
1/35

One-and-a-halfth-order Logic

Aad Mathijssen Murdoch J. Gabbay

4th May 2006

2/35

Introduction

Consider the following valid assertions in first-order logic:

• φ ⊃ (ψ ⊃ φ)

• if a 6∈ fn(φ) then φ ⊃ ∀a.φ
• if a 6∈ fn(φ) then φ ⊃ (φJa 7→ tK)

These are not valid syntax in first-order logic, because of meta-level concepts:

• meta-variables varying over syntax: φ, ψ, a, t

• properties of syntax:

– freshness assumptions: a 6∈ fn(φ)

– capture-avoiding substitution: φJa 7→ tK
Is there a logic in which the above assertions are valid syntax?

3/35

Introduction (2)

Consider the following (sequent) derivations:

(Ax)φ, ψ ` φ (⊃R)φ ` ψ ⊃ φ (⊃R)` φ ⊃ (ψ ⊃ φ)

(Ax)⊥,⊥ ` ⊥ (⊃R)⊥ ` ⊥ ⊃ ⊥ (⊃R)` ⊥ ⊃ (⊥ ⊃ ⊥)

The left one is not a derivation, it is a schema of derivations.

The right one is a derivation, it is an instance of the schema on the left.

Is there a logic in which the derivation on the left is a derivation too?

4/35

Introduction (3)

One-and-a-halfth-order logicmakes meta-level concepts explicit.

The following judgements are valid in one-and-a-halfth-order logic:

• P ⊃ (Q ⊃ P) = >
• a#P → P ⊃ ∀[a]P = >
• a#P → P ⊃ (P [a 7→ T]) = >

No meta-level concepts:

• P ,Q and T are unknowns, representing meta-level variables

• a is an atom, representing an object-level variable

• a#P is a freshness, representing a is fresh for P

• P [a 7→ T] is an explicit substitution, repr. capture-avoiding substitution

5/35

Introduction (4)

One-and-a-halfth-order logicmakes meta-level concepts explicit.

The following (sequent) derivations are valid in one-and-a-halfth-order logic:

(Ax)P,Q ` P (⊃R)P ` Q ⊃ P (⊃R)` P ⊃ (Q ⊃ P)

(Ax)⊥,⊥ ` ⊥ (⊃R)⊥ ` ⊥ ⊃ ⊥ (⊃R)` ⊥ ⊃ (⊥ ⊃ ⊥)

6/35

Introduction (5)

One-and-a-halfth-order logicmakes meta-level concepts explicit.

The following (sequent) derivation is valid in one-and-a-halfth-order logic:

(Ax)P `
a#P

P (∀R) (a#P ` a#P)P `
a#P

∀[a]P (⊃R)`
a#P

P ⊃ ∀[a]P

Side condition a#P ` a#P :
freshness a#P is derivable from the assumption a#P .

7/35

Introduction (6)

One-and-a-halfth-order logicmakes meta-level concepts explicit.

The following (sequent) derivation is valid in one-and-a-halfth-order logic:

(Ax)P `
a#P

P (StructR) (a#P `
SUB

P = P [a 7→ T])P `
a#P

P [a 7→ T] (⊃R)`
a#P

P ⊃ (P [a 7→ T])

Side condition a#P `
SUB

P = P [a 7→ T]:
equality P = P [a 7→ T] is derivable from the assumption a#P in theory SUB.

The rule (StructR) lets us replace the right-hand sideP [a 7→ T] of the equality
assertion by its left-hand side P .

8/35

Overview

• Nominal Algebra:

– Signature, axioms and theories

– Equational theory of one-and-a-halfth order logic

– Equational proof system

• Sequent calculus for one-and-a-halfth-order logic

• Relation to first-order logic

• Conclusions, related and future work

9/35

Nominal Algebra. . .

. . . is a theory of algebraic equality on nominal terms.

. . . has built-in support for binding and freshnesses.

. . . is first-order, not higher-order.

. . . allows for direct and natural representation of existing systems with binding.

. . . also allows for novel systems like one-and-a-halfth-order logic.

10/35

Signature

δ ranges over base sorts.

A ranges over atomic sorts.

Sorts τ :
τ ::= δ | A | [A]τ

Term-formers fρ have an associated arity ρ = (τ1, . . . , τn)τ .
f : ρmeans ‘f with arity ρ’.

A signature Σ = (D,A, F) where D, A and F are finite sets of base sorts,
atomic sorts and term-formers.

11/35

Signature (2)

Atoms a, b, c, . . . have sort A; they represent object-level variable symbols.

UnknownsX, Y, Z, . . . have sort τ ; they represent meta-level variable symbols.

A permutation π of atoms is a total bijection A → A with finite support:
π(a) 6= a for a finite number of a’s and π(a) = a for all others.

We call π ·X amoderated unknown.
This represents the permutation of atoms π acting on an unknown term.

Terms t, subscripts indicate sorting rules:

t ::= aA | (π ·Xτ)τ | [aA]tτ | (f(τ1,...,τn)τ(t
1
τ1
, . . . , tnτn

))τ

12/35

Signature (3)

Signature for one-and-a-halfth-order logic:

• Base sorts F for ‘formulae’ and T for ‘terms’; atomic sort A;

• Term-formers:

– ⊥ : ()F represents falsity;

– ⊃: (F,F)F represents implication, write φ ⊃ ψ for⊃(φ, ψ);

– ∀ : ([A]F)F represents universal quantification, write ∀[a]φ for ∀([a]φ);

– ≈: (T,T)F represents object-level equality, write t ≈ u for≈(t, u);

– var : (A)T is variable casting, forced upon us by the sort system;

– sub : ([A]τ,T)τ , where τ ∈ {F,T, [A]F}, is explicit substitution,
write t[a 7→ u] for sub([a]t, u);

– p1, . . . , pn : (T, . . . ,T)F are object-level predicate term-formers;

– f1, . . . , fm : (T, . . . ,T)T are object-level term-formers.

13/35

Signature (4)

Sugar:

> is ⊥ ⊃ ⊥ ¬φ is φ ⊃ ⊥ φ ∧ ψ is ¬(φ ⊃ ¬ψ)

φ ∨ ψ is ¬φ ⊃ ψ φ⇔ ψ is (φ ⊃ ψ) ∧ (ψ ⊃ φ) ∃[a]φ is ¬∀[a]φ

Descending order of operator precedence:

[7→ _], ≈, {¬,∀,∃}, {∧,∨}, ⊃, ⇔

∧, ∨ and⊃ associate to the right.

Example terms of sort F:

P ⊃ Q ⊃ P P ⊃ ∀[a]P P ⊃ P [a 7→ T]

P,Q are unknowns of sort F, T is an unknown of sort T, a is an atom of sort A.

14/35

Assertions and judgements

Freshness (assertions) a#t, which means ‘a is fresh for t.
If t is an unknownX , the freshness is called primitive.

Equality (assertions) t = u, where t and u are of the same sort.

Write ∆ for a set of primitive freshnesses and call it a freshness context.
We may leave out set brackets, writing a#X, b#Y instead of {a#X, b#Y }.

We call ∆ → A a judgement where A is an assertion (a#t or t = u).
We may leave out ∆ → if ∆ is empty (∅).

15/35

Assertions and judgements (2)

Example equality judgements:

• ∅ → P ⊃ Q ⊃ P = >, or just P ⊃ Q ⊃ P = >
• {a#P} → P ⊃ ∀[a]P = >, or just a#P → P ⊃ ∀[a]P = >
• {a#P} → P ⊃ P [a 7→ T] = >, or just a#P → P ⊃ P [a 7→ T] = >

P,Q are unknowns of sort F, T is an unknown of sort T, a is an atom of sort A.

When are these valid?

16/35

Axioms and theories

We allow equality judgements ∆ → t = u with finite ∆ as axioms.

A theory T = (Σ,Ax) where:

• Σ is a signature;

• Ax is a possibly infinite set of axioms.

17/35

Axioms and theories (2)

• CORE: a theory of α-conversion

• SUB: a theory of explicit substitution

• FOL: a theory of one-and-a-halfth-order logic (watch the name)

Relation between the theories:

• Signature is the same (previously introduced)

• Axioms of smaller theories are contained in bigger ones according to the
following relation:

CORE ⊂ SUB ⊂ FOL

18/35

Axioms and theories (3)

Axioms of CORE: none!

Axioms of SUB:

(f 7→) f(X1, . . . , Xn)[a 7→ T] = f(X1[a 7→ T], . . . , Xn[a 7→ T])
(abs 7→) b#T → ([b]X)[a 7→ T] = [b](X [a 7→ T])
(var 7→) var(a)[a 7→ T] = T

(# 7→) a#X → X [a 7→ T] =X
(ren 7→) b#X → X [a 7→ var(b)] = (b a) ·X

f ranges over all term-formers excluding var, but including sub.
a and b are distinct atoms.
T is an unknown of sort T,X,X1, . . . , Xn are unknowns of appropriate sorts.

Note that this is a finite number of axioms.

19/35

Axioms and theories (4)

Axioms of FOL: axioms of SUB extended with

P ⊃ Q ⊃ P = > ¬¬P ⊃ P = > (Props)
(P ⊃ Q) ⊃ (Q ⊃ R) ⊃ (P ⊃ R) = > ⊥ ⊃ P = >

∀[a]P ⊃ P [a 7→ T] = > (Quants)
∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

a#P → ∀[a](P ⊃ Q) ⇔ P ⊃ ∀[a]Q = >

T ≈ T = > U ≈ T ∧ P [a 7→ T] ⊃ P [a 7→ U] = > (Eq)

T, U are unknowns of sort T, P,Q,R are unknowns of sort F.
Axioms are all of the form φ = >, which intuitively means ‘φ is true’.

Note that this is a finite number of axioms.

20/35

Validity in theory FOL

Example equality judgements:

• P ⊃ Q ⊃ P = >
• a#P → P ⊃ ∀[a]P = >
• a#P → P ⊃ P [a 7→ T] = >

How can we show that these are valid in theory FOL?

Semantics of Nominal Algebra: not treated here.

Sound and complete proof system for Nominal Algebra: treated here.

21/35

Derivability of freshnesses

(#ab)a#b
a#t1 · · · a#tn (#f)a#f(t1, . . . , tn)

π-1(a)#X (#X)a#π ·X

(#[]a)a#[a]t
a#t (#[]b)a#[b]t

a and b range over distinct atoms.

Write ∆ ` a#t when there exists a derivation of a#t using the elements of ∆
as assumptions. Say that a#t is derivable from ∆.

A freshness judgement ∆ → a#t is derivable when ∆ ` a#t.

22/35

Derivability of equalities

(refl)t = t
t = u (symm)u = t

t = u u = v (tran)t = v

t = u (cong)C[t] = C[u]
a#t b#t (perm)(a b) · t = t

∆πσ (axA)tπσ = uπσ
A ≡ ∆ → t = u

[a#X1, . . . , a#Xn] ∆
···

t = u (fr) (a 6∈ t, u,∆)t = u

Here A is an axiom, and we call C[_] a context.

Write ∆ `
T
t = u when t = u is derivable from ∆ using axioms from T only.

∆ → t = u is derivable in theory T when ∆ `
T
t = u.

23/35

Derivability of equalities (2)

Write≡ for syntactic identity.

Define permutation actions on terms π · t, tπ:

π · a ≡ π(a) π · (π′ ·X) ≡ (π ◦ π′) ·X
π · [a]t ≡ [π(a)](π · t) π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

aπ ≡ π(a) (π′ ·X)π ≡ (π ◦ π′ ◦ π-1) ·X
([a]t)π ≡ [π(a)](tπ) f(t1, . . . , tn)

π ≡ f(t1
π, . . . , tn

π)

A substitution σ is an assignment of unknowns to terms of the same sort.
Define a substitution action on terms tσ:

aσ ≡ a (π ·X)σ ≡ π · σ(X)

([a]t)σ ≡ [a]tσ f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

24/35

Derivability of equalities (3)

Derivable equality judgements in FOL:

• P ⊃ Q ⊃ P = >, i.e. `
FOL
P ⊃ Q ⊃ P = >.

• a#P → P ⊃ ∀[a]P = >, i.e. a#P `
FOL
P ⊃ ∀[a]P = >

• a#P → P ⊃ P [a 7→ T] = >, i.e. a#P `
FOL
P ⊃ P [a 7→ T] = >

This concludes the treatment of the equational proof system for FOL.
Let’s have a look at a sequent calculus for FOL.

25/35

A sequent calculus for FOL

Sequent calculi are often more effective in proving assertions than equational
proof systems.

We may call terms of sort F formulae, and denote them by φ and ψ.

Let (formula) contexts Φ,Ψ be finite sets of formulae.
We may write φ for {φ}, φ,Φ for {φ} ∪ Φ, and Φ,Φ′ for Φ ∪ Φ′.

A sequent is a triple Φ `
∆

Ψ.
We may omit empty formula contexts, e.g. writing `

∆
for ∅ `

∆
∅.

Define derivability on sequents...

26/35

A sequent calculus for FOL (2)

Rules resembling Gentzen’s sequent calculus for first-order logic:

(Ax)φ, Φ `
∆

Ψ, φ (⊥L)⊥, Φ `
∆

Ψ

Φ `
∆

Ψ, φ ψ, Φ `
∆

Ψ (⊃L)φ ⊃ ψ, Φ `
∆

Ψ
φ, Φ `

∆
Ψ, ψ (⊃R)Φ `

∆
Ψ, φ ⊃ ψ

φ[a 7→ t], Φ `
∆

Ψ (∀L)∀[a]φ, Φ `
∆

Ψ
Φ `

∆
Ψ, ψ (∀R) (∆ ` a#Φ,Ψ)Φ `

∆
Ψ, ∀[a]ψ

φ[a 7→ t′], Φ `
∆

Ψ (≈L)
t′ ≈ t, φ[a 7→ t], Φ `

∆
Ψ

(≈R)Φ `
∆

Ψ, t ≈ t

These are schemas: a ranges over atoms, t, t′ ranges over terms of sort T, φ, ψ
range over formulae, and Φ,Ψ range over formula contexts.

27/35

A sequent calculus for FOL (3)

Other rules:

φ′, Φ `
∆

Ψ (StructL)φ, Φ `
∆

Ψ
(∆ `

SUB
φ′ = φ)

Φ `
∆

Ψ, ψ′
(StructR)Φ `

∆
Ψ, ψ

(∆ `
SUB

ψ′ = ψ)

Φ `
∆∪{a#X1,...,Xn}

Ψ (Fresh) (a 6∈ Φ,Ψ,∆)Φ `
∆

Ψ

Φ `
∆

Ψ, φ φ′, Φ `
∆

Ψ (Cut)Φ `
∆

Ψ
(∆ `

SUB
φ = φ′)

28/35

Properties of the sequent calculus

For Φ ≡ {φ1, . . . , φn}, define its conjunctive form Φ∧ to be φ1 ∧ · · · ∧ φn when
n > 0, and > when n = 0. Analogously, define the disjunctive form Φ∨ to be
φ1 ∨ · · · ∨ φn when n > 0, and⊥ when n = 0.

Theorem 1 For all FOL contexts Φ,Ψ and freshness contexts ∆:

Φ `
∆

Ψ is derivable iff ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >.

So equational and sequent derivability are equivalent.

Theorem 2 If Π is a derivation of Φ `
∆

Ψ and ∆′ ` ∆πσ, then there exists a
derivation Π′ of Φπσ `

∆′ Ψπσ, which is Π in which atoms are permuted, un-
knowns are instantiated, and freshness contexts are replaced.

29/35

Properties of the sequent calculus (2)

Theorem 3 [Cut elimination]
The (Cut) rule is admissible in the system without it.

Corollary 4 The sequent calculus and the equational proof systems for FOL are
both consistent, i.e. for any freshness context ∆:

• `
∆
cannot be derived;

• ∆ → > = ⊥ cannot be derived in FOL.

30/35

Relation to First-order Logic

Call a term ground if it does not contain unknowns or explicit substitutions.
From now on we only consider terms and formula contexts on ground terms.

A first-order sequent is a pair Φ ` Ψ.

Genzten’s sequent calculus for first-order logic:

(Ax)φ, Φ ` Ψ, φ (⊥L)⊥, Φ ` Ψ

Φ ` Ψ, φ ψ, Φ ` Ψ (⊃L)φ ⊃ ψ, Φ ` Ψ
φ, Φ ` Ψ, ψ (⊃R)Φ ` Ψ, φ ⊃ ψ

φJa 7→ tK, Φ ` Ψ (∀L)∀a.φ, Φ ` Ψ
Φ ` Ψ, φ (∀R)Φ ` Ψ, ∀a.φ (a 6∈ fn(Φ,Ψ))

φJa 7→ t′K, Φ ` Ψ (≈ L)
t′ ≈ t, φJa 7→ tK, Φ ` Ψ

(≈ R)Φ ` Ψ, t ≈ t

31/35

Relation to First-order Logic (2)

Note that:

• We write ∀a.φ for ∀[a]φ.

• Ja 7→ tK is capture-avoiding substitution.

• a 6∈ fn(φ) is ‘a does not occur in the free names of φ’.

• We take formulae up to α-equivalence, e.g. suppose p : (T)F is an atomic
predicate term-former, then ∀a.p(a) ` ∀b.p(b) follows directly by (Ax)
since ∀a.p(a) =α ∀b.p(b).

Theorem 5 Φ ` Ψ is derivable in the sequent calculus for first-order logic, if and
only if Φ `∅ Ψ is derivable in the sequent calculus for FOL.

So on ground terms, one-and-a-halfth-order logic is first-order logic.

32/35

Conclusions

Nominal algebra:

• is a system in which we can accurately represent systems with binding:
e.g. explicit substitution and first-order logic;

• allows for novel systems with their own mathematical interest:
e.g. one-and-a-halfth-order logic.

One-and-a-halfth-order logic:

• is the result of axiomatising first-order logic in Nominal algebra;

• makes meta-level concepts of first-order logic explicit;

• has a finite equational axiomatisation;

• has a sequent calculus with syntax-directed rules;

• has a semantics in first-order logic on ground terms.

33/35

Related work

Second-order logic:

• In this logic we can quantify over predicates anywhere, which makes it more
expressive than one-and-a-halfh-order logic.

• Theory FOL does have a second-order flavour. It can easily be extended with
one axiom that expresses the principle of induction on natural numbers:

P [a 7→ 0] ∧ ∀[a](P ⊃ P [a 7→ succ(var(a))]) ⊃ ∀[a]P = >.
Higher-order logic (HOL):

• is type raising, while one-and-a-halfth-order logic is not: P [a 7→ t] corre-
sponds to f (t) in HOL, where f : T → F; P [a 7→ t][a′ 7→ t′] corresponds
to f ′(t)(t′) where f ′ : T → T → F, and so on...

• One-and-a-halfth-order logic is not a subset of HOL because of freshnesses.

34/35

Future work

• Concrete semantics for one-and-a-halfth-order logic on non-ground terms.

• Two-and-a-halfth-order logic (where you can abstract X)?

• Implementation and automation?

Current status

• M.J. Gabbay, A.H.J. Mathijssen, Nominal Algebra, submitted CSL’06.

• M.J. Gabbay, A.H.J. Mathijssen, Capture-avoiding Substitution as a Nominal
Algebra, submitted ICTAC’06.

• M.J. Gabbay, A.H.J. Mathijssen, One-and-a-halfth-order Logic, submitted
PPDP’06.

35/35

Just to scare you

(Ax)
P [b 7→ var(c)][a 7→ var(c)] `c#P P [b 7→ var(c)][a 7→ var(c)]

(∀L)
∀[a](P [b 7→ var(c)]) `c#P P [b 7→ var(c)][a 7→ var(c)]

(StructL) (1.)
(∀[a]P)[b 7→ var(c)] `c#P P [b 7→ var(a)][a 7→ var(c)]

(∀L)
∀[b]∀[a]P `c#P P [b 7→ var(c)][a 7→ var(c)]

(∀R) (2.)
∀[b]∀[a]P `c#P ∀[c](P [b 7→ var(c)][a 7→ var(c)])

(StructR) (3.)
∀[b]∀[a]P `c#P ∀[a](P [b 7→ var(a)])

(Fresh) (4.)
∀[b]∀[a]P `∅ ∀[a](P [b 7→ var(a)])

Side-conditions:

1. c#P `
SUB

∀[a](P [b 7→ var(c)]) = (∀[a]P)[b 7→ var(c)]

2. c#P ` c#∀[b]∀[a]P

3. c#P `
SUB

∀[c](P [b 7→ var(c)][a 7→ var(c)]) = ∀[a](P [b 7→ var(a)])

4. c 6∈ ∀[b]∀[a]P, ∀[a](P [b 7→ var(a)])

