
1/34

One-and-a-halfth-order Logic

Aad Mathijssen Murdoch J. Gabbay

24th May 2006

2/34

Motivation

Consider the following valid assertions in first-order logic:

� � � � �

� if a 62 fn(�) then � � 8a:�

� if a 62 fn(�) then � � �Ja 7! tK
� if b 62 fn(�) then 8a:� � 8b:�Ja 7! bK

These are not valid syntax in first-order logic, because of meta-level concepts:

� meta-variables varying over syntax: �, , a, b, t

� properties of syntax: a 62 fn(�), �Ja 7! tK, �-equivalence

Is there a logic in which the above assertions can be expressed directly in the
syntax?

3/34

Motivation (2)

Consider the following derivations in Gentzen’s sequent calculus:

(Ax) ; � ` � (�R)� ` � � (�R)` � � � �

(Ax)
p(d); p(c) ` p(c) (�R)
p(c) ` p(d) � p(c) (�R)` p(c) � p(d) � p(c)

And for b 62 fn(�):

(Ax)
8a:� ` 8b:�Ja 7! bK (�R)
` 8a:� � 8b:�Ja 7! bK

(Ax)8c:p(c) ` 8d:p(d) (�R)` 8c:p(c) � 8d:p(d)

The left ones are not derivations, they are schemas of derivations.
When p is a specific atomic predicate and c and d are specific variables, the right
ones are derivations; they are instances of the schemas on the left.

Is there a logic in which the derivation on the left is a derivation too?

4/34

Motivation (3)

First-order logic and its sequent calculus formalises reasoning.

But also a lot of reasoning is about first-order logic.

So why shouldn’t that be formalised?

One-and-a-halfth-order logic does this by means of:

� formalising meta-variables;

� making properties of syntax explicit.

5/34

Overview

� Introduction to one-and-a-halfth-order logic

� Syntax of one-and-a-halfth-order logic

� Sequent calculus for one-and-a-halfth-order logic

� Relation to first-order logic

� Axiomatisation of one-and-a-halfth-order logic

� Conclusions, related and future work

6/34

Introduction

In the syntax of one-and-a-halfth-order logic:

� Unknowns P ,Q and T represent meta-level variables �, and t.

� Atoms a and b represent meta-level variables a and b.

� Freshness a#P represents a 62 fn(�).

� Explicit substitution P [a 7! T] represents �Ja 7! tK.

7/34

Introduction (2)

The meta-level assertions in first-order logic

� � � � �

� if a 62 fn(�) then � � 8a:�

� if a 62 fn(�) then � � �Ja 7! tK
� if b 62 fn(�) then 8a:� � 8b:�Ja 7! bK

correspond to valid assertions in the syntax of one-and-a-halfth-order logic:

� P � Q � P

� a#P ! P � 8[a]P

� a#P ! P � P [a 7! T]

� b#P ! 8[a]P � 8[b]P [a 7! b]

8/34

Introduction (3)

In derivations of one-and-a-halfth-order logic:

� Contexts of freshnesses are added to the sequents.

� Derivability of freshnesses are added as side-conditions.

� Substitutional equivalence on terms is added as two derivation rules, taking
care of �-equivalence and substitution.

9/34

Introduction (4)

The (schematic) derivations in first-order logic

(Ax) ; � ` � (�R)� ` � � (�R)` � � � �

(Ax)
p(d); p(c) ` p(c) (�R)
p(c) ` p(d) � p(c) (�R)` p(c) � p(d) � p(c)

correspond to valid derivations in one-and-a-halfth-order logic:

(Ax)Q;P `; P (�R)P `; Q � P (�R)`; P � Q � P

(Ax)
p(d); p(c) `; p(c) (�R)
p(c) `; p(d) � p(c) (�R)`; p(c) � p(d) � p(c)

10/34

Introduction (5)

The (schematic) derivations in first-order logic, where b 62 fn(�),

(Ax)
8a:� ` 8b:�Ja 7! bK (�R)
` 8a:� � 8b:�Ja 7! bK

(Ax)8c:p(c) ` 8d:p(d) (�R)` 8c:p(c) � 8d:p(d)

correspond to valid derivations in one-and-a-halfth-order logic:

(Ax)8[a]P `b#P 8[a]P (StructR) (b#P `SUB 8[a]P = 8[b]P [a 7! b])8[a]P `b#P 8[b]P [a 7! b] (�R)`b#P 8[a]P � 8[b]P [a 7! b]

(Ax)8[c]p(c) `; 8[c]p(c) (StructR) (; `SUB 8[c]p(c) = 8[d]p(d))8[c]p(c) `; 8[d]p(d) (�R)`; 8[c]p(c) � 8[d]p(d)

11/34

Syntax of one-and-a-halfth-order logic

We use Nominal Terms to specify the syntax.

Nominal terms have built-in support for:

� meta-variables

� freshness

� binding

Nominal terms allow for a direct and natural representation of systems with bind-
ing.

Nominal terms are first-order, not higher-order.

12/34

Sorts

Base sorts P for ‘predicates’ and T for ‘terms’.

Atomic sort A for the object-level variables.

Sorts � :
� ::= P j T j A j [A]�

13/34

Terms

Atoms a; b; c; : : : have sort A; they represent object-level variable symbols.

UnknownsX; Y; Z; : : : have sort � ; they represent meta-level variable symbols.
Let P;Q;R be unknowns of sort P, and T; U of sort T.

We call � �X amoderated unknown.
This represents the permutation of atoms � acting on an unknown term.

Term-formers f� have an associated arity � = (�1; : : : ; �n)� .
f : �means ‘f with arity �’.

Terms t, subscripts indicate sorting rules:

t ::= aA j (� �X�)� j ([aA]t�)[A]� j (f(�1;:::;�n)�(t
1
�1; : : : ; t

n
�n))�

Write f for f() if n = 0.

14/34

Terms (2)

Term-formers for one-and-a-halfth-order logic:

� ? : ()P represents falsity;

� �: (P;P)P represents implication, write � � for�(�;);

� 8 : ([A]P)P represents universal quantification, write 8[a]� for 8([a]�);

� �: (T;T)P represents object-level equality, write t � u for�(t; u);

� var : (A)T is variable casting, forced upon us by the sort system,
write a for var (a);

� sub : ([A]�;T)� , where � 2 fT; [A]T;P; [A]Pg, is explicit substitution,
write v[a 7! t] for sub([a]v; t);

� p1; : : : ; pn : (T; : : : ;T)P are object-level predicate term-formers;

� f1; : : : ; fm : (T; : : : ;T)T are object-level term-formers.

15/34

Terms (3)

Sugar:

> is ? � ? :� is � � ? � ^ is :(� � :)

� _ is :� � �, is (� �) ^ (� �) 9[a]� is :8[a]�

Descending order of operator precedence:

[a]_; _[_ 7! _]; �; f:; 8; 9g; f^;_g; �; ,

^, _,� and, associate to the right.

Example terms of sort P:

P � Q � P P � 8[a]P P � P [a 7! T] 8[a]P � 8[b]P [a 7! b]

16/34

Freshness

Freshness (assertions) a#t, which means ‘a is fresh for t.
If t is an unknownX , the freshness is called primitive.

Write� for a set of primitive freshnesses and call it a freshness context.
We may leave out set brackets, writing a#X; b#Y instead of fa#X; b#Y g.
We may also write a#X; Y for a#X; a#Y .

We call�! t a term-in-context.
We may write t if� = ;.

Example terms-in-context of sort P:

P � Q � P a#P ! P � 8[a]P

a#P ! P � P [a 7! T] b#P ! 8[a]P � 8[b]P [a 7! b]

17/34

Derivability of freshness

(#ab)a#b
�-1(a)#X (#X)a#� �X

(#[]a)a#[a]t
a#t (#[]b)a#[b]t

a#t1 � � � a#tn (#f)a#f(t1; : : : ; tn)

a and b range over distinct atoms.

Write � ` a#t when there exists a derivation of a#t using the elements of �
as assumptions. Say that a#t is derivable from�.

Examples:

` a#8[a]P a#P ` a#8[b]P a#T; U ` a# T � U

18/34

Derivability of equality

Equality (assertions) t = u, where t and u are of the same sort.

Derivability:

(re)t = t
t = u (symm)u = t

t = u u = v (tran)t = v

t = u (cong)C[t] = C[u]
a#t b#t (perm)(a b) � t = t

��� (axA)t�� = u��
A is�! t = u

[a#X1; : : : ; a#Xn] �
���

t = u (fr) (a 62 t; u;�)t = u

Write� `T t = u when t = u is derivable from� using axioms A from T only.

19/34

Derivability of equality (2)

Nominal Algebra is the logic of equality between nominal terms.

Nominal algebraic theory SUB of explicit substitution:

(var 7!) a[a 7! T] = T
(# 7!) a#X ! X [a 7! T] =X
(f 7!) f(X1; : : : ; Xn)[a 7! T] = f(X1[a 7! T]; : : : ; Xn[a 7! T])

(abs 7!) b#T ! ([b]X)[a 7! T] = [b](X [a 7! T])
(ren 7!) b#X ! X [a 7! b] = (b a) �X

Examples:

b#P `SUB 8[a]P = 8[b]P [a 7! b]

`SUB X [a 7! a] = X

a#Y `SUB Z[a 7! X][b 7! Y] = Z[b 7! Y][a 7! X [b 7! Y]]

20/34

Sequent calculus for one-and-a-halfth-order logic

We may call terms of sort P predicates, and denote them by � and .

Let (predicate) contexts �;	 be finite sets of predicates.
We may write � for f�g, �;� for f�g [�, and �;�0 for � [�0.

A sequent is a triple � `� 	.
We may omit empty predicate contexts, e.g. writing `� for ; `� ;.

Define derivability on sequents...

21/34

Sequent calculus (2)

Rules resembling Gentzen’s sequent calculus for first-order logic:

(Ax)�; � `� 	; � (?L)?; � `� 	

� `� 	; � ; � `� 	 (�L)� � ; � `� 	
�; � `� 	; (�R)� `� 	; � �

�[a 7! t]; � `� 	 (8L)8[a]�; � `� 	
� `� 	; (8R) (� ` a#�;)� `� 	; 8[a]

�[a 7! t0]; � `� 	 (�L)
t0 � t; �[a 7! t]; � `� 	

(�R)� `� 	; t � t

22/34

Sequent calculus (3)

Other rules:

�0; � `� 	 (StructL)�; � `� 	
(� `SUB �

0 = �)

� `� 	; 0

(StructR)� `� 	; (� `SUB
0 =)

� `�[fa#X1;:::;a#Xng 	 (Fresh) (a 62 �;	;�)� `� 	

� `� 	; � �0; � `� 	 (Cut)� `� 	
(� `SUB � = �0)

23/34

Example derivations

Derivation of a#P ! P � 8[a]P :

(Ax)P `a#P P (8R) (a#P ` a#P)P `a#P 8[a]P (�R)`a#P P � 8[a]P

Derivation of a#P ! P � P [a 7! T]:

(Ax)P `a#P P (StructR) (a#P `SUB P = P [a 7! T])P `a#P P [a 7! T] (�R)`a#P P � P [a 7! T]

24/34

Properties of the sequent calculus

We may instantiate unknowns and permute atoms in derivations.

Theorem 1 If � is a valid derivation of � `� 	 and�0 ` ���,
then ��(�;�0) is a valid derivation of ��� `�0 	

��.

��(�;�0) is � in which:

� each atom a is replaced by �(a);

� each moderated unknown �0 �X is replaced by �0 � �(X);

� each freshness context� is replaced by�0.

25/34

Properties of the sequent calculus (2)

For example, � is the derivation of a#P ! P � P [a 7! T]:

(Ax)P `a#P P (StructR) (a#P `SUB P = P [a 7! T])P `a#P P [a 7! T] (�R)`a#P P � P [a 7! T]

Take � = (a b), � = [p(a)=P; a=T] and�0 = ;, then:

� �0 ` ���, i.e. ; ` b#p(a);

� ��(�;�0) is the following valid derivation of p(a) � p(a)[b 7! a]:

(Ax)
p(a) `; p(a) (StructR) (; `SUB p(a) = p(a)[b 7! a])

p(a) `; p(a)[b 7! a] (�R)`; p(a) � p(a)[b 7! a]

26/34

Properties of the sequent calculus (3)

Theorem 2 [Cut elimination]
The (Cut) rule is admissible in the system without it.

Corollary 3 The sequent calculus is consistent, i.e. `� can never be derived.

27/34

Relation to First-order Logic

Call a term or a predicate context ground if it does not contain unknowns or
explicit substitutions.

Call � ` 	 a first-order sequent, when � and 	 are ground predicate contexts.

Genzten’s sequent calculus for first-order logic:

(Ax)�; � ` 	; � (?L)?; � ` 	

� ` 	; � ; � ` 	 (�L)� � ; � ` 	
�; � ` 	; (�R)� ` 	; � �

�Ja 7! tK; � ` 	 (8L)8a:�; � ` 	
� ` 	; � (8R)� ` 	; 8a:� (a 62 fn(�;))

�Ja 7! t0K; � ` 	 (� L)
t0 � t; �Ja 7! tK; � ` 	

(� R)� ` 	; t � t

28/34

Relation to First-order Logic (2)

Note that:

� we write 8a:� for 8[a]�;

� Ja 7! tK is capture-avoiding substitution;

� a 62 fn(�) is ‘a does not occur in the free names of �’;

� We take predicates up to �-equivalence.

Theorem 4 � ` 	 is derivable in the sequent calculus for first-order logic, iff
� `; 	 is derivable in the sequent calculus for one-and-a-halfth-order logic.

So on ground terms, one-and-a-halfth-order logic is first-order logic.

29/34

Axiomatisation of one-and-a-halfth-order logic

Theory FOL extends theory SUB with the following axioms:

P � Q � P = > ::P � P = > (Props)
(P � Q) � (Q � R) � (P � R) = > ? � P = >

8[a]P � P [a 7! T] = > (Quants)
8[a](P ^Q), 8[a]P ^ 8[a]Q = >

a#P ! 8[a](P � Q), P � 8[a]Q = >

T � T = > U � T ^ P [a 7! T] � P [a 7! U] = > (Eq)

Axioms are all of the form � = >, which intuitively means ‘� is true’.

Note that this is a finite number of axioms.

30/34

Axiomatisation of one-and-a-halfth-order logic (2)

For � � f�1; : : : ; �ng, define its conjunctive form �^ to be> when n = 0, and
�1 ^ � � � ^ �n when n > 0. Analogously, define the disjunctive form �_ to be?
when n = 0, and �1 _ � � � _ �n when n > 0.

Theorem 5 For all predicate contexts �;	 and freshness contexts�:

� `� 	 is derivable iff � `FOL �
^ � 	_ = >:

So sequent and equational derivability are equivalent.

Corollary 6 Theory FOL is consistent, i.e.� `FOL > = ? does not hold.

31/34

Conclusions

Using nominal terms, we can:

� accurately represent systems with binding:
e.g. explicit substitution and first-order logic;

� specify novel systems with their own mathematical interest:
e.g. one-and-a-halfth-order logic.

One-and-a-halfth-order logic:

� makes meta-level concepts of first-order logic explicit;

� has a sequent calculus with syntax-directed rules;

� has a semantics in first-order logic on ground terms;

� has a finite equational axiomatisation;

� is the result of axiomatising first-order logic in nominal algebra.

32/34

Related work

Second-order logic:

� In this logic we can quantify over predicates anywhere, which makes it more
expressive than one-and-a-halfh-order logic.

� On the other hand, we can easily extend theory FOL with one axiom to ex-
press the principle of induction on natural numbers:

P [a 7! 0] ^ 8[a](P � P [a 7! succ(var(a))]) � 8[a]P = >:

Higher-order logic (HOL):

� is type raising, while one-and-a-halfth-order logic is not: P [a 7! t] corre-
sponds to f (t) in HOL, where f : T ! P; P [a 7! t][a0 7! t0] corresponds
to f 0(t)(t0) where f 0 : T! T! P, and so on...

� One-and-a-halfth-order logic is not a subset of HOL because of freshnesses.

33/34

Future work

� Concrete semantics for one-and-a-halfth-order logic on non-ground terms.

� Let unknowns range over sequent derivations, and establish a Curry-Howard
correspondence (term-in-contexts as types, derivations as terms).

� Two-and-a-halfth-order logic (where you can abstract X)?

� Implementation and automation?

Current status

� M.J. Gabbay, A.H.J. Mathijssen, Nominal Algebra, submitted CSL’06.

� M.J. Gabbay, A.H.J. Mathijssen, Capture-avoiding Substitution as a Nominal
Algebra, submitted ICTAC’06.

� M.J. Gabbay, A.H.J. Mathijssen, One-and-a-halfth-order Logic, PPDP’06.

34/34

Just to scare you

(Ax)
P [b 7! c][a 7! c] `c#P P [b 7! c][a 7! c]

(8L)
8[a]P [b 7! c] `c#P P [b 7! c][a 7! c]

(StructL) (1.)
(8[a]P)[b 7! c] `c#P P [b 7! a][a 7! c]

(8L)
8[b]8[a]P `c#P P [b 7! c][a 7! c]

(8R) (2.)
8[b]8[a]P `c#P 8[c]P [b 7! c][a 7! c]

(StructR) (3.)
8[b]8[a]P `c#P 8[a]P [b 7! a]

(Fresh) (4.)
8[b]8[a]P `

;
8[a]P [b 7! a]

Side-conditions:

1. c#P `
SUB
8[a]P [b 7! c] = (8[a]P)[b 7! c]

2. c#P ` c#8[b]8[a]P

3. c#P `
SUB
8[c]P [b 7! c][a 7! c] = 8[a]P [b 7! a]

4. c 62 8[b]8[a]P; 8[a]P [b 7! a]

