \supset R) = \top \quad \bot \supset P = \top$$

$$\forall [a] P \supset P[a \mapsto T] = \top \quad \text{(Quants)}$$

$$\forall [a] (P \land Q) \Leftrightarrow \forall [a] P \land \forall [a] Q = \top$$

$$a \# P \rightarrow \forall [a] (P \supset Q) \Leftrightarrow P \supset \forall [a] Q = \top$$

$$T \approx T = \top \quad U \approx T \land P[a \mapsto T] \supset P[a \mapsto U] = \top \quad \text{(Eq)}$$

Axioms are all of the form $\phi = \top$, which intuitively means ' ϕ is true'.

Note that this is a *finite* number of axioms.

TU

Axiomatisation of one-and-a-halfth-order logic (2)

For $\Phi \equiv {\phi_1, \ldots, \phi_n}$, define its **conjunctive form** Φ^{\wedge} to be \top when n = 0, and $\phi_1 \wedge \cdots \wedge \phi_n$ when n > 0. Analogously, define the **disjunctive form** Φ^{\vee} to be \bot when n = 0, and $\phi_1 \vee \cdots \vee \phi_n$ when n > 0.

Theorem 5 For all predicate contexts Φ , Ψ and freshness contexts Δ :

 $\Phi \vdash_{\scriptscriptstyle \Delta} \Psi \text{ is derivable } \quad \text{iff } \quad \Delta \vdash_{\scriptscriptstyle \mathsf{FOL}} \Phi^{\wedge} \, \supset \, \Psi^{\vee} \, = \, \top.$

So sequent and equational derivability are equivalent.

Corollary 6 Theory FOL is consistent, i.e. $\Delta \vdash_{FOL} \top = \bot$ does not hold.

Conclusions

Using nominal terms, we can:

- *accurately* represent systems with binding: e.g. explicit substitution and first-order logic;
- specify *novel* systems with their own mathematical interest: e.g. one-and-a-halfth-order logic.

One-and-a-halfth-order logic:

- makes meta-level concepts of first-order logic *explicit*;
- has a sequent calculus with *syntax-directed* rules;
- has a *semantics* in first-order logic on ground terms;
- has a *finite* equational axiomatisation;
- is the *result* of axiomatising first-order logic in nominal algebra.

Related work

Second-order logic:

- In this logic we can quantify over predicates *anywhere*, which makes it more expressive than one-and-a-halfh-order logic.
- On the other hand, we can easily extend theory FOL with *one* axiom to express the principle of induction on natural numbers:

$$P[a\mapsto 0] \land \forall [a](P \supset P[a\mapsto succ(\mathsf{var}(a))]) \supset \forall [a]P \ = \ \top$$

Higher-order logic (HOL):

- is type raising, while one-and-a-halfth-order logic is *not*: $P[a \mapsto t]$ corresponds to f(t) in HOL, where $f : \mathbb{T} \to \mathbb{P}$; $P[a \mapsto t][a' \mapsto t']$ corresponds to f'(t)(t') where $f' : \mathbb{T} \to \mathbb{T} \to \mathbb{P}$, and so on...
- One-and-a-halfth-order logic is not a subset of HOL because of freshnesses.

Future work

- Concrete semantics for one-and-a-halfth-order logic on non-ground terms.
- Let unknowns range over *sequent derivations*, and establish a Curry-Howard correspondence (term-in-contexts as types, derivations as terms).
- Two-and-a-halfth-order logic (where you can abstract X)?
- Implementation and automation?

Current status

- M.J. Gabbay, A.H.J. Mathijssen, Nominal Algebra, submitted CSL'06.
- M.J. Gabbay, A.H.J. Mathijssen, Capture-avoiding Substitution as a Nominal Algebra, submitted ICTAC'06.
- M.J. Gabbay, A.H.J. Mathijssen, One-and-a-halfth-order Logic, PPDP'06.

Just to scare you

$$\frac{P[b \mapsto c][a \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{\forall [a] P[b \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]} (\mathsf{Ax}) \\
\frac{\forall [a] P[b \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{(\forall [a] P)[b \mapsto c] \vdash_{c \# P} P[b \mapsto a][a \mapsto c]} (\mathsf{StructL}) \quad (\mathbf{I.}) \\
\frac{\forall [b] \forall [a] P \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{\forall [b] \forall [a] P \vdash_{c \# P} \forall [c] P[b \mapsto c][a \mapsto c]} (\forall \mathsf{R}) \quad (\mathbf{2.}) \\
\frac{\forall [b] \forall [a] P \vdash_{c \# P} \forall [a] P[b \mapsto a]}{\forall [b] \forall [a] P \vdash_{c \# P} \forall [a] P[b \mapsto a]} (\mathsf{Fresh}) \quad (\mathbf{4.})$$

Side-conditions:

TU/e

$$\mathbf{I.} \ c \# P \vdash_{\mathrm{Sub}} \forall [a] P[b \mapsto c] = (\forall [a] P)[b \mapsto c]$$

2. $c \# P \vdash c \# \forall [b] \forall [a] P$

3.
$$c \# P \vdash_{sub} \forall [c] P[b \mapsto c] [a \mapsto c] = \forall [a] P[b \mapsto a]$$

4. $c \notin \forall [b] \forall [a] P, \forall [a] P[b \mapsto a]$