


Design and Analysis of Embedded Software

Aad Mathijssen

Design and Analysis of Systems Group
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven

TU/e and Philips Healthcare meeting
Technische Universiteit Eindhoven

July 2nd, 2008

1/18





Design and Analysis of Embedded Software
The group

Some information about the group:

Design and Analysis of Systems group

Headed by prof.dr.ir. Jan Friso Groote

Personnel: 11 staff, 6 PhD students

2/18





Design and Analysis of Embedded Software
Group focus

Main analysis techniques used in hardware/software
development:

Structural analysis: what things are in the system

Class diagrams
Component diagrams
Package diagrams
. . .

Behavioural analysis: what happens in the system

State diagrams
Message sequence charts
Petri nets
Process algebra
Temporal logic
. . .

3/18





Design and Analysis of Embedded Software
Behavioural analysis

What is behavioural analysis about?

Modelling:

Create an abstract model of the behaviour

Validation and Verification:

Validation: does the model roughly behave as expected?
Verification: does the model satisfy the requirements in
all states?

4/18





Design and Analysis of Embedded Software
Behavioural analysis (2)

Behavioural analysis is applicable to all phases of the
software lifecycle:

Requirements Analysis and Design:
Prove that the design satisfies the requirements
before anything is built.

Implementation to Maintenance:
Prove that the software satisfies the requirements
in a rigorous way.

5/18





Design and Analysis of Embedded Software
Modelling

Why modelling?

To reduce complexity:

Direct verification of all states of the software is
impossible due to the huge number of states.

Much more complex than e.g. Rubik’s cube:

43, 252, 003, 274, 489, 856, 000 (4.3× 1019) states

6/18





Design and Analysis of Embedded Software
Modelling

Why modelling?

To reduce complexity:

Direct verification of all states of the software is
impossible due to the huge number of states.

Much more complex than e.g. Rubik’s cube:

43, 252, 003, 274, 489, 856, 000 (4.3× 1019) states

6/18





Design and Analysis of Embedded Software
Modelling (2)

From our experience:

Without proper modelling it is impossible to get a
system right.

Implementing a model does not introduce substantial
flaws.

Modelling an implementation nearly always reveals flaws.

7/18





Design and Analysis of Embedded Software
Tool support

For verification of industrial systems, tool support is essential.

Main toolsets for modelling, validation and verification of
behaviour:

CADP (INRIA Rhone Alpes, France)

SPIN (Bell Labs, USA)

FDR (Formal Systems Limited, Oxford, UK)

Uppaal (Uppsala University, Sweden)

mCRL2 (OAS group, TU/e)

8/18





Design and Analysis of Embedded Software
The mCRL2 toolset

The mCRL2 toolset:

mCRL2: micro Common Representation Language 2

Developed since 2004

Built on the ideas of the µCRL toolset (since 1990)

Supports the complete behavioural analysis approach:

from modelling
through validation
to verification

9/18





Design and Analysis of Embedded Software
The mCRL2 toolset: modelling

Two types of modelling:

Textual specification

Graphical specification (individual component)

10/18





Design and Analysis of Embedded Software
The mCRL2 toolset: modelling

Two types of modelling:

Textual specification

Graphical modelling (communicating components)

10/18





Design and Analysis of Embedded Software
The mCRL2 toolset: validation and verification

Validation and verification tools:

Simulation

11/18





Design and Analysis of Embedded Software
The mCRL2 toolset: validation and verification

Validation and verification tools:

Simulation with plugins

11/18





Design and Analysis of Embedded Software
The mCRL2 toolset: validation and verification (2)

Validation and verification tools:

Model checker:
prove that the requirements hold for all states of the
model

12/18





Design and Analysis of Embedded Software
The mCRL2 toolset: validation and verification (3)

Validation and verification tools:

State space visualisation:

13/18





Design and Analysis of Embedded Software
The mCRL2 toolset: industrial case studies

Some industrial case studies carried out using the µCRL and
mCRL2 toolsets:

Add-controls: distributed system for lifting trucks

Vitatron: pacemaker

Philips Healthcare: patient support platform

14/18





Design and Analysis of Embedded Software
The mCRL2 toolset: industrial case studies (2)

A distributed system for lifting trucks (Add-controls):

Each lift has a controller

Controllers are connected via a circular network

3 errors found after testing by the developers

Analysis:

Model: µCRL

Verification: CADP

Actual errors found: 4

Lifts States Transitions

2 383 716
3 7,282 18,957
4 128,901 419,108
5 2,155,576 8,676,815

15/18





Design and Analysis of Embedded Software
The mCRL2 toolset: industrial case studies (3)

Embedded software of a pacemaker (Vitatron):

Controlled by firmware

Must deal with all possible rates and arrhythmias

Firmware design

Analysis:

Model: mCRL2 (and Uppaal)

Verification: mCRL2 model checking

Size:

full model: 500 million states
suspicious part: 714.464 states

Actual errors found: 1 (known)

16/18





Design and Analysis of Embedded Software
The mCRL2 toolset: industrial case studies (4)

Patient support platform (Philips Healthcare):

Verified design of the control software

Convertor and Motion Controller

Implemented in Python

Analysis:

Model: mCRL2

Verification: CADP

Requirements:

4 checked
1 did not hold but
was very unlikely to occur

Size: 45 million states

17/18





Design and Analysis of Embedded Software
The mCRL2 toolset

More information on the mCRL2 toolset:

http://mcrl2.org

18/18

http://mcrl2.org

