One-and-a-halfth-order Logic

Aad Mathijssen Murdoch J. Gabbay

4th May 2006

Introduction

Consider the following valid assertions in first-order logic:

- $\phi \supset(\psi \supset \phi)$
- if $a \notin f n(\phi)$ then $\phi \supset \forall a . \phi$
- if $a \notin f n(\phi)$ then $\phi \supset(\phi \llbracket a \mapsto t \rrbracket)$

Introduction

Consider the following valid assertions in first-order logic:

- $\phi \supset(\psi \supset \phi)$
- if $a \notin f n(\phi)$ then $\phi \supset \forall a . \phi$
- if $a \notin f n(\phi)$ then $\phi \supset(\phi \llbracket a \mapsto t \rrbracket)$

These are not valid syntax in first-order logic, because of meta-level concepts:

- meta-variables varying over syntax: ϕ, ψ, a, t
- properties of syntax:
- freshness assumptions: $a \notin f n(\phi)$
- capture-avoiding substitution: $\phi \llbracket a \mapsto t \rrbracket$

Introduction

Consider the following valid assertions in first-order logic:

- $\phi \supset(\psi \supset \phi)$
- if $a \notin f n(\phi)$ then $\phi \supset \forall a . \phi$
- if $a \notin f n(\phi)$ then $\phi \supset(\phi \llbracket a \mapsto t \rrbracket)$

These are not valid syntax in first-order logic, because of meta-level concepts:

- meta-variables varying over syntax: ϕ, ψ, a, t
- properties of syntax:
- freshness assumptions: $a \notin f n(\phi)$
- capture-avoiding substitution: $\phi \llbracket a \mapsto t \rrbracket$

Is there a logic in which the above assertions are valid syntax?

Introduction (2)

Consider the following (sequent) derivations:

$$
\begin{gathered}
\frac{\overline{\phi, \psi \vdash \phi}(\mathbf{A x})}{\frac{\phi \vdash \psi \supset \phi}{\phi(\supset \mathbf{R})}} \underset{\stackrel{\phi \supset}{ }-\phi(\psi \supset \phi)}{(\supset \mathbf{R})}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\perp, \perp \vdash \perp}{}(\mathbf{A x}) \\
\stackrel{\perp \vdash \perp \supset \perp}{ }(\supset \mathbf{R}) \\
\vdash \perp(\perp \supset \perp)
\end{gathered}
$$

Introduction (2)

Consider the following (sequent) derivations:

$$
\begin{array}{cc}
\frac{\overline{\phi, \psi \vdash \phi}(\mathbf{A x})}{\frac{\perp, \perp \vdash \perp}{}(\mathbf{A x})} \\
\frac{\phi \vdash \psi \supset \phi}{\vdash \phi \supset \mathbf{R})} & \frac{\perp \vdash(\psi \supset \phi)}{\perp \vdash \perp \supset \perp}(\supset \mathbf{R}) \\
\vdash-(\supset \mathbf{R}) & \vdash \perp(\perp \supset \perp)
\end{array}(\supset \mathbf{R})
$$

The left one is not a derivation, it is a schema of derivations.
The right one is a derivation, it is an instance of the schema on the left.

Introduction (2)

Consider the following (sequent) derivations:

$$
\begin{array}{cc}
\frac{\overline{\phi, \psi \vdash \phi}(\mathbf{A x})}{\frac{\perp, \perp \vdash \perp}{}(\mathbf{A x})} \\
\frac{\phi \vdash \psi \supset \phi}{\vdash \phi \supset \mathbf{R})} & \frac{\perp \vdash(\psi \supset \phi)}{\perp \vdash \perp \supset \perp}(\supset \mathbf{R}) \\
\vdash-(\supset \mathbf{R}) & \vdash \perp(\perp \supset \perp)
\end{array}(\supset \mathbf{R})
$$

The left one is not a derivation, it is a schema of derivations.
The right one is a derivation, it is an instance of the schema on the left.
Is there a logic in which the derivation on the left is a derivation too?

Introduction (3)

One-and-a-halfth-order logic makes meta-level concepts explicit.
The following judgements are valid in one-and-a-halfth-order logic:

- $P \supset(Q \supset P)=\top$
- $a \# P \rightarrow P \supset \forall[a] P=\top$
- $a \# P \rightarrow P \supset(P[a \mapsto T])=\top$

Introduction (3)

One-and-a-halfth-order logic makes meta-level concepts explicit.
The following judgements are valid in one-and-a-halfth-order logic:

- $P \supset(Q \supset P)=\top$
- $a \# P \rightarrow P \supset \forall[a] P=\top$
- $a \# P \rightarrow P \supset(P[a \mapsto T])=\top$

No meta-level concepts:

- P, Q and T are unknowns, representing meta-level variables
- a is an atom, representing an object-level variable
- $a \# P$ is a freshness, representing a is fresh for P
- $P[a \mapsto T]$ is an explicit substitution, repr. capture-avoiding substitution

Introduction (4)

One-and-a-halfth-order logic makes meta-level concepts explicit.
The following (sequent) derivations are valid in one-and-a-halfth-order logic:

$$
\begin{aligned}
& \begin{array}{c}
\overline{P, Q \vdash P}\left(\begin{array}{l}
\mathbf{A x}) \\
\frac{P \vdash Q \supset P}{}(\supset \mathbf{R}) \\
\digamma P \supset(Q \supset P)
\end{array}(\supset \mathbf{R})\right.
\end{array} \\
& \begin{array}{c}
\stackrel{\perp, \perp \vdash \perp}{ }(\mathbf{A x}) \\
\frac{\perp \vdash \perp \supset}{\perp \perp \supset(\supset \supset)} \\
\digamma \perp(\supset \mathbf{R})
\end{array}
\end{aligned}
$$

Introduction (5)

One-and-a-halfth-order logic makes meta-level concepts explicit.
The following (sequent) derivation is valid in one-and-a-halfth-order logic:

Side condition $a \# P \vdash a \# P$:
freshness $a \# P$ is derivable from the assumption $a \# P$.

Introduction (6)

One-and-a-halfth-order logic makes meta-level concepts explicit.
The following (sequent) derivation is valid in one-and-a-halfth-order logic:

$$
\begin{aligned}
& \frac{\overline{P \vdash_{\text {a\#P }} P}(\mathbf{A x})}{P \vdash_{a \# P}^{P \mid a \mapsto T]}}(\text { StructR }) \quad\left(a \# P \vdash_{\text {suB }} P=P[a \mapsto T]\right) \\
& \vdash_{a \# P} P \supset(P[a \mapsto T])
\end{aligned}
$$

Side condition $a \# P \vdash_{\text {SUB }} P=P[a \mapsto T]$: equality $P=P[a \mapsto T]$ is derivable from the assumption $a \# P$ in theory SUB.

The rule (StructR) lets us replace the right-hand side $P[a \mapsto T]$ of the equality assertion by its left-hand side P.

Overview

- Nominal Algebra:
- Signature, axioms and theories
- Equational theory of one-and-a-halfth order logic
- Equational proof system
- Sequent calculus for one-and-a-halfth-order logic
- Relation to first-order logic
- Conclusions, related and future work

Nominal Algebra...

... is a theory of algebraic equality on nominal terms.
... has built-in support for binding and freshnesses.
... is first-order, not higher-order.
. . . allows for direct and natural representation of existing systems with binding.
... also allows for novel systems like one-and-a-halfth-order logic.

Signature

δ ranges over base sorts.
\mathbb{A} ranges over atomic sorts.
Sorts τ :

$$
\tau::=\delta|\mathbb{A}|[\mathbb{A}] \tau
$$

Term-formers f_{ρ} have an associated arity $\rho=\left(\tau_{1}, \ldots, \tau_{n}\right) \tau$. $\mathrm{f}: \rho$ means ' f with arity ρ '.

A signature $\Sigma=(D, A, F)$ where D, A and F are finite sets of base sorts, atomic sorts and term-formers.

Signature (2)

Atoms a, b, c, \ldots have sort \mathbb{A}; they represent object-level variable symbols.
Unknowns X, Y, Z, \ldots have sort τ; they represent meta-level variable symbols.
A permutation π of atoms is a total bijection $\mathbb{A} \rightarrow \mathbb{A}$ with finite support: $\pi(a) \neq a$ for a finite number of a 's and $\pi(a)=a$ for all others.

We call $\pi \cdot X$ a moderated unknown.
This represents the permutation of atoms π acting on an unknown term.
Terms t, subscripts indicate sorting rules:

$$
t::=a_{\mathbb{A}}\left|\left(\pi \cdot X_{\tau}\right)_{\tau}\right|\left[a_{\mathbb{A}}\right] t_{\tau} \mid\left(\mathbf{f}_{\left(\tau_{1}, \ldots, \tau_{n}\right) \tau}\left(t_{\tau_{1}}^{1}, \ldots, t_{\tau_{n}}^{n}\right)\right)_{\tau}
$$

Signature (3)

Signature for one-and-a-halfth-order logic:

- Base sorts \mathbb{F} for 'formulae' and \mathbb{T} for 'terms'; atomic sort \mathbb{A};
- Term-formers:
- \perp : () \mathbb{F} represents falsity;
- $\supset:(\mathbb{F}, \mathbb{F}) \mathbb{F}$ represents implication, write $\phi \supset \psi$ for $\supset(\phi, \psi)$;
- $\forall:([\mathbb{A}] \mathbb{F}) \mathbb{F}$ represents universal quantification, write $\forall[a] \phi$ for $\forall([a] \phi)$;
$-\approx:(\mathbb{T}, \mathbb{T}) \mathbb{F}$ represents object-level equality, write $t \approx u$ for $\approx(t, u)$;
- var : $(\mathbb{A}) \mathbb{T}$ is variable casting, forced upon us by the sort system;
- sub : $([\mathbb{A}] \tau, \mathbb{T}) \tau$, where $\tau \in\{\mathbb{F}, \mathbb{T},[\mathbb{A}] \mathbb{F}\}$, is explicit substitution, write $t[a \mapsto u]$ for $\operatorname{sub}([a] t, u)$;
$-\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}:(\mathbb{T}, \ldots, \mathbb{T}) \mathbb{F}$ are object-level predicate term-formers;
$-f_{1}, \ldots, f_{m}:(\mathbb{T}, \ldots, \mathbb{T}) \mathbb{T}$ are object-level term-formers.

Signature (4)

Sugar:

$$
\begin{gathered}
\top \text { is } \perp \supset \perp \quad \neg \phi \text { is } \phi \supset \perp \quad \phi \wedge \psi \text { is } \neg(\phi \supset \neg \psi) \\
\phi \vee \psi \text { is } \neg \phi \supset \psi \quad \phi \Leftrightarrow \psi \text { is }(\phi \supset \psi) \wedge(\psi \supset \phi) \quad \exists[a] \phi \text { is } \neg \forall[a] \phi
\end{gathered}
$$

Descending order of operator precedence:

$$
-\left[-\mapsto _\right], \approx,\{\neg, \forall, \exists\},\{\wedge, \vee\}, \supset, \Leftrightarrow
$$

\wedge, \vee and \supset associate to the right.

Signature (4)

Sugar:

$$
\begin{gathered}
\top \text { is } \perp \supset \perp \quad \neg \phi \text { is } \phi \supset \perp \quad \phi \wedge \psi \text { is } \neg(\phi \supset \neg \psi) \\
\phi \vee \psi \text { is } \neg \phi \supset \psi \quad \phi \Leftrightarrow \psi \text { is }(\phi \supset \psi) \wedge(\psi \supset \phi) \quad \exists[a] \phi \text { is } \neg \forall[a] \phi
\end{gathered}
$$

Descending order of operator precedence:

$$
-\left[-\mapsto _\right], \approx,\{\neg, \forall, \exists\},\{\wedge, \vee\}, \supset, \Leftrightarrow
$$

\wedge, \vee and \supset associate to the right.
Example terms of sort \mathbb{F} :

$$
P \supset Q \supset P \quad P \supset \forall[a] P \quad P \supset P[a \mapsto T]
$$

P, Q are unknowns of sort \mathbb{F}, T is an unknown of sort \mathbb{T}, a is an atom of sort \mathbb{A}.

Assertions and judgements

Freshness (assertions) $a \# t$, which means ' a is fresh for t.
If t is an unknown X, the freshness is called primitive.
Equality (assertions) $t=u$, where t and u are of the same sort.
Write Δ for a set of primitive freshnesses and call it a freshness context. We may leave out set brackets, writing $a \# X, b \# Y$ instead of $\{a \# X, b \# Y\}$.

We call $\Delta \rightarrow A$ a judgement where A is an assertion ($a \# t$ or $t=u$). We may leave out $\Delta \rightarrow$ if Δ is empty (\emptyset).

Assertions and judgements (2)

Example equality judgements:

- $\emptyset \rightarrow P \supset Q \supset P=\top$, or just $P \supset Q \supset P=\top$
- $\{a \# P\} \rightarrow P \supset \forall[a] P=$ Т, or just $a \# P \rightarrow P \supset \forall[a] P=$ Т
- $\{a \# P\} \rightarrow P \supset P[a \mapsto T]=$ ', or just $a \# P \rightarrow P \supset P[a \mapsto T]=\top$
P, Q are unknowns of sort \mathbb{F}, T is an unknown of sort \mathbb{T}, a is an atom of sort \mathbb{A}.

Assertions and judgements (2)

Example equality judgements:

- $\emptyset \rightarrow P \supset Q \supset P=\top$, or just $P \supset Q \supset P=\top$
- $\{a \# P\} \rightarrow P \supset \forall[a] P=$ Т, or just $a \# P \rightarrow P \supset \forall[a] P=$ Т
- $\{a \# P\} \rightarrow P \supset P[a \mapsto T]=\top$, or just $a \# P \rightarrow P \supset P[a \mapsto T]=\top$
P, Q are unknowns of sort \mathbb{F}, T is an unknown of sort \mathbb{T}, a is an atom of sort \mathbb{A}.

When are these valid?

Axioms and theories

We allow equality judgements $\Delta \rightarrow t=u$ with finite Δ as axioms.
A theory $\mathrm{T}=(\Sigma, A x)$ where:

- Σ is a signature;
- $A x$ is a possibly infinite set of axioms.

Axioms and theories (2)

- CORE: a theory of α-conversion
- SUB: a theory of explicit substitution
- FOL: a theory of one-and-a-halfth-order logic (watch the name)

Relation between the theories:

- Signature is the same (previously introduced)
- Axioms of smaller theories are contained in bigger ones according to the following relation:

$$
\mathrm{CORE} \subset \mathrm{SUB} \subset \mathrm{FOL}
$$

Axioms and theories (3)

Axioms of CORE: none!

Axioms and theories (3)

Axioms of CORE: none!
Axioms of SUB:

$$
\begin{array}{rlrl}
(\mathbf{f} \mapsto) & \mathrm{f}\left(X_{1}, \ldots, X_{n}\right)[a \mapsto T] & =\mathrm{f}\left(X_{1}[a \mapsto T], \ldots, X_{n}[a \mapsto T]\right) \\
(\mathbf{a b s} \mapsto) & b \# T \rightarrow([b] X)[a \mapsto T] & =[b](X[a \mapsto T]) \\
(\operatorname{var} \mapsto) & & \operatorname{var}(a)[a \mapsto T] & =T \\
(\# \mapsto) & a \# X \rightarrow X[a \mapsto T] & =X \\
(\mathbf{r e n} \mapsto) & b \# X \rightarrow X[a \mapsto \operatorname{var}(b)] & =(b a) \cdot X
\end{array}
$$

f ranges over all term-formers excluding var, but including sub. a and b are distinct atoms.
T is an unknown of sort $\mathbb{T}, X, X_{1}, \ldots, X_{n}$ are unknowns of appropriate sorts.
Note that this is a finite number of axioms.

Axioms and theories (4)

Axioms of FOL: axioms of SUB extended with

$$
\begin{gather*}
P \supset Q \supset P=\top \quad \neg \neg P \supset P=\top \tag{Props}\\
(P \supset Q) \supset(Q \supset R) \supset(P \supset R)=\top \quad \perp \supset P=\top \\
\forall[a] P \supset P[a \mapsto T]=\top \tag{Quants}\\
\forall[a](P \wedge Q) \Leftrightarrow \forall[a] P \wedge \forall[a] Q=\top \\
a \# P \rightarrow \forall[a](P \supset Q) \Leftrightarrow P \supset \forall[a] Q=\top \\
T \approx T=\top \quad U \approx T \wedge P[a \mapsto T] \supset P[a \mapsto U]=\top \tag{Eq}
\end{gather*}
$$

T, U are unknowns of sort \mathbb{T}, P, Q, R are unknowns of sort \mathbb{F}.
Axioms are all of the form $\phi=\top$, which intuitively means ' ϕ is true'.
Note that this is a finite number of axioms.

Validity in theory FOL

Example equality judgements:

- $P \supset Q \supset P=\top$
- $a \# P \rightarrow P \supset \forall[a] P=\top$
- $a \# P \rightarrow P \supset P[a \mapsto T]=\top$

How can we show that these are valid in theory FOL?

Validity in theory FOL

Example equality judgements:

- $P \supset Q \supset P=\top$
- $a \# P \rightarrow P \supset \forall[a] P=\top$
- $a \# P \rightarrow P \supset P[a \mapsto T]=\top$

How can we show that these are valid in theory FOL?
Semantics of Nominal Algebra: not treated here.
Sound and complete proof system for Nominal Algebra: treated here.

Derivability of freshnesses

$$
\begin{gathered}
\overline{a \# b}(\# \mathbf{a b}) \frac{a \# t_{1} \cdots a \# t_{n}}{a \# \mathbf{f}\left(t_{1}, \ldots, t_{n}\right)}(\# \mathbf{f}) \frac{\pi^{-1}(a) \# X}{a \# \pi \cdot X}(\# \mathbf{X}) \\
\frac{\overline{a \#[a\rfloor t}\left(\#[\mathbf{a}) \frac{a \# t}{a \#\lfloor b] t}(\#[\mathbf{b})\right.}{}
\end{gathered}
$$

a and b range over distinct atoms.
Write $\Delta \vdash a \# t$ when there exists a derivation of $a \# t$ using the elements of Δ as assumptions. Say that $a \# t$ is derivable from Δ.

A freshness judgement $\Delta \rightarrow a \# t$ is derivable when $\Delta \vdash a \# t$.

Derivability of equalities

$$
\begin{array}{cc}
\overline{t=t}(\mathbf{r e f l}) \quad \frac{t=u}{u=t}(\text { symm }) & \frac{t=u \quad u=v}{t=v}(\mathbf{t r a n}) \\
\frac{t=u}{C[t]=C[u]}(\mathbf{c o n g}) & \frac{a \# t \quad b \# t}{(a b) \cdot t=t}(\mathbf{p e r m}) \\
& {\left[a \# X_{1}, \ldots, a \# X_{n}\right] \quad \Delta} \\
\frac{\Delta^{\pi} \sigma}{t^{\pi} \sigma=u^{\pi} \sigma}\left(\mathbf{a x}_{\mathbf{A}}\right) A \equiv \Delta \rightarrow t=u & \vdots \\
& \frac{t=u}{t=u}(\mathbf{f r}) \quad(a \notin t, u, \Delta)
\end{array}
$$

Here A is an axiom, and we call $C[-]$ a context.
Write $\Delta \vdash_{\mathrm{T}} t=u$ when $t=u$ is derivable from Δ using axioms from T only.
$\Delta \rightarrow t=u$ is derivable in theory T when $\Delta \vdash_{\top} t=u$.

Derivability of equalities (2)

Write \equiv for syntactic identity.
Define permutation actions on terms $\pi \cdot t, t^{\pi}$:

$$
\begin{array}{cc}
\pi \cdot a \equiv \pi(a) & \pi \cdot\left(\pi^{\prime} \cdot X\right) \equiv\left(\pi \circ \pi^{\prime}\right) \cdot X \\
\pi \cdot[a] t \equiv[\pi(a)](\pi \cdot t) & \pi \cdot \mathrm{f}\left(t_{1}, \ldots, t_{n}\right) \equiv \mathrm{f}\left(\pi \cdot t_{1}, \ldots, \pi \cdot t_{n}\right) \\
a^{\pi} \equiv \pi(a) & \left(\pi^{\prime} \cdot X\right)^{\pi} \equiv\left(\pi \circ \pi^{\prime} \circ \pi^{-1}\right) \cdot X \\
([a] t)^{\pi} \equiv[\pi(a)]\left(t^{\pi}\right) & \mathrm{f}\left(t_{1}, \ldots, t_{n}\right)^{\pi} \equiv \mathrm{f}\left(t_{1}{ }^{\pi}, \ldots, t_{n}{ }^{\pi}\right)
\end{array}
$$

A substitution σ is an assignment of unknowns to terms of the same sort. Define a substitution action on terms $t \sigma$:

$$
\begin{array}{cc}
a \sigma \equiv a & (\pi \cdot X) \sigma \equiv \pi \cdot \sigma(X) \\
([a] t) \sigma \equiv[a] t \sigma & \mathrm{f}\left(t_{1}, \ldots, t_{n}\right) \sigma \equiv \mathrm{f}\left(t_{1} \sigma, \ldots, t_{n} \sigma\right)
\end{array}
$$

/department of mathematics and computer science

Derivability of equalities (3)

Derivable equality judgements in FOL:

- $P \supset Q \supset P=$ Т, i.e. $\vdash_{\text {fol }} P \supset Q \supset P=\top$.
- $a \# P \rightarrow P \supset \forall[a] P=$ Т, i.e. $\quad a \# P \vdash_{\text {fol }} P \supset \forall[a] P=\top$
- $a \# P \rightarrow P \supset P[a \mapsto T]=$ Т, i.e. $\quad a \# P \vdash_{\text {fol }} P \supset P[a \mapsto T]=\top$

Derivability of equalities (3)

Derivable equality judgements in FOL:

- $P \supset Q \supset P=$ Т, i.e. $\vdash_{\text {fol }} P \supset Q \supset P=$ Т.
- $a \# P \rightarrow P \supset \forall[a] P=$ Т, \quad i.e. $\quad a \# P \vdash_{\text {fol }} P \supset \forall[a] P=\top$
- $a \# P \rightarrow P \supset P[a \mapsto T]=$ Т, \quad i.e. $\quad a \# P \vdash_{\text {юо }} P \supset P[a \mapsto T]=\top$

This concludes the treatment of the equational proof system for FOL. Let's have a look at a sequent calculus for FOL.

A sequent calculus for FOL

Sequent calculi are often more effective in proving assertions than equational proof systems.

We may call terms of sort \mathbb{F} formulae, and denote them by ϕ and ψ.
Let (formula) contexts Φ, Ψ be finite sets of formulae. We may write ϕ for $\{\phi\}, \phi, \Phi$ for $\{\phi\} \cup \Phi$, and Φ, Φ^{\prime} for $\Phi \cup \Phi^{\prime}$.

A sequent is a triple $\Phi \vdash_{\Delta} \Psi$. We may omit empty formula contexts, e.g. writing \vdash_{Δ} for $\emptyset \vdash_{\Delta} \emptyset$. Define derivability on sequents...

A sequent calculus for FOL (2)

Rules resembling Gentzen's sequent calculus for first-order logic:

$$
\left.\begin{array}{cc}
\phi, \Phi \vdash_{\Delta} \Psi, \phi \\
(\mathbf{A x}) & \overline{\perp, \Phi \vdash_{\Delta} \Psi}(\perp \mathbf{L}) \\
\frac{\Phi \vdash_{\Delta} \Psi, \phi \psi, \Phi \vdash_{\Delta} \Psi}{\phi \supset \psi, \Phi \vdash_{\Delta} \Psi}(\supset \mathbf{L}) & \frac{\phi, \Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \phi \supset \psi}(\supset \mathbf{R}) \\
\frac{\phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi}{\forall[a] \phi, \Phi \vdash_{\Delta} \Psi}(\forall \mathbf{L}) \quad \frac{\Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \forall[a] \psi}(\forall \mathbf{R}) \quad(\Delta \vdash a \# \Phi, \Psi) \\
\frac{\phi\left[a \mapsto t^{\prime}\right], \Phi \vdash_{\Delta} \Psi}{t^{\prime} \approx t, \phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi}(\approx \mathbf{L}) & \Phi \vdash_{\Delta} \Psi, t \approx t
\end{array}(\approx \mathbf{R})\right)
$$

These are schemas: a ranges over atoms, t, t^{\prime} ranges over terms of sort \mathbb{T}, ϕ, ψ range over formulae, and Φ, Ψ range over formula contexts.

A sequent calculus for FOL (3)

Other rules:

$$
\begin{aligned}
& \frac{\phi^{\prime}, \Phi \vdash_{\Delta} \Psi}{\phi, \Phi \vdash_{\Delta} \Psi}(\text { StructL }) \quad\left(\Delta \vdash_{\text {SUB }} \phi^{\prime}=\phi\right) \\
& \frac{\Phi \vdash_{\Delta} \Psi, \psi^{\prime}}{\Phi \vdash_{\Delta} \Psi, \psi}(\mathbf{S t r u c t R}) \quad\left(\Delta \vdash_{\text {SUB }} \psi^{\prime}=\psi\right) \\
& \frac{\Phi \vdash_{\Delta \operatorname{Lu}^{\left\{a \# \# X_{1}\right.}}^{\Phi Y_{\Delta}} \Psi^{X_{n\}}} \Psi}{}(\text { Fresh }) \quad(a \notin \Phi, \Psi, \Delta) \\
& \frac{\Phi \vdash_{\Delta} \Psi, \phi \phi^{\prime}, \Phi \vdash_{\Delta} \Psi}{\Phi \vdash_{\Delta} \Psi}(\text { Cut }) \quad\left(\Delta \vdash_{\text {SUB }} \phi=\phi^{\prime}\right)
\end{aligned}
$$

Properties of the sequent calculus

For $\Phi \equiv\left\{\phi_{1}, \ldots, \phi_{n}\right\}$, define its conjunctive form Φ^{\wedge} to be $\phi_{1} \wedge \cdots \wedge \phi_{n}$ when $n>0$, and \top when $n=0$. Analogously, define the disjunctive form Φ^{\vee} to be $\phi_{1} \vee \cdots \vee \phi_{n}$ when $n>0$, and \perp when $n=0$.

Properties of the sequent calculus

For $\Phi \equiv\left\{\phi_{1}, \ldots, \phi_{n}\right\}$, define its conjunctive form Φ^{\wedge} to be $\phi_{1} \wedge \cdots \wedge \phi_{n}$ when $n>0$, and \top when $n=0$. Analogously, define the disjunctive form Φ^{\vee} to be $\phi_{1} \vee \cdots \vee \phi_{n}$ when $n>0$, and \perp when $n=0$.

Theorem i For all FOL contexts Φ, Ψ and freshness contexts Δ :

$$
\Phi \vdash_{\Delta} \Psi \text { is derivable iff } \Delta \vdash_{\text {FOL }} \Phi^{\wedge} \supset \Psi^{\vee}=\top .
$$

So equational and sequent derivability are equivalent.

Properties of the sequent calculus

For $\Phi \equiv\left\{\phi_{1}, \ldots, \phi_{n}\right\}$, define its conjunctive form Φ^{\wedge} to be $\phi_{1} \wedge \cdots \wedge \phi_{n}$ when $n>0$, and \top when $n=0$. Analogously, define the disjunctive form Φ^{\vee} to be $\phi_{1} \vee \cdots \vee \phi_{n}$ when $n>0$, and \perp when $n=0$.

Theorem i For all FOL contexts Φ, Ψ and freshness contexts Δ :

$$
\Phi \vdash_{\Delta} \Psi \text { is derivable iff } \Delta \vdash_{\text {FOL }} \Phi^{\wedge} \supset \Psi^{\vee}=\top .
$$

So equational and sequent derivability are equivalent.
Theorem 2 If Π is a derivation of $\Phi \vdash_{\Delta} \Psi$ and $\Delta^{\prime} \vdash \Delta^{\pi} \sigma$, then there exists a derivation Π^{\prime} of $\Phi^{\pi} \sigma \vdash_{\Delta^{\prime}} \Psi^{\pi} \sigma$, which is Π in which atoms are permuted, unknowns are instantiated, and freshness contexts are replaced.

Properties of the sequent calculus (2)

Theorem 3 [Cut elimination]
The (Cut) rule is admissible in the system without it.

Properties of the sequent calculus (2)

Theorem 3 [Cut elimination]
The (Cut) rule is admissible in the system without it.
Corollary 4 The sequent calculus and the equational proof systems for FOL are both consistent, i.e. for any freshness context Δ :

- \vdash_{Δ} cannot be derived;
- $\Delta \rightarrow T=\perp$ cannot be derived in FOL.

Relation to First-order Logic

Call a term ground if it does not contain unknowns or explicit substitutions. From now on we only consider terms and formula contexts on ground terms.

A first-order sequent is a pair $\Phi \vdash \Psi$.
Genzten's sequent calculus for first-order logic:

$$
\begin{gathered}
\overline{\phi, \Phi \vdash \Psi, \phi}(\mathbf{A x}) \\
\frac{\Phi \vdash \Phi \vdash \Psi}{\phi \supset \phi}(\perp \mathbf{L}) \\
\frac{\phi \llbracket a \mapsto t \mapsto \Phi}{\forall a \cdot \phi, \Phi \vdash \Psi \vdash \Psi}(\supset \mathbf{L}) \quad \frac{\phi, \Phi \vdash \Psi, \psi}{\Phi \vdash \Psi, \phi \supset \psi}(\supset \mathbf{R}) \\
\frac{\phi \llbracket a \mapsto t^{\prime} \rrbracket, \Phi \vdash \Psi}{t^{\prime} \approx t . \phi \llbracket a \mapsto t \rrbracket . \Phi \vdash \Psi}(\forall \mathbf{L}) \quad \frac{\Phi \vdash \Psi, \phi}{\Phi \vdash \Psi, \forall a \cdot \phi}(\forall \mathbf{R}) \quad(a \notin f n(\Phi, \Psi)) \\
\\
\hline \mathbf{L}) \quad \overline{\Phi \vdash \Psi, t \approx t}(\approx \mathbf{R})
\end{gathered}
$$

Relation to First-order Logic (2)

Note that:

- We write $\forall a . \phi$ for $\forall[a] \phi$.
- $\llbracket a \mapsto t \rrbracket$ is capture-avoiding substitution.
- $a \notin f n(\phi)$ is ' a does not occur in the free names of ϕ '.
- We take formulae up to α-equivalence, e.g. suppose $\mathrm{p}:(\mathbb{T}) \mathbb{F}$ is an atomic predicate term-former, then $\forall a \cdot \mathbf{p}(a) \vdash \forall b . \mathbf{p}(b)$ follows directly by $(\mathbf{A x})$ since $\forall a . \mathrm{p}(a)={ }_{\alpha} \forall b$. $\mathbf{p}(b)$.

Relation to First-order Logic (2)

Note that:

- We write $\forall a . \phi$ for $\forall[a] \phi$.
- $\llbracket a \mapsto t \rrbracket$ is capture-avoiding substitution.
- $a \notin f n(\phi)$ is ' a does not occur in the free names of ϕ '.
- We take formulae up to α-equivalence, e.g. suppose $\mathrm{p}:(\mathbb{T}) \mathbb{F}$ is an atomic predicate term-former, then $\forall a \cdot \mathbf{p}(a) \vdash \forall b \cdot \mathbf{p}(b)$ follows directly by $(\mathbf{A x})$ since $\forall a . \mathrm{p}(a)={ }_{\alpha} \forall b . \mathbf{p}(b)$.

Theorem $5 \Phi \vdash \Psi$ is derivable in the sequent calculus for first-order logic, if and only if $\Phi \vdash_{\theta} \Psi$ is derivable in the sequent calculus for FOL.

So on ground terms, one-and-a-halfth-order logic is first-order logic.

Conclusions

Nominal algebra:

- is a system in which we can accurately represent systems with binding: e.g. explicit substitution and first-order logic;
- allows for novel systems with their own mathematical interest: e.g. one-and-a-halfth-order logic.

One-and-a-halfth-order logic:

- is the result of axiomatising first-order logic in Nominal algebra;
- makes meta-level concepts of first-order logic explicit;
- has a finite equational axiomatisation;
- has a sequent calculus with syntax-directed rules;
- has a semantics in first-order logic on ground terms.

Related work

Second-order logic:

- In this logic we can quantify over predicates anywhere, which makes it more expressive than one-and-a-halfh-order logic.
- Theory FOL does have a second-order flavour. It can easily be extended with one axiom that expresses the principle of induction on natural numbers:

$$
P[a \mapsto 0] \wedge \forall[a](P \supset P[a \mapsto \operatorname{succ}(\operatorname{var}(a))]) \supset \forall[a] P=\top .
$$

Higher-order logic (HOL):

- is type raising, while one-and-a-halfth-order logic is not: $P[a \mapsto t]$ corresponds to $f(t)$ in HOL, where $f: \mathbb{T} \rightarrow \mathbb{F} ; P[a \mapsto t]\left[a^{\prime} \mapsto t^{\prime}\right]$ corresponds to $f^{\prime}(t)\left(t^{\prime}\right)$ where $f^{\prime}: \mathbb{T} \rightarrow \mathbb{T} \rightarrow \mathbb{F}$, and so on...
- One-and-a-halfth-order logic is not a subset of HOL because of freshnesses.

Future work

- Concrete semantics for one-and-a-halfth-order logic on non-ground terms.
- Two-and-a-halfth-order logic (where you can abstract X)?
- Implementation and automation?

Future work

- Concrete semantics for one-and-a-halfth-order logic on non-ground terms.
- Two-and-a-halfth-order logic (where you can abstract X)?
- Implementation and automation?

Current status

- M.J. Gabbay, A.H.J. Mathijssen, Nominal Algebra, submitted CSL’o6.
- M.J. Gabbay, A.H.J. Mathijssen, Capture-avoiding Substitution as a Nominal Algebra, submitted ICTAC’o6.
- M.J. Gabbay, A.H.J. Mathijssen, One-and-a-halfth-order Logic, submitted PPDP'o6.

Just to scare you

$$
\begin{align*}
& \overline{P[b \mapsto \operatorname{var}(c)][a \mapsto \operatorname{var}(c)] \vdash_{c \neq P} P[b \mapsto \operatorname{var}(c)][a \mapsto \operatorname{var}(c)]}(\mathbf{A x}) \\
& \forall[a](P[b \mapsto \operatorname{var}(c)]) \vdash_{c \# P} P[b \mapsto \operatorname{var}(c)][a \mapsto \operatorname{var}(c)](\forall \mathbf{L}) \\
& \frac{(\forall[a] P)[b \mapsto \operatorname{var}(c)] \vdash_{c \# P} P[b \mapsto \operatorname{var}(a)][a \mapsto \operatorname{var}(c)]}{c}(\text { StructL }) \tag{土.}\\
& \frac{\forall[b] \forall[a] P \vdash_{c \neq P} P[b \mapsto \operatorname{var}(c)][a \mapsto \operatorname{var}(c)]}{\forall[b] \forall[a] P \vdash_{c \# P} \forall[c](P[b \mapsto \operatorname{var}(c)][a \mapsto \operatorname{var}(c)])}(\forall \mathbf{R}) \tag{2.}\\
& \forall[b] \forall[a] P \vdash_{c \neq P} \forall[a](P[b \mapsto \operatorname{var}(a)]) \text { (StructR) } \tag{3.}
\end{align*}
$$

Side-conditions:

I. $c \# P \vdash_{\text {SUB }} \forall[a](P[b \mapsto \operatorname{var}(c)])=(\forall[a] P)[b \mapsto \operatorname{var}(c)]$
2. $c \# P \vdash c \# \forall[b] \forall[a] P$
3. $c \# P \vdash_{\text {SUB }} \forall[c](P[b \mapsto \operatorname{var}(c)][a \mapsto \operatorname{var}(c)])=\forall[a](P[b \mapsto \operatorname{var}(a)])$
4. $c \notin \forall[b] \forall[a] P, \forall[a](P[b \mapsto \operatorname{var}(a)])$

