
Specification, Analysis and Verification of an
Automated Parking Garage
Aad Mathijssen, A. Johannes Pretorius

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{A.H.J.Mathijssen, A.J.Pretorius}@tue.nl

Abstract

In this report we discuss the specification, analysis and verification of an automated park-
ing garage in mCRL2, a process algebra with data. We view the parking garage as a system
that we conceptually divide into three layers: a logical layer, a safety layer and a hardware
abstraction layer. This allows us to abstract from implementation details (hardware ab-
straction layer) and algorithm design (logical layer). Instead, we are able to focus on the
specification of a communication interface between these two layers that only allows safe
system behaviour. This interface constitutes the safety layer. For the safety layer, we iden-
tify and formulate a number of requirements. These are verified and reported on. We also
discuss the analysis of the specification of the safety layer with a simple custom visualiza-
tion tool. This tool was implemented as a plug-in to the mCRL2 toolset and helped us gain
important insights during the specification and analysis of the safety layer.

1 Introduction

During the past two decades process algebras have become increasingly popular tools for
describing complex systems that interact with their environment [5]. Such systems differ
from classic batch processes that receive input, process the input, produce output and then
terminate. Instead, their behaviour is continuously influenced by information that they receive
from their environment. An automated parking garage is a prime example of such a system.
It is in operation 24 hours a day, 7 days a week: it is continuously on standby, ready to stow
away and retrieve cars for users. Furthermore, the state of the garage is constantly changing
as cars are added and removed. At any point in time, this state influences which operations are
possible and how they are executed.

Process algebra allows for high-level descriptions of systems that interact with their en-
vironment. A system is regarded as a number of interacting processes that together describe
its behaviour. In this way a mathematical model is acquired and this is used to prove various
properties of the system using mathematical proof techniques. The process algebra used in
this report is mCRL2 [3]. It succeeds and extends µCRL [4, 5].

With µCRL a large number of real-world systems have been analysed and verified. Some
of the successes that µCRL has booked include the detection of an unknown deadlock in the
most complex variant of the sliding window protocol [1, 11], the identification of a number
of errors in a distributed lifting system for trucks [2] and the discovery of two errors in a Java
distributed memory implementation [9]. From all these experiments we unfortunately have

1

had to formulate the 100% rule: in 100% of the cases considered, systems turn out to contain
more or less serious errors, which are not very hard to detect.

An important characteristic of mCRL2 and its predecessor µCRL is the inclusion of data.
Experience has shown that in real-world systems data is of paramount importance [6]. In
addition to the execution of actions, it is often the case that data is stored and communicated,
thus having a significant influence on system behaviour.

In the remainder of this report we discuss the specification of an automated parking garage
in mCRL2. We also discuss the analysis and verification of the system and the techniques
used. In section 2 we provide more details on the challenges presented by this system. In
section 3 we outline the approach we have taken to address these issues and we explain how
we conceptually divide the system into three layers. This allows us to concentrate on one
layer, the safety layer, which we believe is essential in verifying that the system is safe. We
follow this by a discussion of mCRL2 and the mCRL2 toolset in section 4. In sections 5, 6 and
7 we specify the hardware abstraction layer, the safety layer and the logical layer respectively.
We treat the hardware abstraction layer and the logical layer tersely but reveal more details of
the safety layer: we provide a specification, formulate a number of safety requirements and
verify these. In section 8 we describe a simple visualization plug-in for the mCRL2 toolset as
well as the insights we gained from using it. Finally, we draw conclusions in section 9.

2 Problem description

The parking garage that we are concerned with was commissioned by developers in Bremen,
Germany and was designed by the Dutch company CVSS Automated Parking Systems. It will
be realised below street level in the basement of an existing building. Access to the garage
will be provided with a vertical lift shaft that has a doorway at street level. To use the facility,
users will drive their car through this doorway into the lift. After they have exited from their
car and the lift, their car will automatically be lowered to an intermediate level, rotated 180◦

horizontally, lowered to the basement and stowed away using a number of conveyor belts and
shuttles. When a user wishes to retrieve a car, this same system of conveyor belts and shuttles
will be used to bring the car to the lift from which it will be brought to street level. Since the
car had been rotated before, it will now face the direction of the street. The user steps into the
car and drives away through the doorway.

The system will provide a number of security and safety checks during check-in and check-
out of a car. This includes reading a transponder card on the car and checking a database of
registered users before opening the doorway to the lift. As the car is driven into the lift, the
user will be provided with a number of cues to ensure that the car is positioned appropriately.
There will also be a check to ensure that the handbrake is engaged. Before lowering the car
to the basement, the lift will be scanned to ensure that there are no living beings present.
When a user wishes to retrieve a car there will be the necessary security checks to prevent
theft. Furthermore, there will be traffic lights outside the doorway to prevent traffic jams and
the installation will be provided with driver motors, position sensors, closed circuit television
cameras, smoke alarms and sprinklers.

In subsequent descriptions we consciously abstract from details such as driver motors, po-
sition sensors and so forth. We also restrict ourselves to only the vertical lift and the basement
level parking garage. We do not take into account the mechanisms put in place for regulating
traffic outside the lift, correctly positioning the car in the lift, or cues to enter and leave the
lift. This is done in order to tightly draw the bounds of our scope and to focus on what we
believe are the essential elements that facilitate the safe behaviour of the system. In doing so,
we avoid getting bogged down by implementation issues, hardware or logistics.

2

Figure 1: Floorplan of the parking garage, basement level

From our perspective the operation of the system is initiated every time a car is positioned
appropriately in the lift at street level or when a request for a car is received. Physically we
view the system as consisting of a single lift and a parking garage. The lift can be in one of
three vertical positions: street level, rotation level or basement level. At the rotation level,
the lift is able to rotate 180◦ horizontally. This is provided that there are no cars positioned
immediately adjacent to the lift shaft (on either side) at basement level. The floor of the lift
consists of a conveyor belt. When the lift is at the basement level this conveyor belt is able to
move sideways (see the description below).

The most complex and most interesting part of the system is the parking garage at base-
ment level. The movement of cars at this level is facilitated by a number of conveyor belts and
shuttles. This is illustrated in the floorplan of the basement in figure 1.

As shown in the figure, the garage is divided into three rows (r1, r2 and r3) and ten columns
(c1-c10). Conveyor belts are portrayed by grey rectangles with arrows on their ends and are
identified by labels such as b r1a sh (below we elaborate further on the naming convention
used). The arrows indicate their direction of movement. Columns c1 and c10 contain three
shuttles each. In each of these columns one shuttle may be tilted on its long end facing the
wall. This results in an open position to which adjacent lowered shuttles may be moved. A
tilted shuttle may also move to a new row position behind lowered shuttles (this implies that
it is possible for two shuttles to be in the same row and column position provided that one
is tilted and the other lowered). In Figure 1, black arrows indicate the directions in which
shuttles can move. Similar to the lift, every shuttle also contains a conveyor belt that can move
sideways.

The lift shaft is in row r1. Notice that it is not placed over a full position, but rather
intersects two columns (c6 and c7). This artefact is due to the construction of the building
in which the garage is to be installed (and hence beyond the control of the engineers who
designed the garage). More importantly, this implies that it must be possible to move cars
half-column distances in the first row. For this reason every column in row r1 is also divided
into an a (left) and b (right) part as indicated by the dashed lines in figure 1. We use this same

3

convention in the naming of the belts in the figure. Hence, b r1a sh refers to the conveyor belt
of the shuttle on the left-hand side of row r1, and so forth.

It is possible to move any subset of conveyor belts and any subset of lowered shuttles. It
is also possible to connect neighbouring conveyor belts to function as a single larger conveyor
belt. For instance, conveyor belt b r3a sh can be connected to b r3. Furthermore, one shuttle
in c1 and one shuttle in c10 can be tilted. A tilted shuttle can be moved independently from
the lowered shuttles in that column.

The system hardware can determine whether any (half-)position is free or occupied. For
any column in r1, it is possible to determine the status of its a and b part. Note that this
implies that individual cars on r1 cannot be identified by hardware sensors. Since we only
want to guarantee safe behaviour, this does not impact our specification. It is also possible to
determine whether there is a lowered, a tilted or no shuttle at all in any row of c1 and c10.
Furthermore, the current height of the lift can be determined and also whether it is free or
occupied. This makes it possible to get a snapshot of the system at any point in time during
operation.

Apart from not being involved in hardware design, it is also not our goal to be concerned
with algorithm design. Instead, our goal is to provide specialists in algorithm design with
an interface to an abstraction of the underlying hardware that guarantees the safe and correct
operation thereof. This provides a clear separation of concerns. The algorithms need to ensure
that cars are efficiently stowed away and retrieved. They must also ensure that the garage can
be filled to its maximum capacity of 29 cars (this leaves one position free and allows for the
garage to operate in a fashion similar to a large sliding puzzle). Even if there are errors in such
algorithms, the interface should not allow the parking garage or the cars in it to get damaged
during their execution. It needs to specify the necessary checks and restrictions that guarantee
the execution of only safe or legal moves. The safety interface must also be able to report
on the success or failure of issued commands. We envision that properly designed algorithms
will be able to respond to such feedback in an appropriate fashion.

3 Conceptual system design

3.1 Architecture

As already alluded to above, our aim is to specify a safety layer that sits between eventual
placement and retrieval algorithms and the abstract hardware of the automated parking garage.
This layer must allow only safe or legal instructions and report on their success or failure. We
therefore introduce a three-layered architecture consisting of a logical layer (LL), a safety layer
(SL) and a hardware abstraction layer (HAL) (see figure 2). With this conceptual division into
layers, the safety layer ensures the safe operation of the system independently of the particular
algorithms that are implemented and without being concerned with hardware implementation
issues.

3.2 Data

The following data are communicated between the layers:

• Event: this data type represents events that are outside the scope of our design, but that
do have an impact on the system. We identify the following events:

– add car: a new car has entered the lift.
– remove car: a car has been removed from the lift.

4

Figure 2: Conceptually the system consists of three layers

• InstructionSet: this data type represents sets of instructions that are to be executed con-
currently by the HAL. It consists of a number of elements of type Instruction.

• Instruction: this data type represents the single instructions that the hardware should
execute. They should be implemented by the HAL (see section 5). There are 5 different
instructions:

– move belts(bs: BeltSet, d: Direction, ms: MoveSize): this instruction specifies that
the set of belts bs should be moved in direction d with a distance of size ms (half
or full).

– move shuttles(shs: ShuttleSet, o: ShuttleOrientation, d: Direction): this instruc-
tion specifies that the set of shuttles shs in orientation o (lowered or tilted) should
be moved in direction d with a distance of one row interval. The indication of
orientation o is needed for disambiguation, since it is possible for both a lowered
and tilted shuttle to be in the same position.

– tilt shuttle(p: ShuttlePosition, o: ShuttleOrientation): this instruction specifies
that the shuttle in position p and orientation o should be lowered or tilted to the
orientation that is the opposite of o.

– move lift(h: Height): this instruction specifies a new vertical position h to move
the lift to.

– rotate lift: this instruction specifies that the lift should be rotated by 180◦ horizon-
tally.

• Result: this data type indicates whether an instruction has been executed successfully
(ok) or whether it has failed (fail).

• GlobalState: this data type reflects the current system state. That is, for every position
whether it is free or occupied (FloorState), for every shuttle whether it is lowered or
tilted (ShuttleState), and for the lift its current vertical position and whether it is free or
occupied (LiftState).

5

A precise specification of all data types can be found in appendix B.

3.3 Actions

To facilitate communication between the different layers in our conceptual design, we intro-
duce the following actions (also see figure 2):

• occur(e: Event): this action signifies the occurrence of an event e. When the HAL
detects e, the SL is informed by the action occur(e). In turn, the SL informs the LL by
issuing an identical occur(e) action. Note that for the sake of modularity of the design,
the LL is not directly informed by the HAL.

• req(is: InstructionSet): this action allows the LL to request the execution of a set of
instructions is. This request is propagated to the HAL via the SL. The notion of a
set of instructions allows for the execution of multiple instructions that apply to non-
overlapping areas of the basement (for instance, it is possible with a single request to
issue different instructions for moving conveyor belts as long as the belts in question do
not overlap).

• ack req(is: InstructionSet): when the LL requests the execution of a set of instructions
is, and these are deemed safe by the SL, the SL issues an ack req(is) action.

• deny req(is: InstructionSet): in the case that the SL deems a request for a set of instruc-
tions is from the LL as unsafe it replies by issuing a deny req(is) action. When this
happens, no further requests are made to the HAL by the SL.

• ack exec(is: InstructionSet, r: Result): upon completion of a set of instructions is with
result r, the HAL issues an ack exec(is, r) action to the SL. In turn, the SL issues this
action to the LL.

• req state: this action is used to request the current global state from the HAL via the
SL.

• ack state(gs: GlobalState): this action is used to communicate the current global state
from the HAL to higher layers. This is done in response to a req state action.

A precise description of the most relevant actions and their use can be found in appendix C.1.

4 mCRL2

In following sections we provide more details of the actual specification of the system in terms
of the layered architecture introduced above. Before we proceed, we introduce the mCRL2
specification language and the accompanying mCRL2 toolset.

The mCRL2 language is a successor to µCRL. The most important improvements on
µCRL is that the language is compositional, that is large systems can be specified in terms
of smaller components. It also has a more advanced data specification language which is
higher-order and provides concrete data types.

Below we only introduce the language features that are used for the specification of the
safety layer. The data and process languages are treated separately. A rich text format is used
as opposed to plain text in the appendices. To overcome the differences between these formats,
a translation table is provided in appendix A. In the plain text format found in the appendices,
the %-symbol indicates the beginning of a comment that extends to the end of the line.

6

4.1 Data language

The mCRL2 data language is in a functional language based on higher-order abstract data
types [7, 8]. Types, constructors, functions and their definitions can be declared. For instance,
the following declares the type A with constructors c, d, functions f, g and the definitions of
f, g:

sort A;
cons c, d : A;
map f : A → A → A;

g : A → A;
var x, y : A;
eqn f(c, x) = c;

f(d, x) = x;
g = f(c);

In the equations, variables can be used and pattern matching on the constructors of the data
type is catered. Note that function types are first-class citizens: functions may return functions.

Type references can be declared, for instance in

sort B = A;

B is a synonym for A. With this it is possible to define recursive types (see below).
Furthermore, where clauses can be used as an abbreviation mechanism, for example:

map h : A → A → A;
var x, y : A;
eqn h(x, y) = f(z, g(z)) whr z = g(x, y) end;

As mentioned above, mCRL2 also has concrete data types. These consist of standard data
types and operations as well as type constructors. For the former, we have the following:

• Booleans (B) with constants true, false and operators ¬, ∧, ∨, ⇒. For all types the
equality operator ==, inequality 6= and conditional if are provided. So for instance
the expression c == c is equal to true, c == d to false and if (true, c, d) to c. Also,
expressions of type B may be used as conditions in equations, for instance:

var x, y : A;
eqn x == y → f(x, y) = x

• Unbounded positive, natural and integer numbers (P, N and Z) with relational operators
<, ≤, >, ≥, unary negation − and binary arithmetic operators +, −, ∗, div, mod.

There are two type constructors, of which the first one is a structured type. This is a
compact way of defining a type together with constructor and projection functions. A sort MS
of machine states can be declared by:

sort MS = struct off | standby | starting | running | broken;

7

The sort of binary trees with numbers as their leaves looks like this:

sort T = struct leaf (value : N) | node(left : T, right : T);

This declares type T with constructors leaf : N → T and node : T × T → T and projection
functions value : T → N and left , right : T → T . Functions on T can be defined using
pattern matching on the constructors leaf and node.

Finally, there is a list type constructor. The following declares a list containing elements
of type A;

sort AL = List(A)

This list has constructors [] : AL and . : A × AL → AL. Also operators / , ++ , head ,
tail , rhead and rtail are provided together with list enumeration [, . . . ,]. The following
expressions of type AL are all equivalent: [c, d, d], c . [d, d], [c, d] / d and [] ++ [c, d]++ [d].

4.2 Process language

The most basic notion in the mCRL2 process language is an action. Actions represent atomic
events. They can be declared in the following way:

act a, b;
c : B;
d : B × P;

This declares actions a, b, c and d. Here, a and b are parameterless actions, c is an action with
a data parameter of type B, and d has two parameters of type B and P respectively. For the
above declaration, a, c(1) and d(6, true) are valid actions.

Process expressions are compositions of actions using a number of operators:

• Deadlock or inaction δ, which does not display any behaviour.

• Alternative composition, written as p+q. This expression non-deterministically chooses
to execute process expression p or q.

• Sequential composition, written p · q. This expression first executes p followed by q.

• Conditional, written as b → p, q, where b is a data expression of type B. The process
expression behaves as an if-then-else construct. That is, if b is true then p is executed,
else q is executed. The else part is optional, that is b → p is a valid expression that
behaves as b → p, δ.

• Summation over data types. The sum operator
∑

d:D
F (d), with F a mapping from

data type D with constructors d0, . . . , dn, n ≥ 0, to process expressions, behaves as
F (d0) + . . . + F (dn).

• Process references, written as X(d1, . . . , dn), with n ≥ 0. These are references to
variables declared by process equations, that are introduced next.

8

Figure 3: Typical specification, analysis and verification cycle using mCRL2

Using process expressions we can form process equations. Take for instance the following
declaration, using the action declaration above:

proc X(x : B, y : P) = (a + b) · X(x, y)
+ c(x) · X(¬x, p + 1)
+ p > 1 → b · d(x, p) · X(false , p − 1);

This declares process variable X with two data parameters of type B and P. For data terms
t : B and u : P, X(t, u) behaves as the right-hand side of the equation in which x and y are
replaced by t and u. Process variable X is often called a process and parameters t and u are
called the state of X .

A process specification needs to be initialised. For example:

init X(true, 1);

This initialises process X with (true, 1) as its initial state.

4.3 mCRL2 toolset

Specification, analysis and verification of systems with mCRL2 is also supported by a toolset.
Some of these tools, and how they fit into the specification, analysis and verification cycle
are illustrated in figure 3. Once the specification activity starts, simulator tools allow the user
to simulate parts of the resulting state space. Essentially this tool allows the user to follow
labelled transitions from one system state to another. At any particular time the simulator
provides the user with an overview of the current system state and also provides a listing
of all possible transitions from that state (see figure 4). After a transition is selected, the
tool updates the system state accordingly, and provides an overview of the new state and all
transitions possible from it.

Once users are satisfied with the specification, the instantiator tool generates the corre-
sponding state space. By this stage, requirements should have been formalised and are checked
against on the state space to determine whether any states exist that violate these.

5 Hardware abstraction layer (HAL)

We assume that the HAL serves as a coherent interface to all individual hardware components
in the garage (driver motors and so forth). The HAL receives requests for sets of instruc-
tions from the SL (action req). For each set of instructions the HAL attempts to execute the
individual instructions and reports back on the result of the attempt (action ack exec).

9

Figure 4: Simulator

In order for the specification of the SL to yield the intended results, instructions must be
implemented correctly by the HAL. For instance, the following must occur at hardware level
when the instruction move belts(bs, d, ms) is received: connect all the conveyor belts specified
in bs, engage the appropriate driver motors and move the belts by a distance corresponding to
ms in the direction indicated by d. To ensure that the distance moved corresponds to ms the
appropriate position sensors need to be utilised.

Apart from executing instructions, the HAL also provides the SL with access to a global
snapshot of the current system state before and after issuing any instructions. Such a system
state is constructed by the HAL using sensors that monitor the state of every (half-)position of
the belts, every shuttle and the lift.

6 Safety layer (SL)

For the safety layer we identify the safety requirements and design a specification for which
these should be satisfied. After that we verify that this is indeed the case.

6.1 Requirements

The safety requirements of the safety layer may be summarised as follows:

1. Conveyor belts:

(a) If a car is moved between belts, both belts should move in the same direction.
(b) Cars should not be able to move into walls.
(c) Cars should not be able to move to a belt that is not available (that is a shuttle that

is tilted, or the lift belt not being in its lowest position).

2. Shuttles:

(a) When moving shuttles, a shuttle should not be able to move into the wall.
(b) When moving shuttles, other shuttles may not be damaged.
(c) When moving shuttles, cars may not be damaged.

10

(d) When tilting a shuttle, cars may not be damaged.
(e) When tilting a shuttle, other shuttles may not be damaged.

3. Lift:

(a) When moving the lift, cars may not be damaged.
(b) When rotating the lift, cars may not be damaged.

6.2 Specification

In order to verify that the SL allows only safe requests to be propagated to the HAL, we have
specified its behaviour in mCRL2. This specification is provided in appendix B and C.1. The
following should be noted:

• We did not take the message passing of the system state or the events into account, as
this does not impact safety.

• We assume that there is at most one set of instructions in the system. This is not a real
restriction, as it seems natural that communication between the layers is much faster
than the actual execution of instructions.

The informal requirements introduced above are relevant to the InstructionSet data type
(see section 5). In our specification of the SL we use an allowed function on sets of instructions
to determine whether a set of instructions is safe. A set of instructions is is allowed if:

1. is specifies at least one instruction.

2. The instructions in is do not overlap, that is the areas on which the instructions operate
are pairwise disjoint such that it is safe to execute the instructions in is simultaneously.

3. Each instruction in is is allowed.

For the last condition, we also need an allowed function on individual instructions, which
forms the core of the definition.

The instruction move belts(bs: BeltSet, d: Direction, ms: MoveSize) is allowed if:

1. bs specifies at least one conveyor belt.

2. All conveyor belts in bs directly border each other (this also implies that they must be
in the same row).

3. All conveyor belts in bs are available (in particular, this applies to belts on the lift and
on shuttles).

4. At least one position of size ms must be free at the end of the set of belts specified, this
free position should be on the side indicated by d.

5. In the case that the specified belts are in row r1, there must be no car suspended half-way
between the two outer belts of bs and their neighbours, if any.

The instruction move shuttles(shs: ShuttleSet, o: ShuttleOrientation, d: Direction) is allowed
if:

1. shs specifies at least one shuttle.

11

2. All shuttles in shs border each other (this implies that they are all in column c1 or c10).

3. All specified shuttles must be available in the orientation specified by o (lowered or
tilted).

4. There is an open position at the end of shs in orientation o and direction d, this ensures
that there is an open position for the shuttles to move to.

5. For every lowered r1 shuttle s in shs, there must be no car that is suspended between s
and its bordering conveyor belt.

The instruction tilt shuttle(p: ShuttlePosition, o: ShuttleOrientation) is allowed if:

1. It is not the case that there is both a lowered and a tilted shuttle in the position specified
by p.

2. If o is lowered, there is no car on the shuttle (fully or partially).

The instruction move lift(h: Height) is allowed if:

1. The target height specified by h is not the current height.

2. If the current height is basement level, there must be no cars suspended half-way be-
tween the lift and conveyor belts on either side of the lift.

The instruction rotate lift is allowed if:

1. The current height of the lift is rotation level.

2. Three half-positions on both sides of the lift are free (this to keep cars in these positions
from being damaged by the rotation mechanism).

A formal specification of the allowed function can be found in appendix B.

6.3 Simulation

Because of the enormous amount of possible instruction sets that can be requested and ex-
ecuted, it is impossible to do any simulation, let alone verification, on the specification in
appendix C.1. For this reason we apply the following reduction:

Reduction 1 Abstract from sets of instructions by focusing on single instructions only.

The corresponding specification can be found in appendix C.2. On the one hand this abstrac-
tion is dangerous, because sets of instructions are an essential part of the system. On the other
hand, the core safety issue lies in the allowed function on single instructions. Furthermore, the
number of possible system configurations remains the same, since the result of executing a set
of instructions concurrently is the same as executing them sequentially. This implies that in
the corresponding state space the number of states remains fixed, but the number of transitions
are reduced substantially.

Although the former reduction makes it possible to perform simulation, it is not very
effective. For this reason, we abstract from non-essential messages:

Reduction 2 Abtract from requests and acknowledgements. Instead, it is assumed that in-
structions are executed successfully by the HAL.

The corresponding specification can be found in appendix C.3. When simulating, only allowed
instructions can be executed.

12

Figure 5: Reduction of the floorplan

6.4 Verification

We want to verify the requirements by exploring the state space. However, the state space
corresponding to specification after applying the reduction above consists of 6, 4× 1011 (640
billion) states, and a multiple of this in transitions. This is prohibitively large. Hence, we
apply one last abstraction:

Reduction 3 The number of positions of the belts are reduced to the minimum that retains
the behavioural characteristics of the original configuration. This entails the following. The
positions on the conveyor belts b r2 and b r3 are reduced to two positions each (see figure 5).
Also, belts b r1a and b r1b are reduced to to 1 1

2
full positions (or 3 half positions) each.

The corresponding specification can be found in appendix D.1. Its state space has 3, 3 × 106

(3, 3 million) states and 9, 8 × 107 (98 million) transitions, which is manageable.
The approach we take in verifying the requirements deviates a little from the typical cycle

of figure 3 on page 9. Namely, we extend the specification with error actions that are only
enabled when a requirement is violated. Hence, the requirements are fulfilled when the state
space does not contain any error actions.

The specification extended with error actions can be found in appendix D.2. In this ap-
pendix a translation from the high-level requirements of section 6.1 to a lower level of detail
can also be found. Extra care has been taken to specify the enabling conditions of the error
actions. Namely the use of elements of the definition of the allowed function needs to be
avoided as much as possible, since mistakes in the original specification could carry over to
the verification.

Keeping this observation in mind, we have extended the specification and generated the
state space. This state space does not contain any error actions, which means that all the
requirements are fulfilled.

7 Logical layer (LL)

As mentioned before, the LL utilises the SL by requesting that sets of instructions be executed.
In turn, the SL reports back to the LL in the form of ack req, deny req or ack exec actions.
It also informs the LL of events that have occurred (a new car to stow away or the removal
of an existing car). This allows for the development of algorithms by experts who can plug
their specifications into the SL. These algorithms may contain errors that trigger the request
of unsafe instructions. Due to the safety layer, such instructions are harmless (but should be
avoided), since they will be blocked.

13

Figure 6: Visualization plug-in

8 Visualization

During the specification we often resorted to simulating the behaviour of the system using the
mCRL2 toolset (see section 4.3). The simulator tool is a great aid during specification since
it allows us to quickly and incrementally check whether our specification does indeed result
in the behaviour that we had anticipated. This is opposed to generating and examining an
entire transition system which is quite an expensive undertaking (due to the phenomenon of
state space explosion and effort needed for formulating and checking formal requirements).
However, during specification we soon realised that interpreting the text-based output of the
simulator is time consuming, not entirely intuitive and prone to human error (especially as the
amount of information that is stored in states increases).

In order to address the above problem and inspired by other visualization initiatives to
aid in system analysis [10, 12], we implemented a very simple visualization tool as a plug-in
to the simulator. The visualization tool gets the current system state from the simulator and
maps the information onto a simple 2D floorplan of the parking garage (see figure 6). This
visualization uses visual cues to indicate the vertical lift position and whether a specific posi-
tion is occupied (red), free (green) or unavailable (gray). Tilted shuttles are also visualised.
Instead of interpreting the text-based representation of the current system state, after selecting
a new transition, the visualization is updated and the user is able to analyse the system with
this representation.

We believe that this mode of analysis saved a great amount of time. Due to the fact that we
could follow cars as they were transported down the lift and moved to new positions using the
conveyor belts and shuttles we were able to construct potentially dangerous scenarios. This
allowed us to identify and correct a number of problems early on. These included mistakes on
our part as well as unknown complexities about the parking garage setup in general. Although
all requirements can be checked during the formal verification stage, this rests on the assump-
tion that all relevant questions have been identified and formalised. By visualizing the current
state it is also possible to identify additional issues that may not have been noted. Moreover,
had software simply been designed and implemented for the garage without a detailed analy-
sis, we believe that such issues could have easily crept into the implementation of the garage
despite considerable precaution on the part of the designers. Unfortunately, we know of a less
carefully designed garage where both cars and vital equipment have been damaged.

While using our visualization tool in designing the system we discovered a number of

14

Figure 7: Mistakes identified with the visualization plug-in

problems related to the fact that cars may be moved in half positions in row r1. First, we
moved a car toward the sides of the garage and positioned it with one half on a conveyor belt
and one half on a shuttle. To our surprise, it was possible to subsequently move the shuttle,
literally tearing the car in half (see figure 7a)! This first bug we discovered was relatively
easy to fix. A similar problem occurred when two cars were positioned side-by-side on the
lift, each with one half on a bordering conveyor belt. In this case, despite our best efforts of
explicitly checking for such a situation, it was possible to move the lift up, tearing two cars in
half (see figure 7b). This turned out to be a harder problem to solve.

We found the representation of our visualization tool to be intuitively clear and easy to
follow. In this case were are fortunate that there exists such an intuitive mapping to a vi-
sual representation. This is often not the case. For instance, for communication protocols,
there is no “natural” visual representation requiring researchers to come up with more abstract
solutions.

9 Conclusions

In this report we have analysed an automated parking garage. We proposed a system design
consisting of three layers: a logical layer, a safety layer and a hardware abstraction layer. We
have given a formal specification of the safety layer and after applying a number of reductions
we were able to verify the safety requirements for this specification. This means that in every
valid configuration of the system, no damage can be done by executing unsafe instructions.

We strongly recommend using the specification of data types and processes discussed in
this report as a starting point for the implementation of software to operate the parking garage
(appendices B and C.1). This holds especially for the conceptual three-layer architecture and

15

the definitions of the allowed function.
We believe that our work comprises the essence of the system design regarding safety.

However, the following requires further investigation before starting on the implementation:

• In appendix C.1 a specification of the system is given in terms of sets of instructions.
Although we believe that the specification is correct for these sets and although we have
simulated on some key problem areas regarding sets, we have not been able to verify the
safety. This means that extra care should be taken in the implementation of the allowed
function on sets of instructions in appendix B.

• We do not distinguish between the occurrence of a recoverable and an unrecoverable
hardware failure. All failures are treated as recoverable. Furthermore, execution of a set
of instructions only gives one result which holds for all instructions. For more detailed
error handling, the execution of individual instructions should also return results. That
is, after the execution of a set of instructions, some elements may return ok while the
others may return fail.

• In practise, the events add car and remove car are not atomic. They need to be split
up in a begin and an end part. In order to guarantee safety, it should be impossible to
execute a move lift instruction between the begin and end part of an event.

Although we have not investigated the efficiency of the automated parking garage we fore-
see a performance challenge in terms of the timely stowing away and recovery of cars in
practise. However, we have taken care to ensure that the division into three layers does not
degenerate performance. In particular, the notion of the concurrent execution of instructions
addresses this issue.

With regard to the general system design, verification and analysis cycle (see figure 3), we
want to stress that simulation should not be underestimated. All defects in the specification
were found using simulation. Also, simulation allowed us to identify and address interesting
behavioural characteristics that would probably not have been included in the requirements
otherwise. In this way we were able to gain insight into the system in a way that goes further
than simply listing and verifying requirements. Still, verification remains necessary.

Finally, we want to point out the danger of using the same data types for both simulation
and verification. This is due to the possibility of errors in the data type specification. The
approach we took to circumvent this is to use different functions for the verification of the
most crucial functions and safety requirements.

Acknowledgements

This work was partially supported by the Dutch Foundation for Scientific Research (NWO)
under grant 612.065.410. We also wish to thank Muck van Weerdenburg for his valuable
input, suggestions and refinement of the mCRL2 toolset.

References

[1] W. Fokkink, J.F. Groote, J. Pang, B. Badban and J.C. van de Pol, “Verifying a sliding
window protocol in µCRL”, Proc. 10th Int’l Conf. Algebraic Methodology and Software
Technology, C. Rattray et al., eds., LNCS 3116, Springer Verlag, 2004, pp. 148-163.

[2] J.F. Groote, J. Pang and A.G. Wouters, “Analysis of a distributed system for lifting
trucks”, J. Logic and Algebraic Programming, vol. 55, no. 1-2, 2003, pp. 21-56.

16

[3] J.F. Groote, A. Mathijssen, M. van Weerdenburg and Y. Usenko, “From µCRL to
mCRL2: motivation and outline”, Proc. Workshop Algebraic Process Calculi: The First
Twenty Five Years and Beyond, BRICS NS-05-3, 2005, pp. 126-131.

[4] J.F. Groote and A. Ponse, “The syntax and semantics of µCRL”, Algebra of Communi-
cating Processes, Workshops in Computing, A. Ponse, et al., eds., 1994, pp. 26-62.

[5] J.F. Groote and M. Reniers, “Algebraic process verification”, Handbook of Process Al-
gebra, J.A. Bergstra et al., eds., Elsevier Science, 2001, pp. 1151-1208.

[6] J.F. Groote and J.J. van Wamel, “Algebraic Data Types and Induction in µCRL”, Univer-
sity of Amsterdam, Amsterdam, Tech. Rep. P9409, 1994.

[7] K. Meinke, “Higher-Order Equational Logic for Specification, Simulation and Testing”,
The 1995 Workshop on Higher-Order Algebra, Logic and Term Rewriting (HOA ’95),
LNCS 1074, Springer, 1996, pp. 124-143.

[8] B. Möller, A. Tarlecki and M. Wirsing, “Algebraic Specification of Reachable Higher-
Order Algebras”, Recent Trends in Data Type Specification, LNCS 332, Springer, 1988,
pp. 154-169.

[9] J. Pang, W. Fokkink, R. Hofman and R. Veldema, “Model Checking a Cache Coherence
Protocol for a Java DSM Implementation”, Proc. 2003 International Parallel and Dis-
tributed Processing Symposium (IPDPS’03), Nice, IEEE Computer Society Press, 2003.

[10] A.J. Pretorius and J.J. van Wijk, “Multidimensional Visualization of Transition Sys-
tems”, Proc. 9th Int’l Conf. Information Visualization (IV05), London, IEEE CS Press,
2005, pp. 323-328.

[11] A.S. Tanenbaum, Computer Networks, Prentice Hall, 1981.

[12] F. van Ham, H. van de Wetering and J.J. van Wijk, “Interactive visualization of state
transition systems”, IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 3,
2002, pp. 319-329.

17

Appendix A: Table of mCRL2 symbols

In the specification of appendices below, a plain text format is used as opposed to the rich text
format of section 4. To make the translation from rich text symbols to plain text symbols, the
following table is provided:

Symbol Rich Plain
Booleans B Bool
positive numbers P Pos
natural numbers N Nat
integers Z Int
arrow → ->
inequality 6= !=
logical negation ¬ !
conjunction ∧ &&
disjunction ∨ ||
implication ⇒ =>
smaller than or equal ≤ <=
greater than or equal ≥ >=
list cons . |>
list snoc / <|
list concatenation ++ ++
sum

∑
sum

Table 1: Translation of mCRL2 symbols

18

Appendix B: Data type specification

All process specifications use the same data type specification. For this reason, we only list the
general part once. This specification is structured as follows. First all data types are declared.
After that, functions for each data type are declared and grouped together.

sort
FloorRow = struct r1 | r2 | r3;
FloorCol = struct c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c9 | c10;
FloorPosPart = struct pa | pb;
FloorPos = struct pos_r1(FloorCol, FloorPosPart)

| pos_r2(FloorCol)
| pos_r3(FloorCol);

FloorPosList = List(FloorPos);
ShuttlePos = struct r1a | r2a | r3a | r1b | r2b | r3b;
ShuttlePosSet = List(ShuttlePos); % representing a set of ShuttlePos elements
ShuttleOrientation = struct lowered | tilted;
R1Belt = struct b_r1a_sh | b_r1a | b_r1lift | b_r1b | b_r1b_sh;
R2Belt = struct b_r2a_sh | b_r2 | b_r2b_sh;
R3Belt = struct b_r3a_sh | b_r3 | b_r3b_sh;
R1BeltSet = List(R1Belt); % representing a set of R1Belt elements
R2BeltSet = List(R2Belt); % representing a set of R2Belt elements
R3BeltSet = List(R3Belt); % representing a set of R3Belt elements
DirCol = struct col_inc | col_dec;
DirRow = struct row_inc | row_dec;
MoveSize = struct full | half;
LiftHeight = struct street | rotate | basement;
Area =
struct area(positions: FloorPosList, tilted_c1: Bool, tilted_c10: Bool);

Instruction = struct move_belts(R1BeltSet, DirCol, MoveSize)
| move_belts(R2BeltSet, DirCol, MoveSize)
| move_belts(R3BeltSet, DirCol, MoveSize)
| move_shuttles(ShuttlePosSet, ShuttleOrientation, DirRow)
| tilt_shuttle(ShuttlePos, ShuttleOrientation)
| move_lift(LiftHeight)
| rotate_lift;

InstructionSet = List(Instruction); % representing a set of instructions
Event = struct add_car | remove_car;
ExecResult = struct ok | fail;
OccState = struct free | occupied;
AvailState = struct avail | n_avail;
FloorState = FloorPos -> OccState;
ShuttleState = ShuttlePos # ShuttleOrientation -> AvailState;
LiftState = struct lsf_street | lso_street

| lsf_rotate | lso_rotate
| ls_basement;

GlobalState =
struct glob_state(fs: FloorState, shs: ShuttleState, ls: LiftState);

% FloorRow operations
map

index: FloorRow -> Pos;
% index(fra) is the index of fra
lt: FloorRow # FloorRow -> Bool;
% lt(fra,frb) indicates if fra is less than frb

var
fra, frb: FloorRow;

eqn
index(r1) = 1;
index(r2) = 2;
index(r3) = 3;
lt(fra, frb) = index(fra) < index(frb);

% FloorCol operations
map

index: FloorCol -> Pos;
% index(fca) is the index of fca
lt: FloorCol # FloorCol -> Bool;
% lt(fca,fcb) indicates if fca is less than fcb

var
fca, fcb: FloorCol;

19

eqn
index(c1) = 1;
index(c2) = 2;
index(c3) = 3;
index(c4) = 4;
index(c5) = 5;
index(c6) = 6;
index(c7) = 7;
index(c8) = 8;
index(c9) = 9;
index(c10) = 10;
lt(fca, fcb) = index(fca) < index(fcb);

% FloorPosPart operations
map

index: FloorPosPart -> Pos;
% index(ffpa) is the index of fppa
lt: FloorPosPart # FloorPosPart -> Bool;
% lt(fppa,fppb) indicates if fppa is less than fppb

var
fppa, fppb: FloorPosPart;

eqn
index(pa) = 1;
index(pb) = 2;
lt(fppa, fppb) = index(fppa) < index(fppb);

% FloorPos operations
map

row: FloorPos -> FloorRow;
% row(fpa) is the row of fpa
col: FloorPos -> FloorCol;
% col(fpa) is the column of fpa
part: FloorPos -> FloorPosPart;
% part(fpa) is the part of fpa
lt: FloorPos # FloorPos -> Bool;
% lt(fpa, fpb) indicates if fpa is less than fpb
lt_r: FloorPos # FloorPos -> Bool;
% lt_r(fpa, fpb) indicates if fpa is less than fpb, provided
% row(fpa) = row(fpb) (auxiliary function needed by lt for efficiency)
lt_rc: FloorPos # FloorPos -> Bool;
% lt_rc(fpa, fpb) indicates if fpa is less than fpb, provided
% row(fpa) = row(fpb) and col(fpa) = col(fpb)
% (auxiliary function needed by lt_r for efficiency)
gt: FloorPos # FloorPos -> Bool;
% gt(fpa, fpb) indicates if fpa is greater than fpb

var
fca: FloorCol;
fppa: FloorPosPart;
fpa, fpb: FloorPos;

eqn
row(pos_r1(fca, fppa)) = r1;
row(pos_r2(fca)) = r2;
row(pos_r3(fca)) = r3;
col(pos_r1(fca, fppa)) = fca;
col(pos_r2(fca)) = fca;
col(pos_r3(fca)) = fca;
part(pos_r1(fca, fppa)) = fppa;
row(fpa) == row(fpb) ->
lt(fpa, fpb) = lt_r(fpa, fpb);

row(fpa) != row(fpb) ->
lt(fpa, fpb) = lt(row(fpa), row(fpb));

col(fpa) == col(fpb) ->
lt_r(fpa, fpb) = lt_rc(fpa, fpb);

col(fpa) != col(fpb) ->
lt_r(fpa, fpb) = lt(col(fpa), col(fpb));

lt_rc(fpa, fpb) = row(fpa) == r1 && lt(part(fpa), part(fpb));
gt(fpa,fpb) = lt(fpb, fpa);

% FloorPosList operations
map

contains: FloorPos # FloorPosList -> Bool;
% contains(fpa, fps) indicates if fps contains fpa
overlap: FloorPosList # FloorPosList -> Bool;
% overlap(fps, fpt) indicates if the elements of fps and fpt overlap

20

rev: FloorPosList -> FloorPosList;
% rev(fps) is the reverse of list fps
grev: FloorPosList # FloorPosList -> FloorPosList;
% grev(fps, fpt) is the reverse of fps concatenated with fpt
% (auxiliary function needed for efficiency by rev)

var
fpa, fpb: FloorPos;
fps, fpt: FloorPosList;

eqn
contains(fpa, []) = false;
contains(fpa, fpa |> fps) = true;
fpa != fpb -> contains(fpa, fpb |> fps) = contains(fpa, fps);
overlap([], fpt) = false;
overlap(fpa |> fps, fpt) = contains(fpa, fpt) || overlap(fps, fpt);
rev(fps) = grev(fps, []);
grev([], fpt) = fpt;
grev(fpa |> fps, fpt) = grev(fps, fpa |> fpt);

% ShuttlePos operations
map

index: ShuttlePos -> Pos;
% index(spa) is the index of spa
row: ShuttlePos -> FloorRow;
% row(spa) is the row of spa
col: ShuttlePos -> FloorCol;
% col(spa) is the column of spa
lt: ShuttlePos # ShuttlePos -> Bool;
% lt(spa, spb) indicates if spa is less than spb
gt: ShuttlePos # ShuttlePos -> Bool;
% gt(spa, spb) indicates if spa is greater than spb
positions: ShuttlePos -> FloorPosList;
% positions(spa) represents the floor positions corresponding to spa in
% lowered position
has_neighbour: ShuttlePos # DirRow -> Bool;
% has_neighbour(spa, dr) indicates if spa has a successor in direction dr
neighbour: ShuttlePos # DirRow -> ShuttlePos;
% neighbour(spa, dr) is the neighbour of spa in directrion dr, provided it
% exists
connected: ShuttlePos # ShuttlePos -> Bool;
% connected(spa, spb) indicates if the bottom of spa is connected to the top
% of spb

var
spa, spb: ShuttlePos;

eqn
index(r1a) = 1;
index(r2a) = 2;
index(r3a) = 3;
index(r1b) = 4;
index(r2b) = 5;
index(r3b) = 6;
row(r1a) = r1;
row(r2a) = r2;
row(r3a) = r3;
row(r1b) = r1;
row(r2b) = r2;
row(r3b) = r3;
col(r1a) = c1;
col(r2a) = c1;
col(r3a) = c1;
col(r1b) = c10;
col(r2b) = c10;
col(r3b) = c10;
lt(spa, spb) = index(spa) < index(spb);
gt(spa, spb) = index(spa) > index(spb);
positions(r1a) = positions(b_r1a_sh);
positions(r2a) = positions(b_r2a_sh);
positions(r3a) = positions(b_r3a_sh);
positions(r1b) = positions(b_r1b_sh);
positions(r2b) = positions(b_r2b_sh);
positions(r3b) = positions(b_r3b_sh);
has_neighbour(spa, row_inc) = row(spa) != r3;
has_neighbour(spa, row_dec) = row(spa) != r1;
neighbour(r1a, row_inc) = r2a;
neighbour(r2a, row_inc) = r3a;

21

neighbour(r1b, row_inc) = r2b;
neighbour(r2b, row_inc) = r3b;
neighbour(r2a, row_dec) = r1a;
neighbour(r3a, row_dec) = r2a;
neighbour(r2b, row_dec) = r1b;
neighbour(r3b, row_dec) = r2b;
connected(spa, spb) =
succ(index(spa)) == index(spb) &&
col(spa) == col(spb);

% ShuttlePosSet operations
map

is_set_sps: ShuttlePosSet -> Bool;
% is_set_sps(sps) indicates if sps is a set
% In the remainder of the data equation section, for every ShuttlePosSet sps
% is_set_sps(sps) is a precondition.
contains: ShuttlePos # ShuttlePosSet -> Bool;
% contains(spa, sps) indicates if sps contains spa
shuttles: FloorCol -> ShuttlePosSet;
% shuttles(fc) represents the shuttle positions corresponding to fc
positions_sps: ShuttlePosSet -> FloorPosList;
% positions_sps(sps) represents the floor positions corresponding to sps
connected_sps: ShuttlePosSet -> Bool;
% connected_sps(sps) indicates if all elements of sps are connected
has_neighbour: ShuttlePosSet # DirRow -> Bool;
% has_neighbour(sps, dr) indicates is sps has a neighbour in direction dr
neighbour_sps: ShuttlePosSet # DirRow -> ShuttlePos;
% neighbour_sps(sps, dr) is the neighbour of sps in direction dr, provided it
% exists
add_neighbour: ShuttlePosSet # DirRow -> ShuttlePosSet;
% add_neighbour(sps, dr) represents the sps extended with its neighbour in
% direction dr, provided it exists

var
spa, spb: ShuttlePos;
sps: ShuttlePosSet;
fc: FloorCol;

eqn
is_set_sps([]) = true;
is_set_sps(spa |> []) = true;
is_set_sps(spa |> spb |> sps) =
lt(spa, spb) && is_set_sps(spb |> sps);

contains(spa, []) = false;
contains(spa, spa |> sps) = true;
spa != spb -> contains(spa, spb |> sps) = contains(spa, sps);
shuttles(fc) = if(fc == c1, [r1a,r2a,r3a], if(fc == c10, [r1b,r2b,r3b], []));
positions_sps([]) = [];
positions_sps(spa |> sps) = positions(spa) ++ positions_sps(sps);
connected_sps([]) = true;
connected_sps([spa]) = true;
connected_sps(spa |> spb |> sps) =
connected(spa, spb) && connected_sps(spb |> sps);

has_neighbour(sps, row_inc) = has_neighbour(rhead(sps), row_inc);
has_neighbour(sps, row_dec) = has_neighbour(head(sps), row_dec);
neighbour_sps(sps, row_inc) = neighbour(rhead(sps), row_inc);
neighbour_sps(sps, row_dec) = neighbour(head(sps), row_dec);
add_neighbour(sps, row_inc) = sps <| neighbour_sps(sps, row_inc);
add_neighbour(sps, row_dec) = neighbour_sps(sps, row_dec) |> sps;

% ShuttleOrientation operations
map

index: ShuttleOrientation -> Pos;
% index(soa) is the index of soa
lt: ShuttleOrientation # ShuttleOrientation -> Bool;
% lt(soa, sob) indicates if soa is less than sob
gt: ShuttleOrientation # ShuttleOrientation -> Bool;
% gt(soa, sob) indicates if soa is greater than sob
not: ShuttleOrientation -> ShuttleOrientation;
% not(soa) indicates the opposite of soa

var
soa, sob: ShuttleOrientation;

eqn
index(lowered) = 1;
index(tilted) = 2;
lt(soa, sob) = index(soa) < index(sob);

22

gt(soa, sob) = index(soa) > index(sob);
not(lowered) = tilted;
not(tilted) = lowered;

% Belt operations
map

index: R1Belt -> Pos;
index: R2Belt -> Pos;
index: R3Belt -> Pos;
% index(ba) is the index of belt ba
row: R1Belt -> FloorRow;
row: R2Belt -> FloorRow;
row: R3Belt -> FloorRow;
% row(ba) is the row of belt ba
lt: R1Belt # R1Belt -> Bool;
lt: R2Belt # R2Belt -> Bool;
lt: R3Belt # R3Belt -> Bool;
% lt(ba, bb) indicates if belt ba is less than belt bb
positions: R1Belt -> FloorPosList;
positions: R2Belt -> FloorPosList;
positions: R3Belt -> FloorPosList;
% positions(ba) represents the positions corresponding to belt ba
connected: R1Belt # R1Belt -> Bool;
connected: R2Belt # R2Belt -> Bool;
connected: R3Belt # R3Belt -> Bool;
% connected(ba, bb) indicates if the right of ba is connected to the left
% of bb
available: R1Belt # ShuttleState # LiftState -> Bool;
available: R2Belt # ShuttleState # LiftState -> Bool;
available: R3Belt # ShuttleState # LiftState -> Bool;
% available(ba, shs, ls) indicates if belt ba is available for states shs
% and ls

var
r1ba, r1bb: R1Belt;
r2ba, r2bb: R2Belt;
r3ba, r3bb: R3Belt;
fs: FloorState;
shs: ShuttleState;
ls: LiftState;
ms: MoveSize;

eqn
index(b_r1a_sh) = 1;
index(b_r1a) = 2;
index(b_r1lift) = 3;
index(b_r1b) = 4;
index(b_r1b_sh) = 5;
index(b_r2a_sh) = 1;
index(b_r2) = 2;
index(b_r2b_sh) = 3;
index(b_r3a_sh) = 1;
index(b_r3) = 2;
index(b_r3b_sh) = 3;
row(r1ba) = r1;
row(r2ba) = r2;
row(r3ba) = r3;
lt(r1ba, r1bb) = index(r1ba) < index(r1bb);
lt(r2ba, r2bb) = index(r2ba) < index(r2bb);
lt(r3ba, r3bb) = index(r3ba) < index(r3bb);
positions(b_r1a_sh) = [pos_r1(c1, pa), pos_r1(c1, pb)];
positions(b_r1a) = [pos_r1(c2, pa), pos_r1(c2, pb),

pos_r1(c3, pa), pos_r1(c3, pb),
pos_r1(c4, pa), pos_r1(c4, pb),
pos_r1(c5, pa), pos_r1(c5, pb),
pos_r1(c6, pa)];

positions(b_r1lift) = [pos_r1(c6, pb), pos_r1(c7, pa)];
positions(b_r1b) = [pos_r1(c7, pb),

pos_r1(c8, pa), pos_r1(c8, pb),
pos_r1(c9, pa), pos_r1(c9, pb)];

positions(b_r1b_sh) = [pos_r1(c10, pa), pos_r1(c10, pb)];
positions(b_r2a_sh) = [pos_r2(c1)];
positions(b_r2) = [pos_r2(c2),

pos_r2(c3),
pos_r2(c4),
pos_r2(c5),

23

pos_r2(c6),
pos_r2(c7),
pos_r2(c8),
pos_r2(c9)];

positions(b_r2b_sh) = [pos_r2(c10)];
positions(b_r3a_sh) = [pos_r3(c1)];
positions(b_r3) = [pos_r3(c2),

pos_r3(c3),
pos_r3(c4),
pos_r3(c5),
pos_r3(c6),
pos_r3(c7),
pos_r3(c8),
pos_r3(c9)];

positions(b_r3b_sh) = [pos_r3(c10)];
available(b_r1a_sh, shs, ls) = shs(r1a, lowered) == avail;
available(b_r1a, shs, ls) = true;
available(b_r1lift, shs, ls) = ls == ls_basement;
available(b_r1b, shs, ls) = true;
available(b_r1b_sh, shs, ls) = shs(r1b, lowered) == avail;
available(b_r2a_sh, shs, ls) = shs(r2a, lowered) == avail;
available(b_r2, shs, ls) = true;
available(b_r2b_sh, shs, ls) = shs(r2b, lowered) == avail;
available(b_r3a_sh, shs, ls) = shs(r3a, lowered) == avail;
available(b_r3, shs, ls) = true;
available(b_r3b_sh, shs, ls) = shs(r3b, lowered) == avail;

% BeltSet operations
map

is_set_b_r1: R1BeltSet -> Bool;
is_set_b_r2: R2BeltSet -> Bool;
is_set_b_r3: R3BeltSet -> Bool;
% is_set_b_rX(bs) indicates if bs is a set
% In the remainder of this data equations section each belt set bs has
% is_set_b_rX(bs) as a precondition.
contains: R1Belt # R1BeltSet -> Bool;
contains: R2Belt # R2BeltSet -> Bool;
contains: R3Belt # R3BeltSet -> Bool;
% contains(ba, bs) indicates if ba is an element of bs
positions_b_r1: R1BeltSet -> FloorPosList;
positions_b_r2: R2BeltSet -> FloorPosList;
positions_b_r3: R3BeltSet -> FloorPosList;
% positions_b_rX(bs) represents the floor positions corresponding to the
% belts in bs
connected_b_r1: R1BeltSet -> Bool;
connected_b_r2: R2BeltSet -> Bool;
connected_b_r3: R3BeltSet -> Bool;
% connected(bs) indicates if the belts in bs are connected
available_b_r1: R1BeltSet # ShuttleState # LiftState -> Bool;
available_b_r2: R2BeltSet # ShuttleState # LiftState -> Bool;
available_b_r3: R3BeltSet # ShuttleState # LiftState -> Bool;
% available_b_rX(bs, shs, ls) indicates if all belts in bs are available for
% states shs and ls

var
r1ba, r1bb: R1Belt;
r2ba, r2bb: R2Belt;
r3ba, r3bb: R3Belt;
r1bs: R1BeltSet;
r2bs: R2BeltSet;
r3bs: R3BeltSet;
fs: FloorState;
shs: ShuttleState;
ls: LiftState;

eqn
is_set_b_r1([]) = true;
is_set_b_r1(r1ba |> []) = true;
is_set_b_r1(r1ba |> r1bb |> r1bs) =
lt(r1ba, r1bb) && is_set_b_r1(r1bb |> r1bs);

is_set_b_r2([]) = true;
is_set_b_r2(r2ba |> []) = true;
is_set_b_r2(r2ba |> r2bb |> r2bs) =
lt(r2ba, r2bb) && is_set_b_r2(r2bb |> r2bs);

is_set_b_r3([]) = true;
is_set_b_r3(r3ba |> []) = true;

24

is_set_b_r3(r3ba |> r3bb |> r3bs) =
lt(r3ba, r3bb) && is_set_b_r3(r3bb |> r3bs);

contains(r1ba, []) = false;
contains(r1ba, r1ba |> r1bs) = true;
r1ba != r1bb -> contains(r1ba, r1bb |> r1bs) = contains(r1ba, r1bs);
contains(r2ba, []) = false;
contains(r2ba, r2ba |> r2bs) = true;
r2ba != r2bb -> contains(r2ba, r2bb |> r2bs) = contains(r2ba, r2bs);
contains(r3ba, []) = false;
contains(r3ba, r3ba |> r3bs) = true;
r3ba != r3bb -> contains(r3ba, r3bb |> r3bs) = contains(r3ba, r3bs);
positions_b_r1([]) = [];
positions_b_r1(r1ba |> r1bs) = positions(r1ba) ++ positions_b_r1(r1bs);
positions_b_r2([]) = [];
positions_b_r2(r2ba |> r2bs) = positions(r2ba) ++ positions_b_r2(r2bs);
positions_b_r3([]) = [];
positions_b_r3(r3ba |> r3bs) = positions(r3ba) ++ positions_b_r3(r3bs);
connected_b_r1([]) = true;
connected_b_r1(r1ba |> []) = true;
connected_b_r1(r1ba |> r1bb |> r1bs) =
connected(r1ba, r1bb) && connected_b_r1(r1bb |> r1bs);

connected_b_r2([]) = true;
connected_b_r2(r2ba |> []) = true;
connected_b_r2(r2ba |> r2bb |> r2bs) =
connected(r2ba, r2bb) && connected_b_r2(r2bb |> r2bs);

connected_b_r3([]) = true;
connected_b_r3(r3ba |> []) = true;
connected_b_r3(r3ba |> r3bb |> r3bs) =

connected(r3ba, r3bb) && connected_b_r3(r3bb |> r3bs);
connected(r1ba, r1bb) = succ(index(r1ba)) == index(r1bb);
connected(r2ba, r2bb) = succ(index(r2ba)) == index(r2bb);
connected(r3ba, r3bb) = succ(index(r3ba)) == index(r3bb);
available_b_r1([], shs, ls) = true;
available_b_r1(r1ba |> r1bs, shs, ls) =
available(r1ba, shs, ls) && available_b_r1(r1bs, shs, ls);

available_b_r2([], shs, ls) = true;
available_b_r2(r2ba |> r2bs, shs, ls) =
available(r2ba, shs, ls) && available_b_r2(r2bs, shs, ls);

available_b_r3([], shs, ls) = true;
available_b_r3(r3ba |> r3bs, shs, ls) =
available(r3ba, shs, ls) && available_b_r3(r3bs, shs, ls);

% Area operations
map

overlap: Area # Area -> Bool;
% area(a, b) indicates if area a and b overlap

var
fps, fpt: FloorPosList;
tc1a, tc1b, tc10a, tc10b: Bool;

eqn
overlap(area(fps, tc1a, tc1b), area(fpt, tc10a, tc10b)) =
overlap(fps, fpt) || (tc1a && tc1b) || (tc10a && tc10b);

% Instruction operations
map

index: Instruction -> Pos;
% index(i) is the index of instruction i
lt: Instruction # Instruction -> Bool;
% lt(i, j) indicates if i is less than j
valid: Instruction -> Bool;
% valid(i) indicates if instruction i is valid
area: Instruction -> Area;
% area(i) represents the area on which instruction i has any effect
overlap: Instruction # Instruction -> Bool;
% overlap(i, j) indicates if instruction i and j overlap

var
r1bs: R1BeltSet;
r2bs: R2BeltSet;
r3bs: R3BeltSet;
dc: DirCol;
ms: MoveSize;
sp: ShuttlePos;
sps: ShuttlePosSet;
so: ShuttleOrientation;

25

dr: DirRow;
lh: LiftHeight;
i,j: Instruction;

eqn
index(move_belts(r1bs, dc, ms)) = 1;
index(move_belts(r2bs, dc, ms)) = 2;
index(move_belts(r3bs, dc, ms)) = 3;
index(move_shuttles(sps, so, dr)) = 4;
index(tilt_shuttle(sp, so)) = 5;
index(move_lift(lh)) = 6;
index(rotate_lift) = 7;
lt(i, j) = index(i) < index(j);
valid(move_belts(r1bs, dc, ms)) = is_set_b_r1(r1bs);
valid(move_belts(r2bs, dc, ms)) = is_set_b_r2(r2bs);
valid(move_belts(r3bs, dc, ms)) = is_set_b_r3(r3bs);
valid(move_shuttles(sps, so, dr)) = is_set_sps(sps);
valid(tilt_shuttle(sp, so)) = true;
valid(move_lift(lh)) = true;
valid(rotate_lift) = true;
area(move_belts(r1bs, dc, ms)) = area(positions_b_r1(r1bs), false, false);
area(move_belts(r2bs, dc, ms)) = area(positions_b_r2(r2bs), false, false);
area(move_belts(r3bs, dc, ms)) = area(positions_b_r3(r3bs), false, false);
area(move_shuttles(sps, lowered, dr)) =
area(positions_sps(add_neighbour(sps, dr)), false, false);

area(move_shuttles(sps, tilted, dr)) =
area([], col(head(sps)) == c1, col(head(sps)) == c10);

area(tilt_shuttle(sp, so)) =
area(positions(sp), col(sp) == c1, col(sp) == c10);

area(move_lift(lh)) = area(positions(b_r1lift), false, false);
area(rotate_lift) = area(positions_b_r1([b_r1a, b_r1lift, b_r1b]), false, false);
overlap(i, j) = overlap(area(i), area(j));

% InstructionSet operations
map

is_set_is: InstructionSet -> Bool;
% is_set_is(is) indicates if is is a set
% In the remainder of the data equation section, for every InstructionSet is
% is_set_is(is) is a precondition.
valid: InstructionSet -> Bool;
% valid(is) indicates if the instructions in is are valid
overlap: Instruction # InstructionSet -> Bool;
% overlap(i, is) indicates if instruction i overlaps with any of the
% instructions in is

var
i,j: Instruction;
is: InstructionSet;

eqn
is_set_is([]) = true;
is_set_is(i |> []) = true;
is_set_is(i |> j |> is) = lt(i, j) && is_set_is(j |> is);
valid([]) = true;
valid(i |> is) = valid(i) && valid(is);
overlap(i, []) = false;
overlap(i, j |> is) = overlap(i, j) || overlap(i, is);

% AvailState operations
map

not: AvailState -> AvailState;
% not(asa) indicates the opposite of asa

eqn
not(avail) = n_avail;
not(n_avail) = avail;

% FloorState operations
map

init_fs: FloorState;
% init_fs is the initial floor state
update: FloorPos # OccState # FloorState -> FloorState;
cond_upd: FloorPos # OccState # FloorState -> FloorState;
ins_upd: FloorPos # OccState # FloorState -> FloorState;
% update(fpa, osa, fsa) represents fsa, where position fpa has value osa;
% cond_upd and ins_upd are auxiliary functions with the same meaning that
% are needed for efficiency
ins_upd_fps: FloorPosList # OccState # FloorState -> FloorState;

26

% ins_upd_fps(fps, osa, fsa) represents fsa, where positions fps have value
% osa
free: FloorPosList # FloorState -> Bool;
% free(fps, fsa) indicates that all positions in fps are free for state fsa
occupied: FloorPosList # FloorState -> Bool;
% occupied(fps, fsa) indicates that all positions in fps are occupied for
% state fsa
end_free: FloorPosList # DirCol # Bool # FloorState -> Bool;
% end_free(fps, dc, obl, fsa) indicates if the end of the list fps in
% direction dc is free for state fsa; if obl then the one but last element
% also needs to be free
even_occ: FloorPosList # FloorState -> Bool;
% even_occ(fps, fsa) indicates if the number of occupied positions in fps for
% state fsa is even
no_half_car: ShuttlePos # FloorState -> Bool;
% no_half_car(spa, fsa) indicates if there is a half car positioned on spa
% for state fsa
no_half_car_sps: ShuttlePosSet # FloorState -> Bool;
% no_half_car(sps, fsa) indicates if there is a half car positioned on any
% of the elements of sps for state fsa
shift_inc: FloorPosList # FloorState -> FloorState;
% shift_inc(fps, fsa) represents fsa, where the states of the positions in
% fps are shifted one position to the right; the first element in fps
% gets state free
gshift_inc: FloorPosList # FloorState # OccState -> FloorState;
% gshift_inc(fps, fsa, osa) has the same meaning as shift_inc(fps, fsa), with
% the exception that the first element in fps gets state osa
% (auxiliary function needed by shift_inc)
shift_dec: FloorPosList # FloorState -> FloorState;
% shift_dec(fps, fsa) represents fsa, where the states of the positions in
% fps are shifted one position to the left; the last element in fps gets
% state free
shift_inc_ctw: Bool # FloorPosList # FloorState -> FloorState;
% shift_inc_ctw(ctw, fps, fsa) represents fsa where the states of the
% positions in fps are shifted one position to the right;
% if ctw then two positions are shifted
shift_dec_ctw: Bool # FloorPosList # FloorState -> FloorState;
% shift_dec_ctw(ctw, fps, fsa) represents fsa where the states of the
% positions in fps are shifted one position to the left;
% if ctw then two positions are shifted
shift_inc_sps: ShuttlePosSet # FloorState -> FloorState;
% shift_inc(sps, fsa) represents fsa, where the states of the shuttles in
% sps are shifted one position downwards; the first element in sps
% gets state free
shift_dec_sps: ShuttlePosSet # FloorState -> FloorState;
% shift_dec(sps, fsa) represents fsa, where the states of the shuttles in
% sps are shifted one position upwards; the last element in sps gets state
% free

var
b: Bool;
fsa, fsb: FloorState;
fpa, fpb: FloorPos;
osa, osb: OccState;
fps: FloorPosList;
spa: ShuttlePos;
sps: ShuttlePosSet;

eqn
init_fs(fpa) = free;
fpa == fpb -> update(fpa, osa, fsa)(fpb) = osa;
fpa != fpb -> update(fpa, osa, fsa)(fpb) = fsa(fpb);
cond_upd(fpa, osa, fsa) =
if(fsa(fpa) == osa, fsa, update(fpa, osa, fsa));

ins_upd(fpa, osa, init_fs) = cond_upd(fpa, osa, init_fs);
lt(fpa,fpb) ->
ins_upd(fpa, osa, update(fpb, osb, fsa)) =
cond_upd(fpa, osa, update(fpb, osb, fsa));

gt(fpa,fpb) ->
ins_upd(fpa, osa, update(fpb, osb, fsa)) =
update(fpb, osb, ins_upd(fpa, osa, fsa));

fpa == fpb ->
ins_upd(fpa, osa, update(fpb, osb, fsa)) =
cond_upd(fpa, osa, fsa);

ins_upd_fps([], osa, fsa) = fsa;
ins_upd_fps(fpa |> fps, osa, fsa) =

27

ins_upd(fpa, osa, ins_upd_fps(fps, osa, fsa));
free([], fsa) = true;
free(fpa |> fps, fsa) = fsa(fpa) == free && free(fps, fsa);
occupied(fpa |> fps, fsa) = fsa(fpa) == occupied && occupied(fps, fsa);
occupied([], fsa) = true;
end_free(fps, col_inc, false, fsa) =
fsa(head(rev(fps))) == free;

end_free(fps, col_inc, true, fsa) =
fsa(head(l)) == free && fsa(head(tail(l))) == free

whr l = rev(fps) end;
end_free(fps, col_dec, false, fsa) =
fsa(head(fps)) == free;

end_free(fps, col_dec, true, fsa) =
fsa(head(fps)) == free && fsa(head(tail(fps))) == free;

even_occ([], fsa) = true;
fsa(fpa) == free ->
even_occ(fpa |> fps, fsa) = even_occ(fps, fsa);

fsa(fpa) == occupied ->
even_occ(fpa |> fps, fsa) = !even_occ(fps, fsa);

row(spa) != r1 ->
no_half_car(spa, fsa) = true;

row(spa) == r1 ->
no_half_car(spa, fsa) = even_occ(positions(spa), fsa);

no_half_car_sps([], fsa) = true;
no_half_car_sps(spa |> sps, fsa) =
no_half_car(spa, fsa) && no_half_car_sps(sps, fsa);

shift_inc(fps, fsa) = gshift_inc(fps, fsa, free);
gshift_inc([], fsa, osa) = fsa;
gshift_inc([fpa], fsa, osa) = ins_upd(fpa, osa, fsa);
gshift_inc(fpa |> fps, fsa, osa) =
ins_upd(fpa, osa, gshift_inc(fps, fsa, fsa(fpa)));

shift_dec([], fsa) = fsa;
shift_dec([fpa], fsa) = ins_upd(fpa, free, fsa);
shift_dec(fpa |> fpb |> fps, fsa) =
ins_upd(fpa, fsa(fpb), shift_dec(fpb |> fps, fsa));

shift_inc_ctw(false, fps, fsa) =
shift_inc(fps, fsa);

shift_inc_ctw(true, fps, fsa) =
shift_inc(fps, shift_inc(fps, fsa));

shift_dec_ctw(false, fps, fsa) =
shift_dec(fps, fsa);

shift_dec_ctw(true, fps, fsa) =
shift_dec(fps, shift_dec(fps, fsa));

shift_inc_sps([], fsa) = fsa;
row(spa) == r1 ->
shift_inc_sps(spa |> sps, fsa) =

ins_upd_fps(positions(spa), free,
shift_inc(positions_sps(spa |> sps), fsa));

row(spa) != r1 ->
shift_inc_sps(spa |> sps, fsa) = shift_inc(positions_sps(spa |> sps), fsa);

shift_dec_sps([], fsa) = fsa;
row(spa) == r1 ->
shift_dec_sps(spa |> sps, fsa) =

ins_upd_fps(positions(spa), fsa(head(positions(head(sps)))),
shift_dec(positions_sps(spa |> sps), fsa));

row(spa) != r1 ->
shift_dec_sps(spa |> sps, fsa) = shift_dec(positions_sps(spa |> sps), fsa);

% ShuttleState operations
map

init_shs: ShuttleState;
% initial shuttle state
update: ShuttlePos # ShuttleOrientation # AvailState # ShuttleState ->
ShuttleState;

cond_upd: ShuttlePos # ShuttleOrientation # AvailState # ShuttleState ->
ShuttleState;

ins_upd: ShuttlePos # ShuttleOrientation # AvailState # ShuttleState ->
ShuttleState;

% update(spa, soa, asa, fsa) represents fsa, where position fpa in
% orientation soa has value asa; cond_upd and ins_upd are auxiliary functions
% with the same meaning that are needed for efficiency
available: ShuttlePos # ShuttleOrientation # ShuttleState -> Bool;
% available(spa, soa, shs) indicates if shuttle spa is available in
% orientation soa for state shs

28

available_sps: ShuttlePosSet # ShuttleOrientation # ShuttleState -> Bool;
% available(sps, soa, shs) indicates if all shuttles in sps are available in
% orientation soa for state shs
shift_inc: ShuttlePosSet # ShuttleOrientation # ShuttleState -> ShuttleState;
% shift_inc(sps, soa, shs) represents shs, where the states of the shuttles
% in sps are shifted one shuttle downwards in orientation soa; the first
% element in sps gets state unavailable
gshift_inc: ShuttlePosSet # ShuttleOrientation # ShuttleState # AvailState
-> ShuttleState;

% gshift_inc(sps, soa, shs, asa) has the same meaning as shift_inc(sps, soa,
% shs), with the exception that the first element in sps gets state asa
% (auxiliary function needed by shift_inc)
shift_dec: ShuttlePosSet # ShuttleOrientation # ShuttleState -> ShuttleState;
% shift_dec(sps, soa, shs) represents shs, where the states of the shuttles
% in sps are shifted one shuttle upwards in orientation soa; the last
% element in sps gets state unavailable

var
b: Bool;
shs, shsa: ShuttleState;
spa, spb: ShuttlePos;
sps: ShuttlePosSet;
soa, sob: ShuttleOrientation;
asa, asb: AvailState;

eqn
init_shs(spa, lowered) = if(row(spa) != r3, avail, n_avail);
init_shs(spa, tilted) = if(row(spa) != r3, n_avail, avail);
spa == spb && soa == sob ->
update(spa, soa, asa, shs)(spb, sob) = asa;

spa != spb || soa != sob ->
update(spa, soa, asa, shs)(spb, sob) = shs(spb, sob);

cond_upd(spa, soa, asa, shs) =
if(shs(spa, soa) == asa, shs, update(spa, soa, asa, shs));

ins_upd(spa, soa, asa, init_shs) =
cond_upd(spa, soa, asa, init_shs);

lt(spa,spb) || (spa == spb && lt(soa, sob)) ->
ins_upd(spa, soa, asa, update(spb, sob, asb, shs)) =
cond_upd(spa, soa, asa, update(spb, sob, asb, shs));

gt(spa,spb) || (spa == spb && gt(soa, sob)) ->
ins_upd(spa, soa, asa, update(spb, sob, asb, shs)) =
update(spb, sob, asb, ins_upd(spa, soa, asa, shs));

spa == spb && soa == sob ->
ins_upd(spa, soa, asa, update(spb, sob, asb, shs)) =
cond_upd(spa, soa, asa, shs);

available(spa, soa, shs) = shs(spa, soa) == avail;
available_sps([], soa, shs) = true;
available_sps(spa |> sps, soa, shs) =
available(spa, soa, shs) && available_sps(sps, soa, shs);

shift_inc(sps, soa, shs) = gshift_inc(sps, soa, shs, n_avail);
gshift_inc([], soa, shs, asa) = shs;
gshift_inc([spa], soa, shs, asa) =
ins_upd(spa, soa, asa, shs);

gshift_inc(spa |> sps, soa, shs, asa) =
ins_upd(spa, soa, asa, gshift_inc(sps, soa, shs, shs(spa, soa)));

shift_dec([], soa, shs) = shs;
shift_dec([spa], soa, shs) = ins_upd(spa, soa, n_avail, shs);
shift_dec(spa |> spb |> sps, soa, shs) =
ins_upd(spa, soa, shs(spb, soa), shift_dec(spb |> sps, soa, shs));

% LiftState operations
map

height: LiftState -> LiftHeight;
% height(ls) represents the height of state ls
occupied: LiftState # FloorState -> Bool;
% occupied(ls, fs) indicates if the lift is occupieed for states ls and fs
make_ls: LiftHeight # OccState -> LiftState;
% make_ls(lh, os) represents the lift state corresponding to height lh and
% occupied state os

var
b: Bool;
fsa: FloorState;
osa: OccState;

eqn
height(lsf_street) = street;
height(lso_street) = street;

29

height(lsf_rotate) = rotate;
height(lso_rotate) = rotate;
height(ls_basement) = basement;
occupied(lsf_street, fsa) = false;
occupied(lso_street, fsa) = true;
occupied(lsf_rotate, fsa) = false;
occupied(lso_rotate, fsa) = true;
occupied(ls_basement, fsa) = occupied(positions(b_r1lift), fsa);
make_ls(street, occupied) = lso_street;
make_ls(street, free) = lsf_street;
make_ls(rotate, occupied) = lso_rotate;
make_ls(rotate, free) = lsf_rotate;
make_ls(basement, osa) = ls_basement;

% GlobalState operations
map

init_gs: GlobalState;
% init_gs is the initial global state
allowed: Instruction # GlobalState -> Bool;
% allowed(i, gs) indicates if instruction i is allowed given global state gs
nextstate: Instruction # ExecResult # GlobalState -> GlobalState;
% nextstate(i, r, gs) represents the global state after execution of
% instruction i with result r in state gs
allowed: InstructionSet # GlobalState -> Bool;
% allowed(is, gs) indicates if instruction set is is allowed given global
% state gs
nextstate: InstructionSet # ExecResult # GlobalState -> GlobalState;
% nextstate(is, r, gs) represents the global state after execution of
% instruction set is with result r in state gs
possible: Event # GlobalState -> Bool;
% possible(e, gs) indicates if event e is possible given global state gs
nextstate: Event # GlobalState -> GlobalState;
% nextstate(e, gs) represents the global state after the event e has occurred
% in state gs

var
gs, gsa: GlobalState;
fs, fsa: FloorState;
shs, shsa: ShuttleState;
ls, lsa: LiftState;
lh, lha: LiftHeight;
p,q: FloorPos;
s,t: OccState;
i,j: Instruction;
r1bs: R1BeltSet;
r2bs: R2BeltSet;
r3bs: R3BeltSet;
dc: DirCol;
ms: MoveSize;
sps: ShuttlePosSet;
dr: DirRow;
sp, spa, spb: ShuttlePos;
so: ShuttleOrientation;
is: InstructionSet;

eqn
init_gs =
glob_state(

init_fs,
init_shs,
lsf_street);

allowed(move_belts(r1bs, dc, ms), glob_state(fs, shs, ls)) =
r1bs != [] &&
connected_b_r1(r1bs) &&
available_b_r1(r1bs, shs, ls) &&
end_free(l, dc, ms == full, fs) &&
even_occ(l, fs)
whr l = positions_b_r1(r1bs) end;

allowed(move_belts(r2bs, dc, ms), glob_state(fs, shs, ls)) =
ms == full &&
r2bs != [] &&
connected_b_r2(r2bs) &&
available_b_r2(r2bs, shs, ls) &&
end_free(positions_b_r2(r2bs), dc, false, fs);

allowed(move_belts(r3bs, dc, ms), glob_state(fs, shs, ls)) =
ms == full &&

30

r3bs != [] &&
connected_b_r3(r3bs) &&
available_b_r3(r3bs, shs, ls) &&
end_free(positions_b_r3(r3bs), dc, false, fs);

allowed(move_shuttles(sps, so, dr), glob_state(fs, shs, ls)) =
sps != [] &&
connected_sps(sps) &&
available_sps(sps, so, shs) &&
% placing a comment in front of the following conjunct allows the shuttles
% to be moved even if a car is placed half on the shuttle
(so == lowered => no_half_car_sps(sps, fs)) &&
has_neighbour(sps, dr) &&
!available(neighbour_sps(sps, dr), so, shs);

allowed(tilt_shuttle(sp, lowered), glob_state(fs, shs, ls)) =
available_sps(shuttles(col(sp)), lowered, shs) &&
free(positions(sp), fs);

allowed(tilt_shuttle(sp, tilted), glob_state(fs, shs, ls)) =
shs(sp, tilted) == avail &&
shs(sp, lowered) == n_avail;

ls == ls_basement ->
allowed(move_lift(lh), glob_state(fs, shs, ls)) =
lh != height(ls) &&
% replacing the following conjunct by
% even_occ(positions(b_r1lift), fs);
% allows the lift to move up if two cars are placed half on the lift belt
if(free(positions(b_r1lift), fs), true,

even_occ(positions_b_r1([b_r1a_sh, b_r1a]), fs) &&
even_occ(positions_b_r1([b_r1b, b_r1b_sh]), fs));

ls != ls_basement ->
allowed(move_lift(lh), glob_state(fs, shs, ls)) =
lh != height(ls);

allowed(rotate_lift, glob_state(fs, shs, ls)) =
height(ls) == rotate &&
free([pos_r1(c5, pa), pos_r1(c5, pb), pos_r1(c6, pa),

pos_r1(c7, pb), pos_r1(c8, pa), pos_r1(c8, pb)], fs);
nextstate(move_belts(r1bs, col_inc, ms), ok, glob_state(fs, shs, ls)) =
glob_state(shift_inc_ctw(ms == full, positions_b_r1(r1bs), fs), shs, ls);

nextstate(move_belts(r1bs, col_dec, ms), ok, glob_state(fs, shs, ls)) =
glob_state(shift_dec_ctw(ms == full, positions_b_r1(r1bs), fs), shs, ls);

nextstate(move_belts(r2bs, col_inc, ms), ok, glob_state(fs, shs, ls)) =
glob_state(shift_inc(positions_b_r2(r2bs), fs), shs, ls);

nextstate(move_belts(r2bs, col_dec, ms), ok, glob_state(fs, shs, ls)) =
glob_state(shift_dec(positions_b_r2(r2bs), fs), shs, ls);

nextstate(move_belts(r3bs, col_inc, ms), ok, glob_state(fs, shs, ls)) =
glob_state(shift_inc(positions_b_r3(r3bs), fs), shs, ls);

nextstate(move_belts(r3bs, col_dec, ms), ok, glob_state(fs, shs, ls)) =
glob_state(shift_dec(positions_b_r3(r3bs), fs), shs, ls);

nextstate(move_shuttles(sps, lowered, row_inc), ok, glob_state(fs, shs, ls)) =
glob_state(shift_inc_sps(l, fs), shift_inc(l, lowered, shs), ls)

whr l = add_neighbour(sps, row_inc) end;
nextstate(move_shuttles(sps, lowered, row_dec), ok, glob_state(fs, shs, ls)) =
glob_state(shift_dec_sps(l, fs), shift_dec(l, lowered, shs), ls)

whr l = add_neighbour(sps, row_dec) end;
nextstate(move_shuttles(sps, tilted, row_inc), ok, glob_state(fs, shs, ls)) =
glob_state(fs, shift_inc(add_neighbour(sps, row_inc), tilted, shs), ls);

nextstate(move_shuttles(sps, tilted, row_dec), ok, glob_state(fs, shs, ls)) =
glob_state(fs, shift_dec(add_neighbour(sps, row_dec), tilted, shs), ls);

nextstate(tilt_shuttle(sp, so), ok, glob_state(fs, shs, ls)) =
glob_state(fs,

ins_upd(sp, so, n_avail, ins_upd(sp, not(so), avail, shs)),
ls);

occupied(ls, fs) ->
nextstate(move_lift(lh), ok, glob_state(fs, shs, ls)) =

glob_state(
if(height(ls) != basement && lh == basement,

ins_upd_fps(positions(b_r1lift), occupied, fs),
if(height(ls) == basement && lh != basement,
ins_upd_fps(positions(b_r1lift), free, fs),
fs
)

),
shs, make_ls(lh, occupied));

!occupied(ls, fs) ->
nextstate(move_lift(lh), ok, glob_state(fs, shs, ls)) =

31

glob_state(fs, shs, make_ls(lh, free));
nextstate(rotate_lift, ok, gs) = gs;
nextstate(i, fail, gs) = gs;
allowed([], gs) = false;
allowed(i |> [], gs) = allowed(i, gs);
allowed(i |> j |> is, gs) =
allowed(i, gs) &&
!overlap(i, j |> is) &&
allowed(j |> is, gs);

nextstate([], ok, gs) = gs;
nextstate(i |> is, ok, gs) = nextstate(i, ok, nextstate(is, ok, gs));
nextstate(is, fail, gs) = gs;
possible(add_car, glob_state(fs, shs, ls)) =
ls == lsf_street;

possible(remove_car, glob_state(fs, shs, ls)) =
ls == lso_street;

nextstate(add_car, glob_state(fs, shs, ls)) =
glob_state(fs, shs, lso_street);

nextstate(remove_car, glob_state(fs, shs, ls)) =
glob_state(fs, shs, lsf_street);

32

Appendix C: Process specifications

In the following sections, the formal specification of the process part of the safety layer is
given, followed by the specifications after reducing complexity to enable simulation.

C.1 General specification

sort
ProcState = struct ps_idle | ps_await_state | ps_ack_deny

| ps_req | ps_exec | ps_ack_exec;
Layer = struct logical | safety | hardware;

act
snd_req, rcv_req, com_req: Layer # Layer # InstructionSet;
snd_ack_req, rcv_ack_req, com_ack_req: Layer # Layer # InstructionSet;
snd_deny_req, rcv_deny_req, com_deny_req: Layer # Layer # InstructionSet;
snd_ack_exec, rcv_ack_exec, ack_exec:Layer # Layer # InstructionSet # ExecResult;
snd_state, rcv_state, com_state: Layer # Layer # GlobalState;
snd_event, rcv_event, com_event: Layer # Layer # Event;

proc
SL(ps: ProcState, gs_sl: GlobalState, is: InstructionSet, r: ExecResult) =
(ps == ps_idle) ->

(sum isa: InstructionSet. valid(isa) ->
rcv_req(logical, safety, isa) .

SL(ps_ack_deny, gs_sl, isa, r)
)

+
(ps == ps_await_state) ->

(sum gs: GlobalState. rcv_state(hardware, safety, gs).
SL(ps_ack_deny, gs, is, r)

)
+
(ps == ps_ack_deny) ->

(allowed(is, gs_sl) ->
(snd_ack_req(safety, logical, is) . SL(ps_req, gs_sl, is, r)),
(snd_deny_req(safety, logical, is). SL(ps_idle, gs_sl, is, r)))

+
(ps == ps_req) ->

snd_req(safety, hardware, is) . SL(ps_exec, gs_sl, is, r)
+
(ps == ps_exec) ->

(sum ra: ExecResult.
rcv_ack_exec(safety, hardware, is, ra).

SL(ps_ack_exec, nextstate(is, ra, gs_sl), is, ra)
)

+
(ps == ps_ack_exec) ->

snd_ack_exec(safety, logical, is, r) . SL(ps_idle, gs_sl, is, r)
+
(ps == ps_idle) ->

(sum e: Event.
possible(e, gs_sl) -> rcv_event(hardware, safety, e) .

SL(ps, nextstate(e, gs_sl), is, r)
)

;

init
SL(ps_idle, init_gs, [], ok);

33

C.2 Specification after reduction 1

In the following specification, instruction sets are replaced by single instructions.

sort
ProcState = struct ps_idle | ps_await_state | ps_ack_deny

| ps_req | ps_exec | ps_ack_exec;
Layer = struct logical | safety | hardware;

act
snd_req, rcv_req, com_req: Layer # Layer # Instruction;
snd_ack_req, rcv_ack_req, com_ack_req: Layer # Layer # Instruction;
snd_deny_req, rcv_deny_req, com_deny_req: Layer # Layer # Instruction;
snd_ack_exec, rcv_ack_exec, ack_exec:Layer # Layer # Instruction # ExecResult;
snd_state, rcv_state, com_state: Layer # Layer # GlobalState;
snd_event, rcv_event, com_event: Layer # Layer # Event;

proc
SL(ps: ProcState, gs_sl: GlobalState, i: Instruction, r: ExecResult) =
(ps == ps_idle) ->

(sum j: Instruction. valid(j) ->
rcv_req(logical, safety, j) .

SL(ps_ack_deny, gs_sl, j, r)
)

+
(ps == ps_await_state) ->

(sum gs: GlobalState. rcv_state(hardware, safety, gs).
SL(ps_ack_deny, gs, i, r)

)
+
(ps == ps_ack_deny) ->

(allowed(i, gs_sl) ->
(snd_ack_req(safety, logical, i) . SL(ps_req, gs_sl, i, r)),
(snd_deny_req(safety, logical, i). SL(ps_idle, gs_sl, i, r)))

+
(ps == ps_req) ->

snd_req(safety, hardware, i) . SL(ps_exec, gs_sl, i, r)
+
(ps == ps_exec) ->

(sum ra: ExecResult.
rcv_ack_exec(safety, hardware, i, ra).

SL(ps_ack_exec, nextstate(i, ra, gs_sl), i, ra)
)

+
(ps == ps_ack_exec) ->

snd_ack_exec(safety, logical, i, r) . SL(ps_idle, gs_sl, i, r)
+
(ps == ps_idle) ->

(sum e: Event.
possible(e, gs_sl) -> rcv_event(hardware, safety, e) .

SL(ps, nextstate(e, gs_sl), i, r)
)

;

init
SL(ps_idle, init_gs, move_lift(street), ok);

34

C.3 Specification after reduction 2

The following specification abstracts from non-essential message passing:

act
exec: Instruction;
occur: Event;

proc
S(gs_sl: GlobalState) =
sum i: Instruction. (valid(i) && allowed(i, gs_sl)) ->

exec(i) . S(nextstate(i, ok, gs_sl))
+
sum e: Event. possible(e, gs_sl) ->

occur(e) . S(nextstate(e, gs_sl))
;

init
S(init_gs);

35

Appendix D: Formal verification

For the formal verification of the requirements the specification is reduced by changing the
data specification and adding behaviour to the process specification.

D.1 Specification after reduction 3

The specification after reduction 3 is the specification with the process specification of ap-
pendix C.3, together with the data specification of appendix B, in which the capacities of the
belts b r1a, b r1b, b r2 and b r3 are reduced.

positions(b_r1a) = [pos_r1(c2, pa), pos_r1(c2, pb), pos_r1(c6, pa)];
positions(b_r1b) = [pos_r1(c7, pb), pos_r1(c9, pa), pos_r1(c9, pb)];
positions(b_r2) = [pos_r2(c2), pos_r2(c9)];
positions(b_r3) = [pos_r3(c2), pos_r3(c9)];

D.2 Specification after adding error actions

The requirements of section 6.1 are still rather high-level. In order to formalise them in
mCRL2, we translate them to a more detailed level:

1. Belts:

(a) For each belt b, belt set bs and move size ms, the instruction move belts(bs, col inc,
ms) should not be allowed if:

- The right-most position of belt b of size ms is occupied.
- b is the right-most belt in bs.

Likewise for the left-most position and belt for instruction move belts(bs, col dec,
ms).

(b) For each shuttle s, belt set bs, direction d and move size ms, the instruction
move belts(bs, d, ms) should not be allowed if the following conditions hold:

- Shuttle s is available in lowered position and contains (a part of) a car.
- The belt corresponding to shuttle s is in the belt set bs.
- Direction d is pointing to the wall.
- Move size ms could move the car into the wall.

(c) For each belt set bs, direction d and move size ms, the instruction move belts(bs,
d, ms) should not be allowed if bs contains a belt that is not available.

2. Shuttles:

(a) For all sets of shuttle positions sps, orientations o and directions d, the instruction
move shuttles(sps, o, d) should not be allowed if it contains a shuttle that directly
faces a wall in direction d.

(b) For all shuttle positions s, sets of shuttle positions sps and directions d, the instruc-
tion move shuttles(sps, lowered, d) should not be allowed if:

- s is available in lowered position.
- s is the neighbour of sps in direction d.

(c) for all shuttles s, sets of shuttle positions sps and directions d, the instruction
move shuttles(sps, lowered, d) should not be allowed if:

36

- s is neither completely free nor completely occupied.
- s is an element of the set sps.

(d) For all shuttles s and orientations o, the instruction tilt shuttle(s, o) should not be
allowed if there is a car on the belt corresponding to s.

(e) For all shuttles s and orientations o, the instruction tilt shuttle(s, o) should not be
allowed if there is a shuttle in position s in both orientations.

3. Lift:

(a) For all heights h the instruction move lift(h) should not be allowed if:
- The lift is at the basement level.
- The lift contains one or two cars that are placed half on the lift.

(b) The instruction rotate lift should not be allowed if one of the following holds:
- The lift is not at rotate height.
- The three half positions belts at the left and the right of the lift are not

completely free.

These low-level requirements are specified in mCRL2 as conditions of error actions. This is
expressed by the following specification that is used for verification.

sort
Requirement = struct req1a | req1b | req1c

| req2a | req2b | req2c | req2d | req2e
| req3a | req3b;

act
exec: Instruction;
occur: Event;
error: Requirement # Pos;

proc
V(gs_sl: GlobalState) =
% normal behaviour
sum i: Instruction. (valid(i) && allowed(i, gs_sl)) ->

exec(i) . V(nextstate(i, ok, gs_sl))
+
sum e: Event. possible(e, gs_sl) ->

occur(e) . V(nextstate(e, gs_sl))
% added behaviour with the purpose of checking the requirements;
% if this results in more behaviour, a requirement is not satisfied
% Requirement 1a
+
sum i: Instruction, b: R1Belt, ms: MoveSize, bs: R1BeltSet.

(!end_free(positions(b), col_inc, ms == full, fs(gs_sl)) &&
rhead(bs) == b &&
i == move_belts(bs, col_inc, ms) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1a, 1) . delta
+
sum i: Instruction, b: R1Belt, ms: MoveSize, bs: R1BeltSet.

(!end_free(positions(b), col_dec, ms == full, fs(gs_sl)) &&
head(bs) == b &&
i == move_belts(bs, col_dec, ms) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1a, 2) . delta
+
sum i: Instruction, b: R2Belt, ms: MoveSize, bs: R2BeltSet.

(!end_free(positions(b), col_inc, false, fs(gs_sl)) &&
rhead(bs) == b &&
i == move_belts(bs, col_inc, ms) &&
valid(i) &&
allowed(i, gs_sl)

37

) -> error(req1a, 3) . delta
+
sum i: Instruction, b: R2Belt, ms: MoveSize, bs: R2BeltSet.

(!end_free(positions(b), col_dec, false, fs(gs_sl)) &&
head(bs) == b &&
i == move_belts(bs, col_dec, ms) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1a, 4) . delta
+
sum i: Instruction, b: R3Belt, ms: MoveSize, bs: R3BeltSet.

(!end_free(positions(b), col_inc, false, fs(gs_sl)) &&
rhead(bs) == b &&
i == move_belts(bs, col_inc, ms) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1a, 5) . delta
+
sum i: Instruction, b: R3Belt, ms: MoveSize, bs: R3BeltSet.

(!end_free(positions(b), col_dec, false, fs(gs_sl)) &&
head(bs) == b &&
i == move_belts(bs, col_dec, ms) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1a, 6) . delta
% Requirement 1b
+
sum i: Instruction, ms: MoveSize, bs: R1BeltSet.

(available(r1a, lowered, shs(gs_sl)) &&
!free(positions(r1a), fs(gs_sl)) &&
i == move_belts(bs, col_dec,

if(!occupied(positions(r1a), fs(gs_sl)), full, ms)) &&
contains(b_r1a_sh, bs) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1b, 1) . delta
+
sum i: Instruction, ms: MoveSize, bs: R1BeltSet.

(available(r1b, lowered, shs(gs_sl)) &&
!free(positions(r1b), fs(gs_sl)) &&
i == move_belts(bs, col_inc,

if(!occupied(positions(r1b), fs(gs_sl)), full, ms)) &&
contains(b_r1b_sh, bs) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1b, 2) . delta
+
sum i: Instruction, ms: MoveSize, bs: R2BeltSet.

(available(r2a, lowered, shs(gs_sl)) &&
!free(positions(r2a), fs(gs_sl)) &&
i == move_belts(bs, col_dec, ms) &&
contains(b_r2a_sh, bs) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1b, 3) . delta
+
sum i: Instruction, ms: MoveSize, bs: R2BeltSet.

(available(r2b, lowered, shs(gs_sl)) &&
!free(positions(r2b), fs(gs_sl)) &&
i == move_belts(bs, col_inc, ms) &&
contains(b_r2b_sh, bs) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1b, 4) . delta
+
sum i: Instruction, ms: MoveSize, bs: R3BeltSet.

(available(r3a, lowered, shs(gs_sl)) &&
!free(positions(r3a), fs(gs_sl)) &&
i == move_belts(bs, col_dec, ms) &&
contains(b_r3a_sh, bs) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1b, 5) . delta
+

38

sum i: Instruction, ms: MoveSize, bs: R3BeltSet.
(available(r3b, lowered, shs(gs_sl)) &&
!free(positions(r3b), fs(gs_sl)) &&
i == move_belts(bs, col_inc, ms) &&
contains(b_r3b_sh, bs) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1b, 6) . delta
% Requirement 1c
+
sum i: Instruction, dc: DirCol, ms: MoveSize, bs: R1BeltSet.

(!available_b_r1(bs, shs(gs_sl), ls(gs_sl)) &&
i == move_belts(bs, dc, ms) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1c, 1) . delta
+
sum i: Instruction, dc: DirCol, ms: MoveSize, bs: R2BeltSet.

(!available_b_r2(bs, shs(gs_sl), ls(gs_sl)) &&
i == move_belts(bs, dc, ms) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1c, 2) . delta
+
sum i: Instruction, dc: DirCol, ms: MoveSize, bs: R3BeltSet.

(!available_b_r3(bs, shs(gs_sl), ls(gs_sl)) &&
i == move_belts(bs, dc, ms) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req1c, 3) . delta
% Requirement 2a
+
sum i: Instruction, sps: ShuttlePosSet, so: ShuttleOrientation.

((contains(r1a, sps) || contains(r1b, sps)) &&
i == move_shuttles(sps, so, row_dec) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req2a, 1) . delta
+
sum i: Instruction, sps: ShuttlePosSet, so: ShuttleOrientation.

((contains(r3a, sps) || contains(r3b, sps)) &&
i == move_shuttles(sps, so, row_inc) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req2a, 2) . delta
% Requirement 2b
+
sum i: Instruction, sp: ShuttlePos, sps: ShuttlePosSet.

(available(sp, lowered, shs(gs_sl)) &&
connected(rhead(sps), sp) &&
i == move_shuttles(sps, lowered, row_inc) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req2b, 1) . delta
+
sum i: Instruction, sp: ShuttlePos, sps: ShuttlePosSet.

(available(sp, lowered, shs(gs_sl)) &&
connected(sp, head(sps)) &&
i == move_shuttles(sps, lowered, row_dec) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req2b, 2) . delta
% Requirement 2c
+
sum i: Instruction, sp: ShuttlePos, sps: ShuttlePosSet, dr: DirRow.

(!free(positions(sp),fs(gs_sl)) &&
!occupied(positions(sp),fs(gs_sl)) &&
contains(sp, sps) &&
i == move_shuttles(sps, lowered, dr) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req2c, 1) . delta
% Requirement 2d
+

39

sum i: Instruction, sp: ShuttlePos, so: ShuttleOrientation.
(!free(positions(sp),fs(gs_sl)) &&
i == tilt_shuttle(sp, so) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req2d, 1) . delta
% Requirement 2e
+
sum i: Instruction, sp: ShuttlePos, so: ShuttleOrientation.

(available(sp, so, shs(gs_sl)) &&
available(sp, not(so), shs(gs_sl)) &&
i == tilt_shuttle(sp, so) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req2e, 1) . delta
% Requirement 3a
+
sum i: Instruction, lh: LiftHeight.

(ls(gs_sl) == ls_basement &&
!free(positions(b_r1lift), fs(gs_sl)) &&
!(even_occ(positions_b_r1([b_r1a_sh, b_r1a]), fs(gs_sl)) &&

even_occ(positions_b_r1([b_r1b, b_r1b_sh]), fs(gs_sl))) &&
i == move_lift(lh) &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req3a, 1) . delta
% Requirement 3b
+
sum i: Instruction.

((height(ls(gs_sl)) != rotate ||
!free([pos_r1(c5, pa), pos_r1(c5, pb), pos_r1(c6, pa),

pos_r1(c7, pb), pos_r1(c8, pa), pos_r1(c8, pb)], fs(gs_sl))
) &&
i == rotate_lift &&
valid(i) &&
allowed(i, gs_sl)

) -> error(req3b, 1) . delta
;

init V(init_gs);

Generated on 13th October 2005.

40

