technische universiteit eindhoven

TU/e

One-and-a-halfth-order Logic

Aad Mathijssen Murdoch J. Gabbay

24th May 2006

/department of mathematics and computer science

Motivation

Consider the following valid assertions in first-order logic:

- $\bullet \phi \supset \psi \supset \phi$
- if $a \notin fn(\phi)$ then $\phi \supset \forall a.\phi$
- if $a \notin fn(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- if $b \notin fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket$

These are *not valid syntax* in first-order logic, because of *meta-level concepts*:

- meta-variables *varying* over syntax: ϕ , ψ , a , b , t
- properties of syntax: $a \notin fn(\phi), \phi[[a \mapsto t]], \alpha$ -equivalence

Is there a logic in which the above assertions can be expressed directly in the syntax?

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

And for $b \notin fn(\phi)$:

$$
\frac{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket}{\vdash \forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\supset \mathbf{R}) \qquad \qquad \frac{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\supset \mathbf{R})
$$

The left ones are not derivations, they are *schemas* of derivations. When p is a *specific* atomic predicate and c and d are *specific* variables, the right ones are derivations; they are *instances* of the schemas on the left.

Is there a logic in which the derivation on the left is a derivation too?

 (Ax)

 $(\supset \mathbf{R})$

 $(\supset \mathbf{R})$

Motivation (3)

First-order logic and its sequent calculus formalises *reasoning*.

But also a lot of reasoning is *about* first-order logic.

So why shouldn't that be formalised?

One-and-a-halfth-order logic does this by means of:

- formalising meta-variables;
- making properties of syntax explicit.

TU/e

• Introduction to one-and-a-halfth-order logic

technische universiteit eindhoven

- Syntax of one-and-a-halfth-order logic
- Sequent calculus for one-and-a-halfth-order logic
- Relation to first-order logic
- Axiomatisation of one-and-a-halfth-order logic
- Conclusions, related and future work

Introduction

In the syntax of one-and-a-halfth-order logic:

- Unknowns P, Q and T represent meta-level variables ϕ , ψ and t.
- Atoms *a* and *b* represent meta-level variables *a* and *b*.
- Freshness $a\#P$ represents $a \notin fn(\phi)$.
- *Explicit substitution* $P[a \mapsto T]$ represents $\phi[a \mapsto t]$.

Introduction (2)

The meta-level assertions in first-order logic

- $\bullet \phi \supset \psi \supset \phi$
- if $a \notin \mathfrak{f}_n(\phi)$ then $\phi \supset \forall a.\phi$
- if $a \notin fn(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- if $b \notin fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket$

correspond to valid assertions in the syntax of one-and-a-halfth-order logic:

- \bullet $P \supset Q \supset P$
- \bullet $a\#P \to P \supset \forall [a]P$
- $a \# P \to P \supset P[a \mapsto T]$
- \bullet $b \# P \rightarrow \forall [a] P \supset \forall [b] P[a \mapsto b]$

Introduction (3)

In derivations of one-and-a-halfth-order logic:

- *Contexts of freshnesses* are added to the sequents.
- *Derivability of freshnesses* are added as side-conditions.
- *Substitutional equivalence on terms* is added as two derivation rules, taking care of α -equivalence and substitution.

Introduction (4)

The (schematic) derivations in first-order logic

correspond to valid derivations in one-and-a-halfth-order logic:

Introduction (5)

The (schematic) derivations in first-order logic, where $b \notin fn(\phi)$,

$$
\frac{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket}{\vdash \forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\supset \mathbf{R}) \qquad \qquad \frac{\forall c.\mathbf{p}(c) \vdash \forall d.\mathbf{p}(d)}{\vdash \forall c.\mathbf{p}(c) \supset \forall d.\mathbf{p}(d)} (\supset \mathbf{R})
$$

correspond to valid derivations in one-and-a-halfth-order logic:

$$
\frac{\forall [a]P \vdash_{\text{sup}} \forall [a]P (\mathbf{A} \mathbf{x})}{\forall [a]P \vdash_{\text{sup}} \forall [b]P[a \mapsto b]} (\text{StructR}) \quad (b \#P \vdash_{\text{sup}} \forall [a]P = \forall [b]P[a \mapsto b])
$$
\n
$$
\frac{\forall [a]P \vdash_{\text{sup}} \forall [b]P[a \mapsto b]}{\forall [a]P \supset \forall [b]P[a \mapsto b]} (\supset \mathbf{R})
$$
\n
$$
\frac{\forall [c]p(c) \vdash_{\text{sup}} \forall [c]p(c)}{\forall [c]p(c) \vdash_{\text{sup}} \forall [d]p(d)} (\text{StructR}) \quad (\emptyset \vdash_{\text{sup}} \forall [c]p(c) = \forall [d]p(d))
$$
\n
$$
\vdash_{\text{sup}} \forall [c]p(c) \supset \forall [d]p(d)} (\supset \mathbf{R})
$$

Syntax of one-and-a-halfth-order logic

We use **Nominal Terms** to specify the syntax.

Nominal terms have built-in support for:

- meta-variables
- freshness
- binding

Nominal terms allow for a *direct* and *natural* representation of systems with binding.

Nominal terms are *first-order*, not higher-order.

Sorts

Base sorts $\mathbb P$ for 'predicates' and $\mathbb T$ for 'terms'.

Atomic sort A for the object-level variables.

Sorts τ :

 $\tau ::= \mathbb{P} | \mathbb{T} | \mathbb{A} | [\mathbb{A}] \tau$

Terms

TU,

Atoms a, b, c, \ldots have sort A; they represent *object-level* variable symbols.

Unknowns X, Y, Z, \ldots have sort τ ; they represent *meta-level* variable symbols. Let P, Q, R be unknowns of sort $\mathbb P$, and T, U of sort $\mathbb T$.

We call $\pi \cdot X$ a **moderated unknown**. This represents the **permutation of atoms** π acting on an unknown term.

Term-formers f_{ρ} have an associated **arity** $\rho = (\tau_1, \ldots, \tau_n)\tau$. f : ρ means 'f with arity ρ' .

Terms t, subscripts indicate sorting rules:

$$
t \ ::= a_{\mathbb{A}} \mid (\pi \cdot X_{\tau})_{\tau} \mid ([a_{\mathbb{A}}]t_{\tau})_{[\mathbb{A}]\tau} \mid (\mathsf{f}_{(\tau_1, ..., \tau_n)\tau}(t^1_{\tau_1}, \dots, t^n_{\tau_n}))_{\tau}
$$

Write f for f() if $n = 0$.

Terms (2)

TU,

Term-formers for one-and-a-halfth-order logic:

- \perp : () **P** represents *falsity*;
- $\bullet \supset : (\mathbb{P}, \mathbb{P})\mathbb{P}$ represents *implication*, write $\phi \supset \psi$ for $\supset (\phi, \psi);$
- $\bullet \forall : ([A] \mathbb{P}) \mathbb{P}$ represents *universal quantification*, write $\forall [a] \phi$ for $\forall ([a] \phi)$;
- $\bullet \approx (\mathbb{T}, \mathbb{T})\mathbb{P}$ represents *object-level equality*, write $t \approx u$ for $\approx (t, u)$;
- var : (A)T is *variable casting*, forced upon us by the sort system, write a for $var(a)$;
- sub : ($[A]\tau, T\tau$, where $\tau \in \{\mathbb{T}, [A]\mathbb{T}, \mathbb{P}, [A]\mathbb{P}\}\$, is *explicit substitution*, write $v[a \mapsto t]$ for sub($[a]v, t$);
- $p_1, \ldots, p_n : (\mathbb{T}, \ldots, \mathbb{T})\mathbb{P}$ are *object-level predicate term-formers*;
- $f_1, \ldots, f_m : (\mathbb{T}, \ldots, \mathbb{T}) \mathbb{T}$ are *object-level term-formers.*

Terms (3)

TU/e

Sugar:

$$
\top \text{ is } \bot \supset \bot \qquad \neg \phi \text{ is } \phi \supset \bot \qquad \phi \land \psi \text{ is } \neg (\phi \supset \neg \psi)
$$

$$
\phi \lor \psi \text{ is } \neg \phi \supset \psi \qquad \phi \Leftrightarrow \psi \text{ is } (\phi \supset \psi) \land (\psi \supset \phi) \qquad \exists [a] \phi \text{ is } \neg \forall [a] \phi
$$

Descending order of operator precedence:

$$
[a]_-,\; _[_ \mapsto _],\; \approx,\; \{\neg, \forall, \exists\},\; \{\land, \lor\},\; \supset, \; \Leftrightarrow
$$

 \land , \lor , \supset and \Leftrightarrow associate to the right.

Example terms of sort \mathbb{P} :

 $P \supset Q \supset P$ $P \supset \forall [a]P$ $P \supset P[a \mapsto T]$ $\forall [a]P \supset \forall [b]P[a \mapsto b]$

Freshness

TU,

Freshness (assertions) $a \# t$, which means 'a is fresh for t. If t is an unknown X, the freshness is called **primitive**.

Write Δ for a set of *primitive* freshnesses and call it a **freshness context**. We may leave out set brackets, writing $a\#X, b\#Y$ instead of $\{a\#X, b\#Y\}$. We may also write $a\#X$, Y for $a\#X$, $a\#Y$.

We call $\Delta \rightarrow t$ a **term-in-context**. We may write t if $\Delta = \emptyset$.

Example terms-in-context of sort \mathbb{P} :

$$
P \supset Q \supset P \qquad a \# P \to P \supset \forall [a] P
$$

$$
a \# P \to P \supset P[a \mapsto T] \qquad b \# P \to \forall [a] P \supset \forall [b] P[a \mapsto b]
$$

Derivability of freshness

$$
\frac{\overline{a\#b}}{a\#[a]\overline{t}} \left(\#\mathbf{ab}\right) \quad \frac{\pi^{-1}(a)\#X}{a\#\pi \cdot X} \left(\#\mathbf{X}\right)
$$
\n
$$
\frac{a\#t}{a\#[a]\overline{t}} \left(\#\left[\begin{bmatrix}a\end{bmatrix}\right] \quad \frac{a\#t}{a\#t}\left(\#\left[\begin{bmatrix}b\end{bmatrix}\right] \quad \frac{a\#t_1 \cdots a\#t_n}{a\#t(t_1, \ldots, t_n)} \left(\#\mathbf{f}\right)\right)\right]
$$

 a and b range over distinct atoms.

Write $\Delta \vdash a \# t$ when there exists a derivation of $a \# t$ using the elements of Δ as assumptions. Say that $a \# t$ is derivable from Δ .

Examples:

TU/e

$$
\vdash a\# \forall [a] P \qquad a\# P \vdash a\# \forall [b] P \qquad a\# T, U \vdash a\# T \approx U
$$

Derivability of equality

Equality (assertions) $t = u$, where t and u are of the same sort.

Derivability:

TU/e

$$
\frac{t}{t=t} \text{ (refl)} \quad \frac{t=u}{u=t} \text{ (symm)} \quad \frac{t=u}{t=v} \text{ (tran)}
$$
\n
$$
\frac{t=u}{C[t]=C[u]} \text{ (cong)} \quad \frac{a\#t}{(a\ b)\cdot t=t} \text{ (perm)}
$$
\n
$$
[a\#X_1, \dots, a\#X_n] \quad \Delta
$$
\n
$$
\frac{\Delta^{\pi}\sigma}{t^{\pi}\sigma=u^{\pi}\sigma} \text{ (ax_A)} \ A \text{ is } \Delta \to t=u \quad \frac{t=u}{t=u} \text{ (fr)} \quad (a \notin t, u, \Delta)
$$

Write $\Delta \vdash_{\tau} t = u$ when $t = u$ **is derivable from** Δ using $\boldsymbol{\mathrm{axioms}}$ A from $\mathsf T$ only.

Derivability of equality (2)

Nominal Algebra is the logic of equality between nominal terms.

Nominal algebraic theory SUB of explicit substitution:

$$
(\mathbf{var} \mapsto) \qquad a[a \mapsto T] = T
$$

\n
$$
(\# \mapsto) \qquad a \# X \to X[a \mapsto T] = X
$$

\n
$$
(\mathbf{f} \mapsto) \qquad \mathbf{f}(X_1, \dots, X_n)[a \mapsto T] = \mathbf{f}(X_1[a \mapsto T], \dots, X_n[a \mapsto T])
$$

\n
$$
(\mathbf{abs} \mapsto) \qquad b \# T \to ([b]X)[a \mapsto T] = [b](X[a \mapsto T])
$$

\n
$$
(\mathbf{ren} \mapsto) \qquad b \# X \to X[a \mapsto b] = (b \ a) \cdot X
$$

Examples:

TU/e

$$
b \# P \vdash_{\text{sub}} \forall [a] P = \forall [b] P[a \mapsto b]
$$

$$
\vdash_{\text{sub}} X[a \mapsto a] = X
$$

$$
a \# Y \vdash_{\text{sub}} Z[a \mapsto X][b \mapsto Y] = Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]
$$

Sequent calculus for one-and-a-halfth-order logic

We may call terms of sort $\mathbb P$ **predicates**, and denote them by ϕ and ψ .

Let **(predicate)** contexts Φ , Ψ be finite sets of predicates. We may write ϕ for $\{\phi\}$, ϕ, Φ for $\{\phi\} \cup \Phi$, and Φ, Φ' for $\Phi \cup \Phi'$.

A **sequent** is a triple $\Phi \vdash_{\wedge} \Psi$. We may omit empty predicate contexts, e.g. writing $\vdash_{_\Delta}$ for $\emptyset\vdash_{_\Delta}\emptyset.$

Define derivability on sequents...

TU/

Sequent calculus (2)

TU/e

Rules resembling Gentzen's sequent calculus for first-order logic:

$$
\overline{\phi, \Phi \vdash_{\Delta} \Psi, \phi} (\mathbf{A} \mathbf{x}) \qquad \overline{\bot, \Phi \vdash_{\Delta} \Psi} (\bot \mathbf{L})
$$
\n
$$
\frac{\Phi \vdash_{\Delta} \Psi, \phi \quad \psi, \Phi \vdash_{\Delta} \Psi}{\phi \supset \psi, \Phi \vdash_{\Delta} \Psi} (\supset \mathbf{L}) \qquad \frac{\phi, \Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \phi \supset \psi} (\supset \mathbf{R})
$$
\n
$$
\frac{\phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi}{\forall [a] \phi, \Phi \vdash_{\Delta} \Psi} (\forall \mathbf{L}) \qquad \frac{\Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \forall [a] \psi} (\forall \mathbf{R}) \quad (\Delta \vdash a \# \Phi, \Psi)
$$
\n
$$
\frac{\phi[a \mapsto t'], \Phi \vdash_{\Delta} \Psi}{t' \approx t, \phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi} (\approx \mathbf{L}) \qquad \overline{\Phi \vdash_{\Delta} \Psi, t \approx t} (\approx \mathbf{R})
$$

Sequent calculus (3)

Other rules:

TU/e

$$
\frac{\phi', \Phi \vdash_{\Delta} \Psi}{\phi, \Phi \vdash_{\Delta} \Psi} (\text{StructL}) \quad (\Delta \vdash_{\text{sUB}} \phi' = \phi)
$$
\n
$$
\frac{\Phi \vdash_{\Delta} \Psi, \psi'}{\Phi \vdash_{\Delta} \Psi, \psi} (\text{StructR}) \quad (\Delta \vdash_{\text{sUB}} \psi' = \psi)
$$
\n
$$
\frac{\Phi \vdash_{\Delta \sqcup \{\alpha \# X_1, \dots, \alpha \# X_n\}} \Psi}{\Phi \vdash_{\Delta} \Psi} (\text{Fresh}) \quad (a \notin \Phi, \Psi, \Delta)
$$
\n
$$
\frac{\Phi \vdash_{\Delta} \Psi, \phi \phi', \Phi \vdash_{\Delta} \Psi}{\Phi \vdash_{\Delta} \Psi} (\text{Cut}) \quad (\Delta \vdash_{\text{sUB}} \phi = \phi')
$$

Example derivations

TU/e

Derivation of $a\#P \to P \supset \forall [a]P$:

$$
\frac{\overline{P \vdash_{\textit{a\#P}} P}(\mathbf{A}\mathbf{x})}{\overline{P \vdash_{\textit{a\#P}} \forall [a] P}(\forall \mathbf{R})} (a \# P \vdash a \# P)
$$
\n
$$
\vdash_{\textit{a\#P}} \overline{P} \supset \forall [a] P} (\supset \mathbf{R})
$$

Derivation of $a\#P \to P \supset P[a \mapsto T]$:

$$
\frac{P \vdash_{\underset{a \# P}{\# P}} P(\mathbf{A} \mathbf{x})}{P \vdash_{\underset{a \# P}{\# P}} P[a \mapsto T]} (\textbf{StructR}) \quad (a \# P \vdash_{\textbf{SUB}} P = P[a \mapsto T])
$$

Properties of the sequent calculus

We may *instantiate* unknowns and *permute* atoms in derivations.

Theorem 1 If Π is a valid derivation of $\Phi \vdash_{\alpha} \Psi$ and $\Delta' \vdash \Delta^{\pi}\sigma$, then $\Pi^{\pi}(\sigma, \Delta')$ is a valid derivation of $\Phi^{\pi}\sigma \vdash_{_{\Delta'}} \Psi^{\pi}\sigma$.

 $\Pi^{\pi}(\sigma, \Delta')$ is Π in which:

TU/e

- each atom a is replaced by $\pi(a)$;
- \bullet each moderated unknown $\pi' \cdot X$ is replaced by $\pi' \cdot \sigma(X);$
- \bullet each freshness context Δ is replaced by $\Delta'.$

Properties of the sequent calculus (2)

technische universiteit eindhoven

For example, Π is the derivation of $a\#P \to P \supset P[a \mapsto T]$:

$$
\frac{P \vdash_{\mathbf{a}\#P} P (\mathbf{A}\mathbf{x})}{P \vdash_{\mathbf{a}\#P} P[a \mapsto T]} (\mathbf{StructR}) \quad (a\#P \vdash_{\mathbf{s}\mathbf{u}\mathbf{s}} P = P[a \mapsto T])
$$

$$
\vdash_{\mathbf{a}\#P} P D[a \mapsto T] (\supset \mathbf{R})
$$

Take $\pi = (a \ b)$, $\sigma = \frac{\rho(a)}{P, a/T}$ and $\Delta' = \emptyset$, then:

 $\bullet \Delta' \vdash \Delta^{\pi}\sigma$, i.e. $\emptyset \vdash b \# p(a);$

TU/e

 \bullet $\Pi^{\pi}(\sigma, \Delta')$ is the following valid derivation of $\mathsf{p}(a) \supset \mathsf{p}(a)[b \mapsto a]$:

$$
\frac{\overline{\mathsf{p}(a) \vdash_{\mathsf{g}} \mathsf{p}(a)} \left(\mathbf{A} \mathbf{x} \right)}{\mathsf{p}(a) \vdash_{\mathsf{g}} \mathsf{p}(a) \left[b \mapsto a \right]} \left(\mathbf{StructR} \right) \quad (\emptyset \vdash_{\mathsf{s\text{-}\text{u}\text{b}}} \mathsf{p}(a) = \mathsf{p}(a) [b \mapsto a] \right) \\ \vdash_{\mathsf{g}} \mathsf{p}(a) \supseteq \mathsf{p}(a) [b \mapsto a] \quad (\supset \mathbf{R})
$$

TU/e

Properties of the sequent calculus (3)

Theorem 2 [Cut elimination] The (Cut) rule is admissible in the system without it.

Corollary 3 The sequent calculus is consistent, i.e. $\vdash_{_\Delta}$ can never be derived.

Relation to First-order Logic

TU/e

Call a term or a predicate context **ground** if it does not contain unknowns or explicit substitutions.

Call $\Phi \vdash \Psi$ a first-order sequent, when Φ and Ψ are ground predicate contexts.

Genzten's sequent calculus for first-order logic:

$$
\overline{\phi, \Phi \vdash \Psi, \phi} \quad (\mathbf{A} \mathbf{x}) \qquad \overline{\bot, \Phi \vdash \Psi} \quad (\bot \mathbf{L})
$$
\n
$$
\underline{\Phi \vdash \Psi, \phi \quad \psi, \Phi \vdash \Psi}_{\phi \supset \psi, \Phi \vdash \Psi} (\supset \mathbf{L}) \qquad \frac{\phi, \Phi \vdash \Psi, \psi}{\Phi \vdash \Psi, \phi \supset \psi} (\supset \mathbf{R})
$$
\n
$$
\underline{\phi}[\underline{a \mapsto t}, \underline{b \vdash \Psi} \quad (\forall \mathbf{L}) \qquad \frac{\Phi \vdash \Psi, \phi}{\Phi \vdash \Psi, \forall a. \phi} \quad (\forall \mathbf{R}) \quad (a \notin fn(\Phi, \Psi))
$$
\n
$$
\underline{\phi}[\underline{a \mapsto t}], \Phi \vdash \Psi \qquad (\approx \mathbf{L}) \qquad \overline{\Phi \vdash \Psi, t \approx t} \quad (\approx \mathbf{R})
$$

Relation to First-order Logic (2)

Note that:

TU)

- we write $\forall a.\phi$ for $\forall |a|\phi;$
- \bullet $\llbracket a \mapsto t \rrbracket$ is capture-avoiding substitution;
- $a \notin fn(\phi)$ is 'a does not occur in the free names of ϕ ';
- We take predicates up to α -equivalence.

Theorem 4 $\Phi \vdash \Psi$ is derivable in the sequent calculus for first-order logic, iff $\Phi \vdash_{\alpha} \Psi$ is derivable in the sequent calculus for one-and-a-halfth-order logic.

So on ground terms, one-and-a-halfth-order logic *is* first-order logic.

TU/e

Axiomatisation of one-and-a-halfth-order logic

Theory FOL extends theory SUB with the following axioms:

$$
P \supset Q \supset P = \top \qquad \neg \neg P \supset P = \top \qquad \qquad \text{(Props)}
$$
\n
$$
(P \supset Q) \supset (Q \supset R) \supset (P \supset R) = \top \qquad \perp \supset P = \top \qquad \qquad \text{(Quants)}
$$
\n
$$
\forall [a]P \supset P[a \mapsto T] = \top \qquad \qquad \text{(Quants)}
$$
\n
$$
\forall [a](P \wedge Q) \Leftrightarrow \forall [a]P \wedge \forall [a]Q = \top
$$
\n
$$
a \# P \rightarrow \forall [a](P \supset Q) \Leftrightarrow P \supset \forall [a]Q = \top
$$
\n
$$
T \approx T = \top \qquad U \approx T \wedge P[a \mapsto T] \supset P[a \mapsto U] = \top \qquad \qquad \text{(Eq)}
$$

Axioms are all of the form $\phi = \top$, which intuitively means ' ϕ is true'.

Note that this is a *finite* number of axioms.

TU,

Axiomatisation of one-and-a-halfth-order logic (2)

For $\Phi \equiv \{\phi_1, \ldots, \phi_n\}$, define its **conjunctive form** Φ^\wedge to be \top when $n = 0$, and $\phi_1 \wedge \cdots \wedge \phi_n$ when $n > 0.$ Analogously, define the $\textbf{disjunctive form } \Phi^\vee$ to be \bot when $n = 0$, and $\phi_1 \vee \cdots \vee \phi_n$ when $n > 0$.

Theorem 5 For all predicate contexts Φ , Ψ and freshness contexts Δ :

 $\Phi \vdash_{\Delta} \Psi$ is derivable iff $\Delta \vdash_{\text{fol}} \Phi^{\wedge} \supset \Psi^{\vee} = \top$.

So sequent and equational derivability are equivalent.

Corollary 6 Theory FOL is consistent, i.e. $\Delta \vdash_{\text{FOL}} \top = \bot$ does not hold.

Conclusions

Using nominal terms, we can:

- *accurately* represent systems with binding: e.g. explicit substitution and first-order logic;
- specify *novel* systems with their own mathematical interest: e.g. one-and-a-halfth-order logic.

One-and-a-halfth-order logic:

- makes meta-level concepts of first-order logic *explicit*;
- has a sequent calculus with *syntax-directed* rules;
- has a *semantics* in first-order logic on ground terms;
- has a *finite* equational axiomatisation;
- is the *result* of axiomatising first-order logic in nominal algebra.

Related work

TU.

Second-order logic:

- In this logic we can quantify over predicates *anywhere*, which makes it more expressive than one-and-a-halfh-order logic.
- On the other hand, we can easily extend theory FOL with *one* axiom to express the principle of induction on natural numbers:

 $P[a \mapsto 0] \wedge \forall [a](P \supset P[a \mapsto succ(\mathsf{var}(a))]) \supset \forall [a]P = \top.$

Higher-order logic (HOL):

- is type raising, while one-and-a-halfth-order logic is *not*: $P[a \mapsto t]$ corresponds to $f(t)$ in HOL, where $f: \mathbb{T} \to \mathbb{P};\, P[a \mapsto t][a' \mapsto t']$ corresponds to $f'(t)(t')$ where $f':{\mathbb T} \to {\mathbb T} \to {\mathbb P}$, and so on...
- One-and-a-halfth-order logic is not a subset of HOL because of freshnesses.

Future work

- Concrete semantics for one-and-a-halfth-order logic on non-ground terms.
- Let unknowns range over *sequent derivations*, and establish a Curry-Howard correspondence (term-in-contexts as types, derivations as terms).
- Two-and-a-halfth-order logic (where you can abstract X)?
- Implementation and automation?

Current status

- M.J. Gabbay, A.H.J. Mathijssen, Nominal Algebra, submitted CSL'06.
- M.J. Gabbay, A.H.J. Mathijssen, Capture-avoiding Substitution as a Nominal Algebra, submitted ICTAC'06.
- M.J. Gabbay, A.H.J. Mathijssen, One-and-a-halfth-order Logic, PPDP'06.

Just to scare you

$$
\frac{P[b \mapsto c][a \mapsto c] \vdash_{c \neq P} P[b \mapsto c][a \mapsto c]}{\forall [a] P[b \mapsto c] \vdash_{c \neq P} P[b \mapsto c][a \mapsto c]} \frac{(\mathbf{A} \mathbf{x})}{(\forall \mathbf{L})}
$$
\n
$$
\frac{(\forall [a] P[b \mapsto c] \vdash_{c \neq P} P[b \mapsto c][a \mapsto c]}{(\forall [a] P)[b \mapsto c] \vdash_{c \neq P} P[b \mapsto a][a \mapsto c]} \frac{(\mathbf{StructL})}{(\forall \mathbf{L})}
$$
\n
$$
\frac{(\forall [b] \forall [a] P \vdash_{c \neq P} \forall [c] P[b \mapsto c][a \mapsto c]}{(\forall \mathbf{R})} \frac{(\forall \mathbf{R})}{(\mathbf{C} \mathbf{x})}
$$
\n
$$
\frac{(\forall [b] \forall [a] P \vdash_{c \neq P} \forall [c] P[b \mapsto c][a \mapsto c]}{(\mathbf{StructR})} \frac{(\mathbf{StructR})}{(\mathbf{3.})}
$$
\n
$$
\frac{(\forall [b] \forall [a] P \vdash_{c \neq P} \forall [a] P[b \mapsto a]}{(\forall [b] \forall [a] P \vdash_{\phi} \forall [a] P[b \mapsto a]} \frac{(\mathbf{F} \mathbf{resh})}{(\mathbf{4.})}
$$

Side-conditions:

TU/e

$$
\text{I. } c \# P \vdash_{\text{sub}} \forall [a] P[b \mapsto c] = (\forall [a] P)[b \mapsto c]
$$

2. $c \# P \vdash c \# \forall [b] \forall [a] P$

3.
$$
c \# P \vdash_{\text{SUB}} \forall [c] P[b \mapsto c][a \mapsto c] = \forall [a] P[b \mapsto a]
$$

4. $c \notin \forall [b] \forall [a] P, \forall [a] P[b \mapsto a]$