Nominal Algebra

Aad Mathijssen Murdoch J. Gabbay
Department of Mathematics and Computer Science
Technische Universiteit Eindhoven
Process Seminar (Prose)
Technische Universiteit Eindhoven (TU/e)
16th November 2006

Motivation

The λ-calculus

The λ-calculus:

$$
t::=x|t t| \lambda x . t
$$

Axioms:

$$
\begin{array}{lll}
(\alpha) & \lambda x . t & =\lambda y .(t[x \mapsto y])
\end{array} \text { if } y \notin f v(t)
$$

Free variables function $f v$:

$$
f v(x)=\{x\} \quad f v(t u)=f v(t) \cup f v(u) \quad f v(\lambda x . t)=f v(t) \backslash\{x\}
$$

Motivation

The λ-calculus

The λ-calculus:

$$
t::=x|t t| \lambda x . t
$$

Axiom schemata:

$$
\begin{array}{lll}
(\alpha) & \lambda x . t & =\lambda y .(t[x \mapsto y])
\end{array} \text { if } y \notin f v(t)
$$

Free variables function $f v$:

$$
f v(x)=\{x\} \quad f v(t u)=f v(t) \cup f v(u) \quad f v(\lambda x . t)=f v(t) \backslash\{x\}
$$

t and u are meta-variables ranging over terms.

Motivation

The λ-calculus

The λ-calculus with meta-variables:

$$
t::=x|t t| \lambda x . t \mid X
$$

Axioms:

$$
\begin{array}{lll}
(\alpha) \quad \lambda x . X & =\lambda y \cdot(X[x \mapsto y]) & \text { if } y \notin f v(X) \\
(\beta) & \quad(\lambda x \cdot X) Y=X[x \mapsto Y] & \\
(\eta) & \lambda x \cdot(X x)=X & \text { if } x \notin f v(X)
\end{array}
$$

Free variables function $f v$:

$$
\begin{gathered}
f v(x)=\{x\} \quad f v(t u)=f v(t) \cup f v(u) \quad f v(\lambda x . t)=f v(t) \backslash\{x\} \\
f v(X)=?
\end{gathered}
$$

Motivation

The λ-calculus

The λ-calculus with meta-variables:

$$
t::=x|t t| \lambda x . t \mid X
$$

Axioms:

$$
\begin{array}{lll}
(\alpha) \quad \lambda x \cdot X & =\lambda y \cdot(X[x \mapsto y]) & \text { if } y \notin f v(X) \\
(\beta) & (\lambda x \cdot X) Y=X[x \mapsto Y] & \\
(\eta) & \lambda x \cdot(X x)=X &
\end{array}
$$

Free variables function $f v$:

$$
f v(x)=\{x\} \quad f v(t u)=f v(t) \cup f v(u) \quad f v(\lambda x . t)=f v(t) \backslash\{x\}
$$

Freshness occurs in the presence of meta-variables:
We only know if $x \notin f v(X)$ when X is instantiated.

Motivation

Other examples

In informal mathematical usage, we see equalities like:

- First-order logic: $(\forall x . \phi) \wedge \psi \quad=\forall x .(\phi \wedge \psi) \quad$ if $x \notin f v(\psi)$
- π-calculus: $\quad(\nu x . P) \mid Q=\nu x .(P \mid Q) \quad$ if $x \notin f v(Q)$
- $\mu \mathrm{CRL} / \mathrm{mCRL} 2: \sum_{x} \cdot p$
$=p$
if $x \notin f v(p)$
And for any binder $\xi \in\left\{\lambda, \forall, \nu, \sum\right\}$:
- $\quad(\xi x . t)[y \mapsto u]=\xi x .(t[y \mapsto u]) \quad$ if $x \notin f v(u)$
- α-equivalence: $\xi x . t \quad=\xi y \cdot(t[x \mapsto y])$ if $y \notin f v(t)$

Motivation

Other examples

In informal mathematical usage, we see equalities like:

- First-order logic: $(\forall x . \phi) \wedge \psi \quad=\forall x .(\phi \wedge \psi) \quad$ if $x \notin f v(\psi)$
- π-calculus: $\quad(\nu x . P) \mid Q=\nu x .(P \mid Q) \quad$ if $x \notin f v(Q)$
- $\mu \mathrm{CRL} / \mathrm{mCRL} 2: \quad \sum_{x} \cdot p$
$=p$
if $x \notin f v(p)$
And for any binder $\xi \in\left\{\lambda, \forall, \nu, \sum\right\}$:
- $\quad(\xi x . t)[y \mapsto u]=\xi x .(t[y \mapsto u]) \quad$ if $x \notin f v(u)$
- α-equivalence: $\xi x . t \quad=\xi y \cdot(t[x \mapsto y])$ if $y \notin f v(t)$ Here:
- $\phi, \psi, P, Q, p, t, u$ are meta-variables ranging over terms.

Motivation

Other examples

In informal mathematical usage, we see equalities like:

- First-order logic: $(\forall x . \phi) \wedge \psi \quad=\forall x .(\phi \wedge \psi) \quad$ if $x \notin f v(\psi)$
- π-calculus: $\quad(\nu x . P) \mid Q=\nu x .(P \mid Q) \quad$ if $x \notin f v(Q)$
- $\mu \mathrm{CRL} / \mathrm{mCRL} 2: \sum_{x} \cdot p$
$=p$
if $x \notin f v(p)$
And for any binder $\xi \in\left\{\lambda, \forall, \nu, \sum\right\}$:
- $\quad(\xi x . t)[y \mapsto u]=\xi x .(t[y \mapsto u]) \quad$ if $x \notin f v(u)$
- α-equivalence: $\xi x . t \quad=\xi y \cdot(t[x \mapsto y])$ if $y \notin f v(t)$ Here:
- $\phi, \psi, P, Q, p, t, u$ are meta-variables ranging over terms.
- Freshness occurs in the presence of meta-variables.

Motivation

Formalisation

Question: Can we formalise

- terms with binding and meta-variables
- in a way close to informal practice?

Motivation
Formalisation
Question: Can we formalise

- terms with binding and meta-variables
- in a way close to informal practice?

Answer: Yes, using Nominal Terms (Urban, Gabbay, Pitts).

Motivation

Formalisation
Question: Can we formalise

- terms with binding and meta-variables
- in a way close to informal practice?

Answer: Yes, using Nominal Terms (Urban, Gabbay, Pitts).

Question: Can we formalise

- equational reasoning with binding and meta-variables
- in a way close to informal practice?

Motivation

Formalisation
Question: Can we formalise

- terms with binding and meta-variables
- in a way close to informal practice?

Answer: Yes, using Nominal Terms (Urban, Gabbay, Pitts).

Question: Can we formalise

- equational reasoning with binding and meta-variables
- in a way close to informal practice?

Answer: Yes, using Nominal Algebra...

Overview
Overview:

- Nominal terms
- Nominal algebra:
- Definitions
- Examples
- α-conversion and derivability
- Related work, with an application to choice quantification
- Results, conclusions and future work

Nominal Terms

Definition

Nominal terms are inductively defined by:

$$
t::=a|X| \mathrm{f}\left(t_{1}, \ldots, t_{n}\right) \mid[a] t
$$

Here we fix:

- atoms $a, b, c, \ldots($ for $x, y)$
- unknowns X, Y, Z, \ldots (for $t, u, \phi, \psi, P, Q, p)$
- term-formers $\mathrm{f}, \mathrm{g}, \mathrm{h}, \ldots\left(\right.$ for $\lambda, \ldots, \forall, \wedge, \nu, \mid, \sum_{,}[\ldots \mapsto$] $)$

We call [a]t an abstraction (for the x._).

Nominal Terms
Sorts
We can impose a sorting system on nominal terms.
Sorts τ, inductively defined by:

$$
\tau::=\mathbb{T} \mid[\mathbb{A}] \tau
$$

Here:

- we fix base sorts $\mathbb{T}, \mathbb{U}, \mathbb{V}, \ldots$
- \mathbb{A} is the set of all atoms a, b, c, \ldots
- $[\mathbb{A}] \tau$ represents an abstraction set: the set consisting of elements of τ with an atom abstracted

Nominal Terms

Sorting assertions

Assign to

- the set of atoms \mathbb{A} a specific base sort \mathbb{T}
- each unknown X a sort τ, write X_{τ}
- each term-former f an arity $\left(\tau_{1}, \ldots, \tau_{n}\right) \tau$, write $\mathrm{f}_{\left(\tau_{1}, \ldots, \tau_{n}\right) \tau}$

Define sorting assertions on nominal terms, inductively by:

$$
\begin{gathered}
\overline{a: \mathbb{T}} \frac{}{\overline{X_{\tau}: \tau}} \frac{t: \tau}{[a] t:[\mathbb{A}] \tau} \\
\frac{t_{1}: \tau_{1}}{\mathrm{f}_{\left(\tau_{1}, \ldots, \tau_{n}\right) \tau}\left(t_{1}, \ldots, t_{n}\right): \tau}
\end{gathered}
$$

Nominal Terms

Examples

Representation of mathematical syntax in nominal terms:

mathematics	nominal terms	
	unsugared	sugared
$\lambda x . t$	$\lambda([a] X)$	$\lambda[a] X$
$\lambda x .(t x)$	$\lambda([a] a p p(X, a))$	$\lambda[a](X a)$
$(\forall x . \phi) \wedge \psi$	$\wedge(\forall([a] X), Y)$	$(\forall[a] X) \wedge Y$
$(\nu x . P) \mid Q$	$\mid(\nu([a] X), Y)$	$(\nu[a] X) \mid Y$
$\left(\sum_{x} . p\right)$	$\sum([a] X)$	$\sum[a] X$
$t[x \mapsto u]$	$\operatorname{sub}([a] X, Y)$	$X[a \mapsto Y]$

Nominal Terms

Freshness

Definition:

- Call $a \# X$ a primitive freshness (for ' $x \notin f v(t)$ ').
- A freshness context Δ is a finite set of primitive freshnesses.

Nominal Terms

Freshness

Definition:

- Call $a \# X$ a primitive freshness (for ' $x \notin f v(t)$ ').
- A freshness context Δ is a finite set of primitive freshnesses.

Generalise freshness on unknowns X to terms t :

- Call $a \# t$ a freshness, where t is a nominal term.
- Write $\Delta \vdash a \# t$ when $a \# t$ is derivable from Δ using

$$
\overline{a \# b}(\# \mathbf{a b}) \quad \overline{a \#[a] t}(\#[] \mathbf{a}) \quad \frac{a \# t}{a \#[b] t}(\#[] \mathbf{b}) \quad \frac{a \# t_{1} \cdots a \# t_{n}}{a \# \mathrm{f}\left(t_{1}, \ldots, t_{n}\right)}(\# \mathbf{f})
$$

Examples: $\vdash a \# b \quad \vdash a \# \lambda[a] X \quad a \# X \vdash a \# \lambda[b] X$ $\forall a \# a \quad \forall a \# \lambda[b] X \quad a \# X \nvdash a \# Y$

Nominal Algebra

Definition
Nominal algebra is a theory of equality between nominal terms:

- $t=u$ is an equality where t and u are of the same sort.
- $\Delta \rightarrow t=u$ is a judgement (for ' $t=u$ if $x \notin f v(v)^{\prime}$).

If $\Delta=\emptyset$, write $t=u$.

Nominal Algebra
Example judgements
Meta-level properties as judgements in nominal algebra:

- λ-calculus: $a \# X \rightarrow \lambda[a](X a) \quad=X$
- First-order logic: $a \# Y \rightarrow(\forall[a] X) \wedge Y \quad=\forall[a](X \wedge Y)$
- π-calculus: $\quad a \# Y \rightarrow(\nu[a] X) \mid Y \quad=\nu[a](X \mid Y)$
- $\mu \mathrm{CRL} / \mathrm{mCRL} 2: a \# X \rightarrow \sum[a] X=X$

And for any binder $\xi \in\left\{\lambda, \forall, \nu, \sum\right\}$:
-

$$
\begin{aligned}
a \# Y \rightarrow(\xi[a] X)[b \mapsto Y] & =\xi[a](X[b \mapsto Y]) \\
b \# X \rightarrow \xi[a] X & =\xi[b](X[a \mapsto b])
\end{aligned}
$$

- α-equivalence: $b \# X \rightarrow \xi[a] X$

Nominal algebra
Theories
A theory in nominal algebra consists of:

- a set of base sorts
- a set of term-formers
- a set of axioms: judgements $\Delta \rightarrow t=u$

Nominal Algebra
LAM: the λ-calculus
A theory LAM for the λ-calculus with meta-variables:

- base sort \mathbb{T}
- term-formers λ, app and sub (recall that $t[a \mapsto u]$ is just sugar for $\operatorname{sub}([a] t, u)$)
- axioms:

$$
\left.\begin{array}{ll}
(\alpha) \quad b \# X \rightarrow \lambda[a] X & =\lambda[b](X[a \mapsto b]) \\
(\beta) & \\
(\eta) \quad a \# X \rightarrow \lambda] Y) X & =Y[a \mapsto X] \\
(\eta) & =X[a](X a)
\end{array}\right)
$$

Nominal Algebra
LAM: instantiation of (β)
(β) $(\lambda[a] Y) X=Y[a \mapsto X]$
Instantiation of (β) :

Instantiation	Resulting judgement
$Y:=b, X:=c$	$(\lambda[a] Y) X=Y[a \mapsto X]$
$Y:=a, X:=c$	$(\lambda[a] b) c=b[a \mapsto c]$
$Y:=a, X:=c, a:=b$	$(\lambda[a] a) c=a[a \mapsto c]$
$Y:=(\lambda[b] a) c=a[b \mapsto c]$	
	$(\lambda[a](\lambda[b] Z) Y) X=((\lambda[b] Z) Y)[a \mapsto X]$

Nominal Algebra
LAM: instantiation of (η)

$$
(\eta) \quad a \# X \rightarrow \lambda[a](X a)=X
$$

Instantiation of (η) :

Instantiation	Resulting judgement
$X:=a$	none: $\forall a \# a$
$X:=b$	$\lambda[a](b a)=b$
$X:=Y Z$	$a \# Y, a \# Z \rightarrow \lambda[a]((Y Z) a)=Y Z$
$X:=\lambda[a] Y$	$\lambda[a]((\lambda[a] Y) a)=\lambda[a] Y$
$X:=\lambda[b] Y$	$a \# Y \rightarrow \lambda[a]((\lambda[b] Y) a)=\lambda[b] Y$

Nominal Algebra
FOL: first-order logic
A theory FOL for first-order logic with meta-variables, also called one-and-a-halfth-order logic:

- base sorts:
- \mathbb{F} for formulae
- \mathbb{T} for terms (\mathbb{A} is associated to this sort)
- term-formers:
- $\perp, \supset, \forall, \approx$ and sub for the basic operators ($\top, \neg, \wedge, \vee, \Leftrightarrow, \exists$ are sugar)
- p_{1}, \ldots, p_{m} and f_{1}, \ldots, f_{n} for object-level predicates and terms
- axioms: ...

Nominal Algebra
Axioms of FOL
Axioms of one-and-a-halfth-order logic:
(MP) $\quad T \supset P=P$
(M) $\quad((((P \supset Q) \supset(\neg R \supset \neg S)) \supset R) \supset T)$

$$
\supset((T \supset P) \supset(S \supset P)) \quad=\top
$$

(Q1) $\quad \forall[a] P \supset P[a \mapsto T]=T$
(Q2) $\quad \forall[a](P \wedge Q)=\forall[a] P \wedge \forall[a] Q$
(Q3) $\quad a \# P \rightarrow \forall[a](P \supset Q)=P \supset \forall[a] Q$
(E1) $\quad T \approx T=\top$
(E2) $\quad U \approx T \wedge P[a \mapsto T] \supset P[a \mapsto U]=\top$

Nominal Algebra
SUB: a theory of capture-avoiding substitution
A theory SUB for capture-avoiding substitution with meta-variables:

$$
\begin{aligned}
(\mathrm{var} \mapsto) & a[a \mapsto T] & =T \\
(\# \mapsto) & a \# X \rightarrow X[a \mapsto T] & =X \\
(\mathrm{f} \mapsto) & \mathrm{f}\left(X_{1}, \ldots, X_{n}\right)[a \mapsto T] & =\mathrm{f}\left(X_{1}[a \mapsto T], \ldots, X_{n}[a \mapsto T]\right) \\
(\mathrm{abs} \mapsto) & b \# T \rightarrow([b] X)[a \mapsto T] & =[b](X[a \mapsto T])
\end{aligned}
$$

Cases $b[a \mapsto T]$ and $([a] X)[a \mapsto T]$ are covered by $(\# \mapsto)$.

α-conversion

Problem
Formalising binding implies formalising α-conversion.
Idea: add the following axiom to SUB:

$$
b \# X \rightarrow[a] X=[b](X[a \mapsto b])
$$

α-conversion

Problem
Formalising binding implies formalising α-conversion.
Idea: add the following axiom to SUB:

$$
b \# X \rightarrow[a] X=[b](X[a \mapsto b])
$$

This destroys the proof theory:

- When proving properties by induction on the size of terms, you often want to freshen up a term using α-conversion.
- Freshening using the above α-conversion increases term size, destroying the inductive hypothesis.

α-conversion

Solution
Solution: use permutations of atoms:

$$
b \# X \rightarrow[a] X=[b]((a b) \cdot X)
$$

α-conversion

Solution
Solution: use permutations of atoms:

$$
b \# X \rightarrow[a] X=[b]((a b) \cdot X)
$$

Redefine nominal terms:

$$
t::=a|\pi \cdot X| \mathrm{f}\left(t_{1}, \ldots, t_{n}\right) \mid[a] t
$$

Here:

- we call $\pi \cdot X$ a moderated unknown
- write X when π is the trivial permutation Id

α-conversion

Solution
Solution: use permutations of atoms:

$$
b \# X \rightarrow[a] X=[b]((a b) \cdot X)
$$

Redefine nominal terms:

$$
t::=a|\pi \cdot X| \mathrm{f}\left(t_{1}, \ldots, t_{n}\right) \mid[a] t
$$

Here:

- we call $\pi \cdot X$ a moderated unknown
- write X when π is the trivial permutation Id

Add an axiom to SUB linking substitution to α-conversion:

$$
(\mathrm{ren} \mapsto) \quad b \# X \rightarrow X[a \mapsto b]=(b a) \cdot X
$$

Derivability of equalities
Write $\Delta \vdash_{T} t=u$ when $t=u$ is derivable from the rules below, s.t.

- only assumptions from Δ are used
- each axiom used in $\left(\mathrm{ax}_{\Delta^{\prime}} \rightarrow t^{\prime}=u^{\prime}\right)$ is from theory T only

$$
\begin{aligned}
& \overline{t=t}(\mathbf{r e f l}) \quad \frac{t=u}{u=t}(\mathbf{s y m m}) \quad \frac{t=u \quad u=v}{t=v}(\operatorname{tran}) \\
& \frac{t=u}{C[t]=C[u]}(\text { cong }) \quad \frac{a \# t \quad b \# t}{(a b) \cdot t=t}(\text { perm }) \\
& {\left[a \# X_{1}, \ldots, a \# X_{n}\right] \Delta} \\
& \frac{\pi \cdot \Delta \sigma}{\pi \cdot t \sigma=\pi \cdot u \sigma}\left(\mathbf{a x}_{\Delta \rightarrow t=u}\right) \quad \begin{array}{c}
\frac{\vdots}{=u}(\mathbf{f r}) \quad(a \notin t, u, \Delta)
\end{array}
\end{aligned}
$$

Related work
Related work to Nominal Algebra (NA):

- Higher-Order Algebra (HOA)
- Cylindric Algebra and Lambda-Abstraction Algebra (CA/LAA)

As opposed to NA, these are not designed to mirror informal mathematical usage:

- Binding and freshness are encoded:
- by higher-order functions in HOA
- by replacing t by $\mathrm{c}_{i} t$ to ensure $x_{i} \notin f v(t)$ in CA/LAA
- Capturing substitution cannot be defined CA/LAA. It can be emulated in HOA by means of type-raising.
- Reasoning about binding becomes different.

Choice quantification in $\mu \mathrm{CRL} / \mathrm{mCRL} 2$

Axiom schemata

Axiom schemata for choice quantification (Groote, Ponse):

CQ1	$\sum_{x} p$	$=p$	if $x \notin f v(p)$
CQ2	$\sum_{x} p$	$=\sum_{y} p[x \mapsto y]$	if $y \notin f v(p)$
CQ3	$\sum_{x} p$	$=\sum_{x} p+p[x \mapsto d]$	
CQ4	$\sum_{x}(p+q)$	$=\sum_{x} p+\sum_{x} q$	
CQ5	$\left(\sum_{x} p\right) \cdot q$	$=\sum_{x} p \cdot q \cdot q$	if $x \notin f v(q)$
CQ6	$\sum_{x}(d \rightarrow p)$	$=d \rightarrow \sum_{x} p$	if $x \notin f v(d)$

Note:

- infinite number of axioms
- no support for meta-variables

Choice quantification in $\mu \mathrm{CRL} / \mathrm{mCRL} 2$

Axioms in Nominal Algebra
Axioms in Nominal Algebra for choice quantification:

$$
\begin{array}{rlrl}
\text { NCQ1 } & a \# P \rightarrow \sum[a] P & & =P \\
\text { NCQ2 } & a \# P \rightarrow & \sum[a] P & =\sum[b] P[a \mapsto b] \\
\text { NCQ3 } & & \sum[a] P & =\sum[a] P+P[a \mapsto D] \\
\text { NCQ4 } & & \sum[a](P+Q) & =\sum[a] P+\sum[a] Q \\
\text { NCQ5 } & a \# Q \rightarrow\left(\sum[a] P\right) \cdot Q & =\sum[a] P \cdot Q \\
\text { NCQ6 } & a \# D \rightarrow \sum[a](D \rightarrow P) & =D \rightarrow \sum[a] P
\end{array}
$$

Note:

- finite number of axioms
- direct correspondence with schemata
- NCQ2 is a lemma: α-conversion is built-in

Choice quantification in $\mu \mathrm{CRL} / \mathrm{mCRL} 2$

Cylindric Algebra-style axioms
Cylindric Algebra-style axioms for choice quantification (Luttik):
CS1 $\quad s_{i} s_{j} p \quad=s_{j} s_{i} p \quad$ GC9 $\quad s_{i}\left(d \rightarrow s_{i} p\right) \quad=c_{i} d \rightarrow s_{i} p$
CS2 $\quad s_{i} s_{i} p \quad=s_{i} p \quad G C 10 \quad s_{i}\left(c_{i} d \rightarrow p\right) \quad=c_{i} d \rightarrow s_{i} p$
CS3 $p+\mathrm{s}_{i} p=\mathrm{s}_{i} p \quad \mathrm{GC11} \quad \mathrm{e}_{i j} \rightarrow \mathrm{~s}_{i}\left(\mathrm{e}_{i j} \rightarrow p\right)=\mathrm{e}_{i j} \rightarrow p \quad$ if $i \neq j$
CS4 $s_{i}(p+q)=s_{i} p+s_{i} q$
CS5 $s_{i}\left(p \cdot s_{i} q\right)=s_{i} p \cdot s_{i} q$
CS6 $\quad s_{i} \delta=\delta$

Note:

- infinite number of axioms, one for each i and j
- related to schemata, but different: proofs become different
- existential quantification $\left(c_{i}\right)$ is needed for the data language

Choice quantification in $\mu \mathrm{CRL} / \mathrm{mCRL} 2$

Axioms in Higher-Order Algebra
Axioms in Higher-Order Algebra for choice quantification (Groote):

HCQ1	$\sum_{x} p$	$=p$
HCQ2	$\sum_{x} F(x)$	$=\sum_{y} F(y)$
HCQ3	$\sum_{x} F(x)$	$=\sum_{x} F(x)+F(d)$
HCQ4	$\sum_{x}(F(x)+G(x))$	$=\sum_{x} F(x)+\sum_{x} G(x)$
HCQ5	$\left(\sum_{x} F(x)\right) \cdot p$	$=\sum_{x} F(x) \cdot p$
HCQ6	$\sum_{x}(d \rightarrow F(x))$	$=d \rightarrow \sum_{x} F(x)$

Note:

- finite number of axioms
- function variables F, G from data to process expressions
- uses the simply typed lambda-calculus
- HCQ2 is an identity

Nominal Algebra
Results
Results on nominal algebra:

- semantics in nominal sets
- proof system is sound and complete w.r.t. the semantics

Results on theory SUB (other work):

- omega-complete: sound and complete w.r.t. the term model
- equality $t=u$ is decidable

Results on theory FOL (other work):

- equivalent to first-order logic for terms without unknowns
- has an equivalent sequent calculus:
- representing schemas of derivations in first-order logic
- satisfies cut-elimination

Conclusions

Nominal algebra:

- is a theory of equality on nominal terms
- allows us to reason about systems with binding
- closely mirrors informal mathematical usage:
- existing axioma schemata can be expressed directly
- equational proofs carry over directly
- natural notion of instantiation of meta-variables: informal notation: instantiating t to x in $\lambda x . t$ yields $\lambda x . x$ nominal terms: instantiating X to a in $\lambda[a] X$ yields $\lambda[a] a$

Future work

Future work on nominal algebra:

- further develop theory on:
- the λ-calculus
- choice quantification in $\mu \mathrm{CRL} / \mathrm{mCRL} 2$
- π-calculus and its variants
- reversibility
- add an inductive principle on data types
- formalise meta-level reasoning, meta-meta-level reasoning, ... a hierarchy of variables
- develop a theorem prover

Further reading

R Murdoch J. Gabbay, Aad Mathijssen:
Nominal Algebra.
Submitted STACS'07.
围 Murdoch J. Gabbay, Aad Mathijssen:
Capture-Avoiding Substitution as a Nominal Algebra.
ICTAC'06.
R Murdoch J. Gabbay, Aad Mathijssen:
One-and-a-halfth-order Logic. PPDP'06.

Papers and slides of my talks can be found on my web page: http://www.win.tue.nl/~amathijs

