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Motivation
The λ-calculus

The λ-calculus:

t ::= x | tt | λx .t

| X

Axioms:

(α) λx .t = λy .(t[x 7→ y ]) if y 6∈ fv(t)
(β) (λx .t)u = t[x 7→ u]
(η) λx .(tx) = t if x 6∈ fv(t)

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}



Motivation
The λ-calculus

The λ-calculus:

t ::= x | tt | λx .t

| X

Axiom schemata:

(α) λx .t = λy .(t[x 7→ y ]) if y 6∈ fv(t)
(β) (λx .t)u = t[x 7→ u]
(η) λx .(tx) = t if x 6∈ fv(t)

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}

t and u are meta-variables ranging over terms.



Motivation
The λ-calculus

The λ-calculus with meta-variables:

t ::= x | tt | λx .t | X

Axioms:

(α) λx .X = λy .(X [x 7→ y ]) if y 6∈ fv(X )
(β) (λx .X )Y = X [x 7→ Y ]
(η) λx .(Xx) = X if x 6∈ fv(X )

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}

fv(X ) = ?



Motivation
The λ-calculus

The λ-calculus with meta-variables:

t ::= x | tt | λx .t | X

Axioms:

(α) λx .X = λy .(X [x 7→ y ]) if y 6∈ fv(X )
(β) (λx .X )Y = X [x 7→ Y ]
(η) λx .(Xx) = X if x 6∈ fv(X )

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}

Freshness occurs in the presence of meta-variables:
We only know if x 6∈ fv(X ) when X is instantiated.



Motivation
Other examples

In informal mathematical usage, we see equalities like:

• First-order logic: (∀x .φ) ∧ ψ = ∀x .(φ ∧ ψ) if x 6∈ fv(ψ)

• π-calculus: (νx .P) | Q = νx .(P | Q) if x 6∈ fv(Q)

• µCRL/mCRL2:
∑

x .p = p if x 6∈ fv(p)

And for any binder ξ ∈ {λ,∀, ν,
∑
}:

• (ξx .t)[y 7→ u] = ξx .(t[y 7→ u]) if x 6∈ fv(u)

• α-equivalence: ξx .t = ξy .(t[x 7→ y ]) if y 6∈ fv(t)

Here:

I φ, ψ,P,Q, p, t, u are meta-variables ranging over terms.

I Freshness occurs in the presence of meta-variables.
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Motivation
Formalisation

Question: Can we formalise

• terms with binding and meta-variables
• in a way close to informal practice?

Answer: Yes, using Nominal Terms (Urban, Gabbay, Pitts).

Question: Can we formalise

• equational reasoning with binding and meta-variables
• in a way close to informal practice?

Answer: Yes, using Nominal Algebra...
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Overview

Overview:

I Nominal terms

I Nominal algebra:
I De�nitions
I Examples

I α-conversion and derivability

I Related work, with an application to choice quanti�cation

I Results, conclusions and future work



Nominal Terms
De�nition

Nominal terms are inductively de�ned by:

t ::= a | X | f(t1, . . . , tn) | [a]t

Here we �x:

I atoms a, b, c, . . . (for x , y)

I unknowns X ,Y ,Z , . . . (for t, u, φ, ψ, P , Q, p)

I term-formers f, g, h, . . . (for λ, __, ∀, ∧, ν, |,
∑

, _[_ 7→ _])

We call [a]t an abstraction (for the x ._).



Nominal Terms
Sorts

We can impose a sorting system on nominal terms.

Sorts τ , inductively de�ned by:

τ ::= T | [A]τ

Here:

I we �x base sorts T,U,V, . . .
I A is the set of all atoms a, b, c, . . .

I [A]τ represents an abstraction set:
the set consisting of elements of τ with an atom abstracted



Nominal Terms
Sorting assertions

Assign to

I the set of atoms A a speci�c base sort T
I each unknown X a sort τ , write Xτ

I each term-former f an arity (τ1, . . . , τn)τ , write f(τ1,...,τn)τ

De�ne sorting assertions on nominal terms, inductively by:

a : T Xτ : τ

t : τ

[a]t : [A]τ

t1 : τ1 · · · tn : τn

f(τ1,...,τn)τ (t1, . . . , tn) : τ



Nominal Terms
Examples

Representation of mathematical syntax in nominal terms:

nominal terms
mathematics

unsugared sugared

λx .t λ([a]X ) λ[a]X

λx .(tx) λ([a]app(X , a)) λ[a](Xa)

(∀x .φ) ∧ ψ ∧(∀([a]X ),Y ) (∀[a]X ) ∧ Y

(νx .P) | Q | (ν([a]X ),Y ) (ν[a]X ) | Y
(
∑

x .p)
∑

([a]X )
∑

[a]X

t[x 7→ u] sub([a]X ,Y ) X [a 7→ Y ]



Nominal Terms
Freshness

De�nition:

I Call a#X a primitive freshness (for `x 6∈ fv(t)').

I A freshness context ∆ is a �nite set of primitive freshnesses.

Generalise freshness on unknowns X to terms t:

I Call a#t a freshness, where t is a nominal term.

I Write ∆ ` a#t when a#t is derivable from ∆ using

(#ab)
a#b

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Examples: ` a#b ` a#λ[a]X a#X ` a#λ[b]X
6` a#a 6` a#λ[b]X a#X 6` a#Y
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Nominal Algebra
De�nition

Nominal algebra is a theory of equality between nominal terms:

I t = u is an equality where t and u are of the same sort.

I ∆ → t = u is a judgement (for `t = u if x 6∈ fv(v)').
If ∆ = ∅, write t = u.



Nominal Algebra
Example judgements

Meta-level properties as judgements in nominal algebra:

• λ-calculus: a#X → λ[a](Xa) = X

• First-order logic: a#Y → (∀[a]X ) ∧ Y = ∀[a](X ∧ Y )

• π-calculus: a#Y → (ν[a]X ) | Y = ν[a](X | Y )

• µCRL/mCRL2: a#X →
∑

[a]X = X

And for any binder ξ ∈ {λ,∀, ν,
∑
}:

• a#Y → (ξ[a]X )[b 7→ Y ] = ξ[a](X [b 7→ Y ])

• α-equivalence: b#X → ξ[a]X = ξ[b](X [a 7→ b])



Nominal algebra
Theories

A theory in nominal algebra consists of:

I a set of base sorts

I a set of term-formers

I a set of axioms: judgements ∆ → t = u



Nominal Algebra
LAM: the λ-calculus

A theory LAM for the λ-calculus with meta-variables:

I base sort T
I term-formers λ, app and sub

(recall that t[a 7→ u] is just sugar for sub([a]t, u))

I axioms:

(α) b#X → λ[a]X = λ[b](X [a 7→ b])
(β) (λ[a]Y )X = Y [a 7→ X ]
(η) a#X → λ[a](Xa) = X



Nominal Algebra
LAM: instantiation of (β)

(β) (λ[a]Y )X = Y [a 7→ X ]

Instantiation of (β):

Instantiation Resulting judgement

(λ[a]Y )X = Y [a 7→ X ]

Y := b,X := c (λ[a]b)c = b[a 7→ c]

Y := a,X := c (λ[a]a)c = a[a 7→ c]

Y := a,X := c, a := b (λ[b]a)c = a[b 7→ c]

Y := (λ[b]Z )Y (λ[a](λ[b]Z )Y )X = ((λ[b]Z )Y )[a 7→ X ]



Nominal Algebra
LAM: instantiation of (η)

(η) a#X → λ[a](Xa) = X

Instantiation of (η):

Instantiation Resulting judgement

X := a none: 6` a#a

X := b λ[a](ba) = b

X := YZ a#Y , a#Z → λ[a]((YZ )a) = YZ

X := λ[a]Y λ[a]((λ[a]Y )a) = λ[a]Y

X := λ[b]Y a#Y → λ[a]((λ[b]Y )a) = λ[b]Y



Nominal Algebra
FOL: �rst-order logic

A theory FOL for �rst-order logic with meta-variables,
also called one-and-a-halfth-order logic:

I base sorts:
I F for formulae
I T for terms (A is associated to this sort)

I term-formers:
I ⊥, ⊃, ∀, ≈ and sub for the basic operators

(>, ¬, ∧, ∨, ⇔, ∃ are sugar)
I p1, . . . , pm and f1, . . . , fn for object-level predicates and terms

I axioms: . . .



Nominal Algebra
Axioms of FOL

Axioms of one-and-a-halfth-order logic:

(MP) > ⊃ P = P

(M) ((((P ⊃ Q) ⊃ (¬R ⊃ ¬S)) ⊃ R) ⊃ T )

⊃ ((T ⊃ P) ⊃ (S ⊃ P)) = >

(Q1) ∀[a]P ⊃ P[a 7→ T ] = >
(Q2) ∀[a](P ∧ Q) = ∀[a]P ∧ ∀[a]Q
(Q3) a#P → ∀[a](P ⊃ Q) = P ⊃ ∀[a]Q

(E1) T ≈ T = >
(E2) U ≈ T ∧ P[a 7→ T ] ⊃ P[a 7→ U] = >



Nominal Algebra
SUB: a theory of capture-avoiding substitution

A theory SUB for capture-avoiding substitution with meta-variables:

(var 7→) a[a 7→ T ] = T

(# 7→) a#X → X [a 7→ T ] = X

(f 7→) f(X1, . . . ,Xn)[a 7→ T ] = f(X1[a 7→ T ], . . . ,Xn[a 7→ T ])

(abs7→) b#T → ([b]X )[a 7→ T ] = [b](X [a 7→ T ])

Cases b[a 7→ T ] and ([a]X )[a 7→ T ] are covered by (# 7→).



α-conversion
Problem

Formalising binding implies formalising α-conversion.

Idea: add the following axiom to SUB:

b#X → [a]X = [b](X [a 7→ b])

This destroys the proof theory:

I When proving properties by induction on the size of terms,
you often want to freshen up a term using α-conversion.

I Freshening using the above α-conversion increases term size,
destroying the inductive hypothesis.
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α-conversion
Solution

Solution: use permutations of atoms:

b#X → [a]X = [b]((a b) · X )

Rede�ne nominal terms:

t ::= a | π · X | f(t1, . . . , tn) | [a]t

Here:

I we call π · X a moderated unknown

I write X when π is the trivial permutation Id

Add an axiom to SUB linking substitution to α-conversion:

(ren 7→) b#X → X [a 7→ b] = (b a) · X
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Derivability of equalities

Write ∆ `
T
t = u when t = u is derivable from the rules below, s.t.

I only assumptions from ∆ are used

I each axiom used in (ax∆′ → t′ = u′) is from theory T only

(re�)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong)

C [t] = C [u]

a#t b#t
(perm)

(a b) · t = t

π ·∆σ
(ax∆→ t = u)

π · tσ = π · uσ

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr) (a 6∈ t, u,∆)

t = u



Related work

Related work to Nominal Algebra (NA):

I Higher-Order Algebra (HOA)

I Cylindric Algebra and Lambda-Abstraction Algebra (CA/LAA)

As opposed to NA, these are not designed to mirror informal
mathematical usage:

I Binding and freshness are encoded:

I by higher-order functions in HOA

I by replacing t by ci t to ensure xi 6∈ fv(t) in CA/LAA

I Capturing substitution cannot be de�ned CA/LAA.
It can be emulated in HOA by means of type-raising.

I Reasoning about binding becomes di�erent.



Choice quanti�cation in µCRL/mCRL2
Axiom schemata

Axiom schemata for choice quanti�cation (Groote, Ponse):

CQ1
∑

x p = p if x 6∈ fv(p)
CQ2

∑
x p =

∑
y p[x 7→ y ] if y 6∈ fv(p)

CQ3
∑

x p =
∑

x p + p[x 7→ d ]
CQ4

∑
x(p + q) =

∑
x p +

∑
x q

CQ5 (
∑

x p) · q =
∑

x p · q if x 6∈ fv(q)
CQ6

∑
x(d → p) = d →

∑
x p if x 6∈ fv(d)

Note:

I in�nite number of axioms

I no support for meta-variables



Choice quanti�cation in µCRL/mCRL2
Axioms in Nominal Algebra

Axioms in Nominal Algebra for choice quanti�cation:

NCQ1 a#P →
∑

[a]P = P

NCQ2 a#P →
∑

[a]P =
∑

[b]P[a 7→ b]
NCQ3

∑
[a]P =

∑
[a]P + P[a 7→ D]

NCQ4
∑

[a](P + Q) =
∑

[a]P +
∑

[a]Q
NCQ5 a#Q → (

∑
[a]P) · Q =

∑
[a]P · Q

NCQ6 a#D →
∑

[a](D → P) = D →
∑

[a]P

Note:

I �nite number of axioms

I direct correspondence with schemata

I NCQ2 is a lemma: α-conversion is built-in



Choice quanti�cation in µCRL/mCRL2
Cylindric Algebra-style axioms

Cylindric Algebra-style axioms for choice quanti�cation (Luttik):

CS1 si sjp = sjsip GC9 si (d → sip) = cid → sip
CS2 si sip = sip GC10 si (cid → p) = cid → sip
CS3 p + sip = sip GC11 eij → si (eij → p) = eij → p if i 6= j

CS4 si (p + q) = sip + siq
CS5 si (p · siq) = sip · siq
CS6 siδ = δ

Note:

I in�nite number of axioms, one for each i and j

I related to schemata, but di�erent: proofs become di�erent

I existential quanti�cation (ci ) is needed for the data language



Choice quanti�cation in µCRL/mCRL2
Axioms in Higher-Order Algebra

Axioms in Higher-Order Algebra for choice quanti�cation (Groote):

HCQ1
∑

x p = p

HCQ2
∑

x F (x) =
∑

y F (y)

HCQ3
∑

x F (x) =
∑

x F (x) + F (d)
HCQ4

∑
x(F (x) + G (x)) =

∑
x F (x) +

∑
x G (x)

HCQ5 (
∑

x F (x)) · p =
∑

x F (x) · p
HCQ6

∑
x(d → F (x)) = d →

∑
x F (x)

Note:

I �nite number of axioms

I function variables F ,G from data to process expressions

I uses the simply typed lambda-calculus

I HCQ2 is an identity



Nominal Algebra
Results

Results on nominal algebra:

I semantics in nominal sets

I proof system is sound and complete w.r.t. the semantics

Results on theory SUB (other work):

I omega-complete: sound and complete w.r.t. the term model

I equality t = u is decidable

Results on theory FOL (other work):

I equivalent to �rst-order logic for terms without unknowns

I has an equivalent sequent calculus:
I representing schemas of derivations in �rst-order logic
I satis�es cut-elimination



Conclusions

Nominal algebra:

I is a theory of equality on nominal terms

I allows us to reason about systems with binding

I closely mirrors informal mathematical usage:

I existing axioma schemata can be expressed directly

I equational proofs carry over directly

I natural notion of instantiation of meta-variables:

informal notation: instantiating t to x in λx .t yields λx .x

nominal terms: instantiating X to a in λ[a]X yields λ[a]a



Future work

Future work on nominal algebra:

I further develop theory on:

I the λ-calculus
I choice quanti�cation in µCRL/mCRL2
I π-calculus and its variants
I reversibility

I add an inductive principle on data types

I formalise meta-level reasoning, meta-meta-level reasoning, . . .
a hierarchy of variables

I develop a theorem prover



Further reading

Murdoch J. Gabbay, Aad Mathijssen:
Nominal Algebra.
Submitted STACS'07.

Murdoch J. Gabbay, Aad Mathijssen:
Capture-Avoiding Substitution as a Nominal Algebra.
ICTAC'06.

Murdoch J. Gabbay, Aad Mathijssen:
One-and-a-halfth-order Logic.
PPDP'06.

Papers and slides of my talks can be found on my web page:
http://www.win.tue.nl/∼amathijs


