

Nominal Algebra

Aad Mathijssen Murdoch J. Gabbay

Department of Mathematics and Computer Science Technische Universiteit Eindhoven

Process Seminar (Prose) Technische Universiteit Eindhoven (TU/e) 16th November 2006

 $\underset{\text{The }\lambda\text{-calculus}}{\mathsf{Motivation}}$

The λ -calculus:

 $t ::= x \mid tt \mid \lambda x.t$

Axioms:

$$\begin{array}{ll} (\alpha) & \lambda x.t &= \lambda y.(t[x \mapsto y]) & \text{if } y \notin fv(t) \\ (\beta) & (\lambda x.t)u &= t[x \mapsto u] \\ (\eta) & \lambda x.(tx) &= t & \text{if } x \notin fv(t) \end{array}$$

Free variables function fv:

$$fv(x) = \{x\}$$
 $fv(tu) = fv(t) \cup fv(u)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

TU/e

The λ -calculus:

t ::= $x \mid tt \mid \lambda x.t$

technische universiteit eindhoven

Axiom schemata:

$$\begin{array}{ll} (\alpha) & \lambda x.t &= \lambda y.(t[x \mapsto y]) & \text{if } y \notin fv(t) \\ (\beta) & (\lambda x.t)u &= t[x \mapsto u] \\ (\eta) & \lambda x.(tx) &= t & \text{if } x \notin fv(t) \end{array}$$

Free variables function fv:

 $fv(x) = \{x\}$ $fv(tu) = fv(t) \cup fv(u)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

t and u are meta-variables ranging over terms.

 $\underset{\text{The }\lambda\text{-calculus}}{\mathsf{Motivation}}$

The λ -calculus with meta-variables:

 $t ::= x \mid tt \mid \lambda x.t \mid X$

Axioms:

$$\begin{array}{ll} (\alpha) & \lambda x. X &= \lambda y. (X[x \mapsto y]) & \text{if } y \notin fv(X) \\ (\beta) & (\lambda x. X) Y &= X[x \mapsto Y] \\ (\eta) & \lambda x. (Xx) &= X & \text{if } x \notin fv(X) \end{array}$$

Free variables function fv:

$$fv(x) = \{x\} \quad fv(tu) = fv(t) \cup fv(u) \quad fv(\lambda x.t) = fv(t) \setminus \{x\}$$
$$fv(X) = ?$$

 $\underset{\text{The }\lambda\text{-calculus}}{\mathsf{Motivation}}$

The λ -calculus with meta-variables:

 $t ::= x \mid tt \mid \lambda x.t \mid X$

Axioms:

$$\begin{array}{ll} (\alpha) & \lambda x.X &= \lambda y.(X[x \mapsto y]) & \text{if } y \notin fv(X) \\ (\beta) & (\lambda x.X)Y &= X[x \mapsto Y] \\ (\eta) & \lambda x.(Xx) &= X & \text{if } x \notin fv(X) \end{array}$$

Free variables function fv:

 $fv(x) = \{x\}$ $fv(tu) = fv(t) \cup fv(u)$ $fv(\lambda x.t) = fv(t) \setminus \{x\}$

Freshness occurs in the presence of meta-variables: We only know if $x \notin fv(X)$ when X is instantiated.

/department of mathematics and computer science

Motivation Other examples

TU/e

In informal mathematical usage, we see equalities like:

- First-order logic: $(\forall x.\phi) \land \psi = \forall x.(\phi \land \psi)$ if $x \notin fv(\psi)$
- π -calculus: $(\nu x.P) \mid Q = \nu x.(P \mid Q)$ if $x \notin f\nu(Q)$
- μ CRL/mCRL2: $\sum_{x} p = p$ if $x \notin fv(p)$

And for any binder $\xi \in \{\lambda, \forall, \nu, \sum\}$:

technische universiteit eindhoven

$$(\xi x.t)[y \mapsto u] = \xi x.(t[y \mapsto u]) \text{ if } x \notin fv(u)$$

• α -equivalence: $\xi x.t = \xi y.(t[x \mapsto y])$ if $y \notin fv(t)$

Motivation Other examples

TU/e

In informal mathematical usage, we see equalities like:

- First-order logic: $(\forall x.\phi) \land \psi = \forall x.(\phi \land \psi)$ if $x \notin fv(\psi)$
- π -calculus: $(\nu x.P) \mid Q = \nu x.(P \mid Q)$ if $x \notin fv(Q)$
- μ CRL/mCRL2: $\sum_{x} p = p$ if $x \notin fv(p)$

And for any binder $\xi \in \{\lambda, \forall, \nu, \sum\}$:

technische universiteit eindhoven

$$(\xi x.t)[y \mapsto u] = \xi x.(t[y \mapsto u]) \text{ if } x \notin fv(u)$$

• α -equivalence: $\xi x.t = \xi y.(t[x \mapsto y])$ if $y \notin fv(t)$ Here:

• $\phi, \psi, P, Q, p, t, u$ are meta-variables ranging over terms.

Motivation Other examples

TU/e

In informal mathematical usage, we see equalities like:

- First-order logic: $(\forall x.\phi) \land \psi = \forall x.(\phi \land \psi)$ if $x \notin fv(\psi)$
- π -calculus: $(\nu x.P) \mid Q = \nu x.(P \mid Q)$ if $x \notin fv(Q)$
- μ CRL/mCRL2: $\sum_{x} p = p$ if $x \notin fv(p)$

And for any binder $\xi \in \{\lambda, \forall, \nu, \sum\}$:

technische universiteit eindhoven

$$(\xi x.t)[y \mapsto u] = \xi x.(t[y \mapsto u]) \quad \text{if } x \notin fv(u)$$

- α -equivalence: $\xi x.t = \xi y.(t[x \mapsto y])$ if $y \notin fv(t)$ Here:
 - $\phi, \psi, P, Q, p, t, u$ are meta-variables ranging over terms.
 - **Freshness** occurs in the presence of meta-variables.

Motivation Formalisation

Question: Can we formalise

- terms with binding and meta-variables
- in a way close to informal practice?

Motivation Formalisation

Question: Can we *formalise* • terms with binding and meta-variables • in a way close to informal practice?

Answer: Yes, using Nominal Terms (Urban, Gabbay, Pitts).

technische universiteit eindhoven

Motivation Formalisation

TU

Question: Can we *formalise* • terms with binding and meta-variables • in a way close to informal practice?

Answer: Yes, using Nominal Terms (Urban, Gabbay, Pitts).

Question: Can we formalise

- equational reasoning with binding and meta-variables
- in a way close to informal practice?

technische universiteit eindhoven

Motivation Formalisation

TU

- Question: Can we *formalise* • terms with binding and meta-variables • in a way close to informal practice?
- Answer: Yes, using Nominal Terms (Urban, Gabbay, Pitts).
- Question: Can we formalise
 - equational reasoning with binding and meta-variables
 - in a way close to informal practice?
- Answer: Yes, using Nominal Algebra...

Overview

Overview:

- Nominal terms
- Nominal algebra:
 - Definitions
 - Examples
- α -conversion and derivability
- Related work, with an application to choice quantification
- Results, conclusions and future work

Nominal Terms Definition

Nominal terms are inductively defined by:

$$t ::= a | X | f(t_1,...,t_n) | [a]t$$

Here we fix:

- ▶ atoms *a*, *b*, *c*, . . . (for *x*, *y*)
- unknowns X, Y, Z, \ldots (for t, u, ϕ , ψ , P, Q, p)
- ▶ term-formers f, g, h, . . . (for λ , __, \forall , \land , ν , |, \sum , $_[_ \mapsto _]$)

We call [a]t an abstraction (for the x._).

Nominal Terms Sorts

We can impose a sorting system on nominal terms.

Sorts au, inductively defined by:

$$au$$
 ::= \mathbb{T} | [A] au

Here:

- we fix base sorts $\mathbb{T}, \mathbb{U}, \mathbb{V}, \ldots$
- A is the set of all atoms a, b, c, \ldots
- [A] τ represents an abstraction set: the set consisting of elements of τ with an atom abstracted

TU/e

Assign to

- the set of atoms \mathbb{A} a specific base sort \mathbb{T}
- each unknown X a sort τ , write X_{τ}

technische universiteit eindhoven

• each term-former f an arity $(\tau_1, \ldots, \tau_n)\tau$, write $f_{(\tau_1, \ldots, \tau_n)\tau}$

Define sorting assertions on nominal terms, inductively by:

$$\frac{t : \tau}{a : \mathbb{T}} \quad \frac{\overline{X_{\tau} : \tau}}{\overline{X_{\tau} : \tau}} \quad \frac{t : \tau}{[a]t : [\mathbb{A}]\tau}$$

$$\frac{t_1 : \tau_1 \quad \cdots \quad t_n : \tau_n}{f_{(\tau_1, \dots, \tau_n)\tau}(t_1, \dots, t_n) : \tau}$$

Nominal Terms Examples

Representation of mathematical syntax in nominal terms:

mathematics	nominal terms		
	unsugared	sugared	
$\lambda x.t$	$\lambda([a]X)$	$\lambda[a]X$	
$\lambda x.(tx)$	$\lambda([a] ext{app}(X, a))$	$\lambda[a](Xa)$	
$(\forall x.\phi) \land \psi$	$\wedge (\forall ([a]X),Y)$	$(orall [a]X) \wedge Y$	
$(\nu x.P) \mid Q$	$\mid (\nu([a]X), Y)$	$(\nu[a]X) \mid Y$	
$(\sum_x . p)$	$\sum([a]X)$	$\sum [a]X$	
$t[x \mapsto u]$	sub([a]X,Y)	$X[a \mapsto Y]$	

Freshness

Definition:

- ► Call a # X a primitive freshness (for ' $x \notin fv(t)$ ').
- A freshness context Δ is a *finite set* of primitive freshnesses.

TU

Definition:

- ► Call a#X a primitive freshness (for ' $x \notin fv(t)$ ').
- A freshness context Δ is a *finite set* of primitive freshnesses.

Generalise freshness on unknowns X to terms t:

technische universiteit eindhoven

- Call a#t a freshness, where t is a nominal term.
- Write $\Delta \vdash a \# t$ when a # t is derivable from Δ using

$$\frac{1}{a\#b} (\#\mathbf{ab}) \quad \frac{1}{a\#[a]t} (\#[]\mathbf{a}) \quad \frac{a\#t}{a\#[b]t} (\#[]\mathbf{b}) \quad \frac{a\#t_1 \cdots a\#t_n}{a\#f(t_1, \dots, t_n)} (\#\mathbf{f})$$

Examples: $\vdash a\#b \quad \vdash a\#\lambda[a]X \quad a\#X \vdash a\#\lambda[b]X$
 $\forall a\#a \quad \forall a\#\lambda[b]X \quad a\#X \forall a\#Y$

TU/e

technische universiteit eindhoven

Nominal algebra is a theory of equality between nominal terms:

- t = u is an equality where t and u are of the same sort.
- $\Delta \rightarrow t = u$ is a judgement (for 't = u if $x \notin fv(v)$ '). If $\Delta = \emptyset$, write t = u.

Nominal Algebra Example judgements

TU

Meta-level properties as judgements in nominal algebra:

- λ -calculus: $a \# X \to \lambda[a](Xa) = X$
- First-order logic: $a \# Y \to (\forall [a]X) \land Y = \forall [a](X \land Y)$
- π -calculus: $a \# Y \rightarrow (\nu[a]X) \mid Y = \nu[a](X \mid Y)$
- μ CRL/mCRL2: $a\#X \rightarrow \sum [a]X = X$

And for any binder $\xi \in \{\lambda, \forall, \nu, \Sigma\}$:

- $a \# Y \to (\xi[a]X)[b \mapsto Y] = \xi[a](X[b \mapsto Y])$
- α -equivalence: $b \# X \to \xi[a] X = \xi[b](X[a \mapsto b])$

Nominal algebra

A theory in nominal algebra consists of:

- a set of base sorts
- a set of term-formers
- ▶ a set of axioms: judgements $\Delta \rightarrow t = u$

TU/e

A theory LAM for the λ -calculus with meta-variables:

technische universiteit eindhoven

- ▶ base sort T
- term-formers λ, app and sub (recall that t[a → u] is just sugar for sub([a]t, u))
- axioms:

Nominal Algebra LAM: instantiation of (β)

$$(\beta) \quad (\lambda[a]Y)X = Y[a \mapsto X]$$

Instantiation of (β) :

Instantiation	Resulting judgement	
	$(\lambda[a]Y)X = Y[a \mapsto X]$	
Y:=b, X:=c	$(\lambda[a]b)c = b[a \mapsto c]$	
Y:=a,X:=c	$(\lambda[a]a)c=a[a\mapsto c]$	
Y := a, X := c, a := b	$(\lambda[b]a)c = a[b \mapsto c]$	
$Y := (\lambda[b]Z)Y$	$(\lambda[a](\lambda[b]Z)Y)X = ((\lambda[b]Z)Y)[a \mapsto X]$	

Nominal Algebra LAM: instantiation of (η)

$$(\eta) \quad a \# X \to \lambda[a](Xa) = X$$

Instantiation of (η) :

Instantiation	Resulting judgement
X := a	none: <i>∀ a#a</i>
X := b	$\lambda[a](ba)=b$
X := YZ	$a\#Y, a\#Z o \lambda[a]((YZ)a) = YZ$
$X := \lambda[a]Y$	$\lambda[a]((\lambda[a]Y)a) = \lambda[a]Y$
$X := \lambda[b]Y$	$a \# Y \to \lambda[a]((\lambda[b]Y)a) = \lambda[b]Y$

Nominal Algebra FOL: first-order logic

TU

A theory FOL for first-order logic with meta-variables, also called one-and-a-halfth-order logic:

- base sorts:
 - ► F for formulae
 - \mathbb{T} for terms (A is associated to this sort)
- term-formers:
 - ► \bot , \supset , \forall , \approx and sub for the basic operators (\top , \neg , \land , \lor , \Leftrightarrow , \exists are sugar)
 - ▶ p_1, \ldots, p_m and f_1, \ldots, f_n for object-level predicates and terms

► axioms: ...

Nominal Algebra Axioms of FOL

Axioms of one-and-a-halfth-order logic:

$$(\mathsf{E1}) \qquad T \approx T = \top$$

$$(E2) \qquad U \approx T \land P[a \mapsto T] \supset P[a \mapsto U] = \top$$

Nominal Algebra SUB: a theory of capture-avoiding substitution

A theory SUB for capture-avoiding substitution with meta-variables:

$$\begin{array}{ll} (\mathbf{var}\mapsto) & a[a\mapsto T] = T \\ (\#\mapsto) & a\#X \to X[a\mapsto T] = X \\ (\mathbf{f}\mapsto) & \mathbf{f}(X_1,\ldots,X_n)[a\mapsto T] = \mathbf{f}(X_1[a\mapsto T],\ldots,X_n[a\mapsto T]) \\ (\mathbf{abs}\mapsto) & b\#T \to ([b]X)[a\mapsto T] = [b](X[a\mapsto T]) \\ \end{array}$$

$$\begin{array}{ll} \mathsf{Cases} & b[a\mapsto T] \text{ and } ([a]X)[a\mapsto T] \text{ are covered by } (\#\mapsto). \end{array}$$

α -conversion

Formalising binding implies formalising α -conversion.

Idea: add the following axiom to SUB:

 $b \# X \rightarrow [a] X = [b] (X[a \mapsto b])$

 α -conversion

ΤU

Formalising binding implies formalising α -conversion.

Idea: add the following axiom to SUB:

technische universiteit eindhoven

 $b \# X \rightarrow [a] X = [b](X[a \mapsto b])$

This destroys the proof theory:

- When proving properties by induction on the size of terms, you often want to freshen up a term using α-conversion.
- Freshening using the above α-conversion increases term size, destroying the inductive hypothesis.

 $\substack{\alpha \text{-conversion}\\ \text{Solution}}$

Solution: use permutations of atoms:

 $b \# X \rightarrow [a] X = [b]((a \ b) \cdot X)$

Solution: use permutations of atoms:

technische universiteit eindhoven

$$b \# X \to [a] X = [b]((a \ b) \cdot X)$$

Redefine nominal terms:

$$t ::= a \mid \pi \cdot X \mid f(t_1, \ldots, t_n) \mid [a]t$$

Here:

- we call $\pi \cdot X$ a moderated unknown
- write X when π is the trivial permutation **Id**

TU/e

Solution: use permutations of atoms:

technische universiteit eindhoven

$$b \# X \rightarrow [a] X = [b]((a \ b) \cdot X)$$

Redefine nominal terms:

$$t ::= a \mid \pi \cdot X \mid f(t_1, \ldots, t_n) \mid [a]t$$

Here:

- we call $\pi \cdot X$ a moderated unknown
- write X when π is the trivial permutation **Id**

Add an axiom to SUB linking substitution to α -conversion:

$$(\mathsf{ren} \mapsto) \qquad b \# X \to X[a \mapsto b] = (b \ a) \cdot X$$

Derivability of equalities

TU/e

Write $\Delta \vdash_{T} t = u$ when t = u is derivable from the rules below, s.t.

- only assumptions from Δ are used
- ▶ each axiom used in $(ax_{\Delta' \rightarrow t' = u'})$ is from theory T only

Related work

TU

Related work to Nominal Algebra (NA):

- Higher-Order Algebra (HOA)
- Cylindric Algebra and Lambda-Abstraction Algebra (CA/LAA)

As opposed to NA, these are not designed to mirror informal mathematical usage:

- Binding and freshness are encoded:
 - by higher-order functions in HOA
 - ► by replacing t by $c_i t$ to ensure $x_i \notin fv(t)$ in CA/LAA
- Capturing substitution cannot be defined CA/LAA.
 It can be emulated in HOA by means of type-raising.
- Reasoning about binding becomes different.

technische universiteit eindhoven

Choice quantification in μ CRL/mCRL2 Axiom schemata

Axiom schemata for choice quantification (Groote, Ponse):

Note:

TU/e

- infinite number of axioms
- no support for meta-variables

technische universiteit eindhoven

Choice quantification in $\mu {\rm CRL}/{\rm mCRL2}$ Axioms in Nominal Algebra

Axioms in Nominal Algebra for choice quantification:

$$\begin{array}{ll} \mathsf{NCQ1} & a\#P \to \sum [a]P &= P \\ \mathsf{NCQ2} & a\#P \to \sum [a]P &= \sum [b]P[a \mapsto b] \\ \mathsf{NCQ3} & \sum [a]P &= \sum [a]P + P[a \mapsto D] \\ \mathsf{NCQ4} & \sum [a](P+Q) &= \sum [a]P + \sum [a]Q \\ \mathsf{NCQ5} & a\#Q \to (\sum [a]P) \cdot Q &= \sum [a]P \cdot Q \\ \mathsf{NCQ6} & a\#D \to \sum [a](D \to P) &= D \to \sum [a]P \end{array}$$

Note:

TU/e

- finite number of axioms
- direct correspondence with schemata
- NCQ2 is a lemma: α-conversion is built-in

Choice quantification in $\mu {\rm CRL}/{\rm mCRL2}$ Cylindric Algebra-style axioms

Cylindric Algebra-style axioms for choice quantification (Luttik):

$$\begin{array}{rcl} \mathsf{CS1} & \mathsf{s}_i\mathsf{s}_jp &= \mathsf{s}_j\mathsf{s}_ip & \mathsf{GC9} & \mathsf{s}_i(d \to \mathsf{s}_ip) &= \mathsf{c}_id \to \mathsf{s}_ip \\ \mathsf{CS2} & \mathsf{s}_i\mathsf{s}_ip &= \mathsf{s}_ip & \mathsf{GC10} & \mathsf{s}_i(\mathsf{c}_id \to p) &= \mathsf{c}_id \to \mathsf{s}_ip \\ \mathsf{CS3} & p + \mathsf{s}_ip &= \mathsf{s}_ip & \mathsf{GC11} & \mathsf{e}_{ij} \to \mathsf{s}_i(\mathsf{e}_{ij} \to p) &= \mathsf{e}_{ij} \to p & \text{if } i \neq j \\ \mathsf{CS4} & \mathsf{s}_i(p+q) &= \mathsf{s}_ip + \mathsf{s}_iq \\ \mathsf{CS5} & \mathsf{s}_i(p \cdot \mathsf{s}_iq) &= \mathsf{s}_ip \cdot \mathsf{s}_iq \\ \mathsf{CS6} & \mathsf{s}_i\delta &= \delta \end{array}$$

Note:

TU/

- infinite number of axioms, one for each i and j
- related to schemata, but different: proofs become different
- existential quantification (c_i) is needed for the data language

technische universiteit eindhoven

Choice quantification in $\mu \text{CRL}/\text{mCRL2}$ Axioms in Higher-Order Algebra

Axioms in Higher-Order Algebra for choice quantification (Groote):

Note:

TU/e

- finite number of axioms
- ▶ function variables *F*, *G* from data to process expressions
- uses the simply typed lambda-calculus
- HCQ2 is an identity

Nominal Algebra Results

TU

Results on nominal algebra:

- semantics in nominal sets
- proof system is sound and complete w.r.t. the semantics

Results on theory SUB (other work):

- omega-complete: sound and complete w.r.t. the term model
- equality t = u is decidable

Results on theory FOL (other work):

- equivalent to first-order logic for terms without unknowns
- has an equivalent sequent calculus:
 - representing schemas of derivations in first-order logic
 - satisfies cut-elimination

Conclusions

TU

Nominal algebra:

is a theory of equality on nominal terms

technische universiteit eindhoven

- allows us to reason about systems with binding
- closely mirrors informal mathematical usage:
 - existing axioma schemata can be expressed directly
 - equational proofs carry over directly
 - natural notion of instantiation of meta-variables: informal notation: instantiating t to x in λx.t yields λx.x nominal terms: instantiating X to a in λ[a]X yields λ[a]a

Future work

Future work on nominal algebra:

- further develop theory on:
 - the λ -calculus
 - choice quantification in µCRL/mCRL2
 - π-calculus and its variants
 - reversibility
- add an inductive principle on data types
- formalise meta-level reasoning, meta-meta-level reasoning, ...
 a hierarchy of variables
- develop a theorem prover

Further reading

TU

- Murdoch J. Gabbay, Aad Mathijssen: Nominal Algebra. Submitted STACS'07.
- Murdoch J. Gabbay, Aad Mathijssen: Capture-Avoiding Substitution as a Nominal Algebra. ICTAC'06.
- Murdoch J. Gabbay, Aad Mathijssen: One-and-a-halfth-order Logic. PPDP'06.

Papers and slides of my talks can be found on my web page: http://www.win.tue.nl/~amathijs