
1/21

Verified Design of an
Automated Parking Garage

Aad Mathijssen A. Johannes Pretorius

1st February 2006



2/21

Introduction



3/21

Problem description (1)

Design software for the following system:



4/21

Problem description (2)

Design software for the following system:

• 30 parking spots, maximum 29 occupied

• awkward lift position



5/21

Approach (1)

Design the software in such a way that safety is guaranteed.



6/21

Approach (2)

After formulating functional requirements, do not start implementing immedi-
ately.

Design a model of the software:

• gain insight in the system

• detect errors in the proposed design

• foundation for implementation

Interactions are of primary concern: model behaviour



7/21

Approach (3)

Pipeline:



8/21

Conceptual system design: architecture

Distinction between three layers in order to maintain separation of concerns:



8/21

Conceptual system design: architecture

Distinction between three layers in order to maintain separation of concerns:

logical layer: the parking/retrieval algorithm



8/21

Conceptual system design: architecture

Distinction between three layers in order to maintain separation of concerns:

hardware abstraction layer:

• receive and execute instructions; provide feedback on results

• issue events to the safety layer



8/21

Conceptual system design: architecture

Distinction between three layers in order to maintain separation of concerns:

safety layer:

• pass messsages between the logical and hardware layer

• only if they are safe, deny otherwise



9/21

Conceptual system design: data

The following data is communicated between the layers:

• Event : addition/removal of cars to/from the system

• InstructionSet : instructions that are to be executed concurrently by the HAL

• Instruction : single instruction that the hardware should execute:

– move_belts(bs , d ,ms)

– move_shuttles(shs , o, d)

– tilt_shuttle(p, o)

– move_lift(h)

– rotate_lift

• Result : indicates the result of executing of a set of instructions



10/21

Conceptual system design: actions

The following actions facilitate communication between the layers:

• occur (e): occurrence of an event e

• req(is): request of an instruction set is

• ack_req(is): acknowledgement of a request of an instruction set is

• deny_req(is): deny of a request of an instruction set is

• ack_exec(is , r): acknowledgement of execution of instruction set is with
result r



11/21

Safety requirements

Some examples:

1. If a car is moved between belts, both belts shouldmove in the same direction.

2. Cars should not be able to move into walls.

3. When moving shuttles, cars may not be damaged.

4. When moving the lift, cars may not be damaged.



12/21

Specification

Focus on safety layer.

Formalise conditions under which it is allowed to execute a set of instructions
based on the current state.

A set of instructions is is allowed if:

1. is specifies at least one instruction

2. the instructions in is do not overlap, i.e. the areas on which the instructions
operate are pairwise disjoint

3. each instruction in is is allowed



13/21

Specification: allowed instructions

The instruction move_belts(bs: BeltSet, d: Direction, ms: MoveSize) is allowed if:

1. bs specifies at least one conveyor belt.

2. All conveyor belts in bs directly border each other (this also implies that they
must be in the same row).

3. All conveyor belts in bs are available (in particular, this applies to belts on the
lift and on shuttles).

4. At least one position of size ms must be free at the end of the set of belts
specified, this free position should be on the side indicated by d.

5. In the case that the specified belts are in row r1, there must be no car sus-
pended halfway between the two outer belts of bs and their neighbours, if
any.



14/21

Simulation

Simulation enables us to:

• test the quality of our specification

• construct and analyse potentially dangerous scenarios

Infeasible using initial specification. Reductions were needed:

• abstract from sets of instructions by focusing on single instructions on only

To make simulation more effective:

• abstract from requests and acknowledgements; instead, it is assumed that
instructions are executed successfully by the HAL

• build a visualization plugin



15/21

Observations

Major complicating factors:

• due to lift position, cars are able to move in half positions

• shuttles can be tilted

Consequences:

• components are much more intertwined
e.g. a car can be on both the lift and the bordering conveyor belt

• more checks are needed

• complex checks are needed



16/21

Verification (1)

Verification:

• guarantees requirements are fulfilled for each possible system state

• requirements need to be formalised

• model checking is space and time consuming

Unfeasible with the original model: 640 billion states (6, 4 ∗ 1011)



17/21

Verification (2)

Solution: restrict the number of positions:

−→

Result: 3,3 million (3, 3 ∗ 106) states and 98 million (9, 8 ∗ 107) transitions

Feasible



18/21

Verification (3)

Approach:

• augment specification with error actions that are triggered when a require-
ment is not fulfilled

• check the state space on the existence of the error actions

Result: no error actions were found



19/21

Tech Specs

Specification language used: mCRL2 (successor to µCRL)

Specification: 991 lines of mCRL2 code

Verification: 217 lines of mCRL2 code

Visualization: 1583 lines of C++ code

Verification time (real time):

• 5 hours on a cluster of 34 CPUs (3 GHz CPU, 2 GB RAM)

• 35 hours on a single PC (3 GHz CPU, 4 GB RAM)

Time spent: approximately 500 man hour



20/21

Conclusions (1)

For systems that interact with their environment, focus on behaviour.

Model the behaviour:

• gain insight in the system

• detect errors in the design

• foundation for implementation



21/21

Conclusions (2)

Simulation: confidence in safety of our model

Visualization:

• speeds up simulation

• revealed a number of errors in the model

• enhances communication

Verification: prove safety of our model


