

# mCRL<sub>2</sub>

Towards a practical formal specification language

Aad Mathijssen

Jan Friso Groote

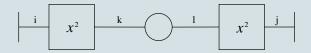
Muck van Weerdenburg

31th May 2005



### Motivation: Petri Nets

Bring stand-alone developments of specification languages together. *GenSpect*: find a common base for hierarchical Petri Nets and process algebra with data.



It should be possible to translate Petri Nets to process algebra:

- places are unordered buffers
- transitions are memoryless input/output relations
- arcs define communication between places and transitions



### Motivation: Petri Nets (2)

We would like to use  $\mu$ CRL as a target for this translation. Unfortunately, there are a number of problems:

- all actions involved in the firing of transitions occur at the same time
- hierarchical approach enforces that operators are compositional, but communication is not



### Motivation: concrete data types

Problems with the use of  $\mu$ CRL in practise, because of the lack of *concrete data types*:

- specifications are too long
- standard notions are specified differently amongst different specifications
- lack of higher-order notions

Specifying all data types yourself distracts from doing the real work.



### Motivation: linear process equations

Every guarded untimed  $\mu$ CRL specification can be transformed to a linear process equation (LPE), which has the following form:

$$P(\overrightarrow{d:D}) = \textstyle \sum_{i \in I} \sum_{\overrightarrow{e_i:E_i}} a_i(\overrightarrow{f_i}(\overrightarrow{d,e_i})) \cdot P(\overrightarrow{g_i}(\overrightarrow{d,e_i})) \mathrel{\triangleleft} c_i(\overrightarrow{d,e_i}) \mathrel{\triangleright} \delta$$

An LPE is a symbolic representation of a state space. It is the core language used by the  $\mu$ CRL toolset.

Two things are lacking:

- time
- don't care values



### mCRL2

Design a new language and toolset, using both theoretical and practical experience with  $\mu$ CRL. Basically, the mCRL2 language is timed  $\mu$ CRL with the following changes/additions:

- true concurrency (multi-actions)
- local communication
- higher-order algebraic specification
- concrete data types

The toolset will use a new LPE format, which supports multi-actions, higher-order algebraic specification, time and don't care values.



# mCRL2 (2)

To find out if the language and the toolset is useful in practise, we took the following approach to design the language:

- 1. start with an initial design of the language and a toolset
- 2. iteratively:
  - (a) test using real-world examples
  - (b) improve formal language
  - (c) improve toolset



### mCRL2 process language

Process expressions have the following syntax:

$$p ::= a(\overrightarrow{d}) \mid \delta \mid \tau \mid p + p \mid p \cdot p \mid X(\overrightarrow{d})$$

$$\mid (d = d) \rightarrow p, p \mid p \cdot d \mid \sum_{\overrightarrow{x}:\overrightarrow{s}} p$$

$$\mid \nabla_{V}(p) \mid \partial_{IH}(p) \mid \tau_{IH}(p) \mid \Gamma_{C}(p) \mid \rho_{R}(p)$$

- sync operator | does not communicate
- a sync of actions is called a *multi-action*, e.g. a, a|b, b|a, a|b|c, a|b|a, a(t)|b(u)|a(v)
- ullet V and IH are sets of parameterless multi-actions/actions
- ullet C and R are sets of renamings of parameterless multi-actions/actions to actions; the lhs's of C/R must be disjoint



### mCRL2 process language (2)

#### Communication and restriction:

• communication operator  $\Gamma_C$  realises communication of multi-actions with equal parameters, e.g. where t=u and  $t\neq v$ :

$$\begin{array}{l} \Gamma_{\{a|b\to c\}}(a(t)|b(u)) = c(t), \; \Gamma_{\{a|b\to c\}}(a(t)|b(v)) = a(t)|b(v), \\ \Gamma_{\{a|b|c\to d\}}(a|b|c|d) = d|d, \; \Gamma_{\{a|b|c\to d, d|d\to d\}}(a|b|c|d) = d|d \\ \sum_{d:D} \Gamma_{\{a|a\to a\}}(a(d)|a(t)) = \sum_{d:D} d = t \to a(t), a(d)|a(t) \end{array}$$

- visibility operator  $\nabla_V$  only multi-actions that are in the set V, e.g.  $\nabla_{\{a,b\}}(a\parallel b)=a\cdot b+b\cdot a, \ \nabla_{\{a\mid b\}}(a\parallel b)=a\mid b, \ \nabla_{\{a\mid b\}}(a\mid b\mid c)=\delta, \ \nabla_{\{a,b\mid c\}}(a\parallel b\parallel c)=a\cdot (b\mid c)+(b\mid c)\cdot a$
- blocking operator  $\partial_{IH}$  blocks all actions that occur in the set IH, e.g.  $\partial_{\{a\}}(a+b\cdot(a|c))=b\cdot\delta$



# mCRL2 process language (3)

Process equations are formed as follows:

$$pe ::= X(\overrightarrow{x:s}) = p$$

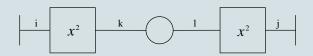
Process specifications:

$$sp ::= (\mathbf{act}\ (a;\ |\ a: s \times \cdots \times s;)^+ |\ \mathbf{proc}\ (pe;)^+)^* \ \mathbf{init}\ p;$$



### Petri Net translation

Petri Nets can be expressed in mCRL2:



Translation to mCRL<sub>2</sub>:

$$\begin{array}{l} Sqr_{i,o} &= \sum_{n:\mathbb{N}} \overline{get_i}(n) | \overline{put_o}(n^2) \cdot Sqr_{i,o} \\ P_{i,o}(b:Bag(\mathbb{N})) &= \sum_{n:\mathbb{N}} \underline{put_i}(n) \cdot P_{i,o}(b \cup \set{n}) + \\ & \sum_{n:\mathbb{N}} \overline{n \in b} \rightarrow \underline{get_o}(n) \cdot P_{i,o}(b \setminus \set{n}) \\ DSqr_{i,j} &= \nabla_V (\Gamma_C(Sqr_{i,k} \parallel \overline{P_{k,l}}(\emptyset) \parallel Sqr_{l,j})) \end{array}$$

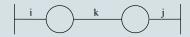
where

$$C = \{\, \overline{put_k} | \underline{put_k} \rightarrow put_k, \overline{get_l} | \underline{get_l} \rightarrow get_l \,\}, V = \{\, \overline{get_i} | \, put_k, \, get_l | \, \overline{put_j} \,\}$$



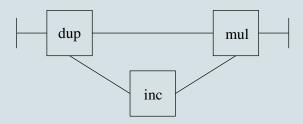
# **Beyond Petri Nets**

### Connected places:



$$P^{2} = \nabla_{\{\underline{put_{i},pass_{k},get_{j}}\}}(\Gamma_{\{\underline{get_{k}} \to pass_{k}\}}(P_{i,k}(\emptyset) \parallel P_{k,j}(\emptyset)))$$

#### Connected transitions:





### mCRL2 data language

Is it advantageous to use an existing data language? Not likely, because:

- algebraic specification languages are often *first-order* and lack *concrete data types*
- functional programming languages cannot handle *open terms* and are focused on *evaluation* only
- it is often hard to integrate an existing language in a toolset



# mCRL2 data language (2)

Conclusion: we define our own language, but keep the door open to existing algebraic specification languages.

#### Approach:

- define a core theory of higher-order algebraic specification
- add concrete data types:
  - add syntax
  - implement data types within the core theory



## Higher-order algebraic specification

Concepts: sorts, operations, terms and equations

Higher-order *sorts* are constructed as follows, where b is a set of *base* sorts:

$$s := b \mid s \to s$$

An *operation* is of the form f:s, which means that all operations are constants.

Data *terms* are constructed from variables and operations:

$$d ::= x : s \mid f : s \mid d(d)$$



# Higher-order algebraic specification (2)

We use a *conditional equational logic* to express properties of data:

$$\phi ::= \forall \overrightarrow{x} : \overrightarrow{s} \cdot d = d \land \cdots \land d = d \rightarrow d = d$$

Data specification elements:

$$dse ::= \mathbf{sort} (b;)^{+} \\ | \mathbf{cons} (f : s;)^{+} \\ | \mathbf{map} (f : s;)^{+} \\ | (\mathbf{var} (x : s;)^{+})? \mathbf{eqn} (\phi;)^{+}$$

Data specification:

$$ds := dse^*$$



# **HOAS** in practise

### Changes/additions:

- ullet conditional equations are restricted to  $d \to d = d$ , where the condition is a term of predefined sort  $\mathbb B$
- $s_0 \times \cdots \times s_n \to s$  is a shorthand for  $s_0 \to \cdots \to s_n \to s$ , where  $\to$  is right-associative
- $t(t_0, \ldots, t_n)$  is a shorthand for  $t(t_0) \cdots (t_n)$ , where application is left-associative
- sort references can be defined:

sort 
$$B = C \rightarrow D$$
;

• add prefix, infix and mixfix notation for concrete data types, together with operator precedence



# HOAS in practise: concrete data types

#### General:

- equality d == d, inequality  $d \neq d$  and conditional if(d, d, d)
- lambda expressions  $\lambda \overrightarrow{x:s}.d$
- where clauses d whr  $x = d, \dots, x = d$  end

### Basic data types:

- Booleans ( $\mathbb{B}$ )  $true, false, \neg d, d \land d, d \lor d, d \Rightarrow d, \forall \overrightarrow{x:s}.d, \exists \overrightarrow{x:s}.d$
- Numbers ( $\mathbb{P}$ ,  $\mathbb{N}$  and  $\mathbb{Z}$ ) 0, 1, -1, 2, -2, ...  $d < d, d \le d, d > d, d \ge d, -d, d + d, d - d, d * d, d \operatorname{\mathbf{div}} d, d \operatorname{\mathbf{mod}} d, ...$



## HOAS in practise: concrete data types (2)

#### Type constructors:

structured types (sum types and product types)

```
egin{aligned} \mathbf{struct} \ c_1(pr_{1,1}:A_{1,1}, \ \dots, pr_{1,k_1}:A_{1,k_1})?is\_c_1 \ & | \ c_2(pr_{2,1}:A_{2,1}, \ \dots, pr_{2,k_2}:A_{2,k_2})?is\_c_2 \ & \vdots \ & | \ c_n(pr_{n,1}:A_{n,1}, \dots, pr_{n,k_n}:A_{n,k_n})?is\_c_n \end{aligned}
```

- lists (List(s)) [], [ $d, \ldots, d$ ], # $d, d \triangleright d, d \triangleleft d, d + d, d.d$
- sets and bags (Set(s), Bag(s))  $\emptyset, \{d, \ldots, d\}, \{d:d, \ldots, d:d\}, \{x:s \mid d\}$  $\#d, d \in d, d \subseteq d, d \subseteq d, d \cup d, d \setminus d, d \cap d, \overline{d}$



### **Example: Sliding Window Protocol**

```
n: Pos;
map
sort D = struct d1 | d2;
     Buf = Nat -> struct data(getdata:D) | empty;
map emptyBuf: Buf;
     insert: D#Nat#Buf -> Buf;
     remove: Nat#Buf -> Buf;
     release: Nat#Nat#Buf -> Buf;
     nextempty: Nat#Buf -> Nat;
     inWindow: Nat#Nat#Nat -> Bool;
var i,j,k: Nat; d: D; q: Buf;
   emptyBuf = lambda j:Nat.empty;
     insert(d,i,q) = lambda j:Nat.if(i==j,data(d),q(j));
     remove(i,q) = lambda j:Nat.if(i==j,empty,q(j));
     release(i,j,q) =
        if((i \mod 2*n) == (j \mod 2*n),
           q,
           release((i+1) mod 2*n,j,remove(i,q)));
     nextempty(i,q) = if(q(i) == empty, i, nextempty((i+1) mod n,q));
     inWindow(i,j,k) = (i <= j && j < k) || (k < i && i <= j) || (j < k && k < i);
```



## Example: Sliding Window Protocol (2)

```
sA,rA,sD,rD: D;
     sB,rB,cB,sC,rC,cC: D#Nat;
     sE, rE, cE, sF, rF, cF: Nat:
proc S(1,m:Nat,q:Buf) =
        sum d:D. inWindow(1,m,(1+n) mod 2*n) ->
                 rA(d).S(1,(m+1) \mod 2*n,insert(d,m,q))+
        sum k:Nat. (q(k)!=empty) \rightarrow sB(getdata(q(k)),k).S(1,m,q)+
        sum k:Nat. rF(k).S(k,m,release(1,k,q));
     R(1:Nat,q:Buf) =
        sum d:D,k:Nat. rC(d,k).
                 (inWindow(1,k,(1+n) \mod 2*n) \rightarrow R(1,insert(d,k,q)),R(1,q))+
        (q(1)!=empty) \rightarrow sD(qetdata(q(1))).R((1+1) mod 2*n,remove(1,q))+
        sE(nextempty(1,q)).R(1,q);
    K = sum d:D,k:Nat. rB(d,k).(j.sC(d,k)+j).K;
    L = sum \ k:Nat. \ rE(k).(j.sF(k)+j).L;
init allow({cB,cC,cE,cF,j,rA,sD},
        comm({rB|sB->cB, rC|sC->cC, rE|sE->cE, rF|sF->cF},
           S(0,0,emptyBuf) || K || L || R(0,emptyBuf)));
```



## Implementation of concrete data types

#### General requirements:

- computability: reading the equations from left to right, we obtain a term rewrite system that is confluent, terminating and complete (if possible)
- simplicity: internal representation should be unique
- efficiency:
  - reduction lengths should be minimised
  - the number of equations should be minimised
- provability: the number of properties that can be proved on open terms should be maximised



## Implementation of concrete data types (2)

### Data type specific:

- lambda expressions and where clauses are implemented as named functions, e.g.  $\lambda y : \mathbb{N}.(x+y)$  becomes f(x), where  $f: \mathbb{N} \to \mathbb{N} \to \mathbb{N}$  satisfies f(x)(y) = x+y, for all  $x,y:\mathbb{N}$
- $\bullet$  quantifications over sort s are implemented as functions of sort  $(s \to \mathbb{B}) \to \mathbb{B}$
- numbers have a unique binary representation:
  - sort  $\mathbb{P}$  has constructors  $1:\mathbb{P}$  and  $cDub:\mathbb{B}\times\mathbb{P}\to\mathbb{P}$
  - sort  $\mathbb{N}$  has constructors  $0:\mathbb{N}$  and  $cNat:\mathbb{P}\to\mathbb{N}$
  - sort  $\mathbb{Z}$  has constructors  $cInt : \mathbb{N} \to \mathbb{Z}$  and  $cNeg : \mathbb{P} \to \mathbb{Z}$
- ullet sets and bags over sort s are implemented as functions  $s o \mathbb{B}$  and  $s o \mathbb{N}$



### Linear process equations

 $\mu$ CRL LPE:

$$P(\overrightarrow{d:D}) = \sum_{i \in I} \sum_{\overrightarrow{e_i:E_i}} a_i(\overrightarrow{f_i}(\overrightarrow{d,e_i})) \cdot P(\overrightarrow{g_i}(\overrightarrow{d,e_i})) \mathrel{\triangleleft} c_i(\overrightarrow{d,e_i}) \mathrel{\triangleright} \delta$$

mCRL2 LPE:

$$P(\overrightarrow{d}:\overrightarrow{D}) = \sum_{i \in I} \sum_{\overrightarrow{e_i}:\overrightarrow{E_i}} c_i(\overrightarrow{d}, \overrightarrow{e_i}) \rightarrow (a_i^0(\overrightarrow{f_{i,0}}(\overrightarrow{d}, \overrightarrow{e_i})) \mid \cdots \mid a_i^{n(i)}(\overrightarrow{f_{i,n(i)}}(\overrightarrow{d}, \overrightarrow{e_i}))) \cdot t_i(\overrightarrow{d}, \overrightarrow{e_i}) \cdot P(\overrightarrow{g_i}(\overrightarrow{d}, \overrightarrow{e_i})),$$

where:

- data types are higher-order
- free variables are used to model don't care values



# **Tool support**

Because of the changes to the core language (LPEs), reuse of existing tools is hard. So we re-implemented some of them.

#### New goals:

- graphical user interface that will:
  - lower the treshold for new users
  - simplify the analysis process
- flexible LPE simulator with different pluggable views
- model checking directly on LPEs
- visualisation of large LTSs



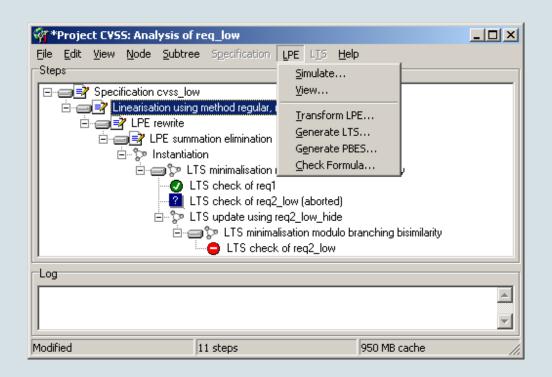
# **GUI:** Analysis interface

#### Features:

- tree represents an analysis:
  - each node is labelled with the result of an analysis step
  - each analysis step corresponds to the execution of a tool
- parameters can be supplied to tools using a graphical interface
- analysis trees abstract from temporary files: treated as cache



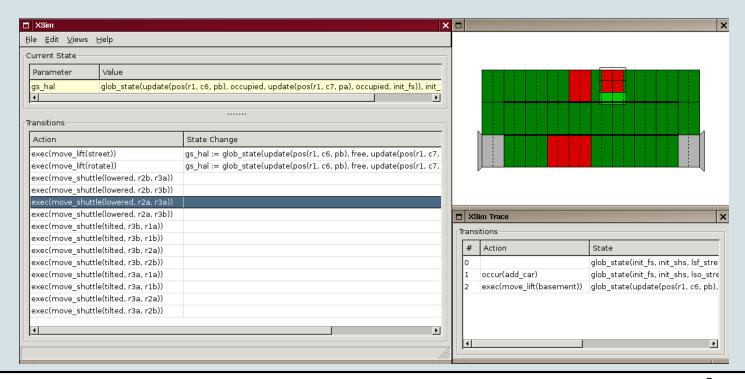
# GUI: Analysis interface (2)





# **Graphical simulator**

Features: simulate LPEs, pluggable views





### Model checking on LPEs

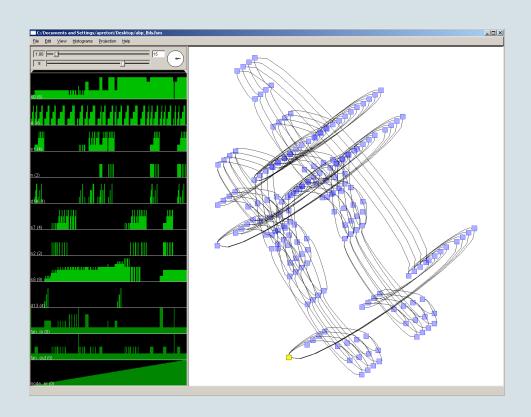
Parameterised Boolean Equation Systems (PBESs): mixture of BES and HOAS

Technique: LPE + property  $\rightarrow$  PBES  $\rightarrow$  BES

Muck van Weerdenburg, Jan Friso Groote



# Visualisation of large LTSs (Hannes Pretorius)





# Tool development status

### Finished (mostly):

- parser
- type checker
- implementation of concrete data types
- lineariser
- rewriter
- simulator (both textual and graphical)
- instantiator
- 2D LTS visualiser



## Tool development status (2)

#### To be implemented:

- LPE reduction tools
- LPE model checker
- graphical analysis interface
- prover
- Petri Net to mCRL2 convertor
- $\mu$ CRL to mCRL2 convertor and vice versa



### Conclusions and future work

mCRL2 is an attempt to make  $\mu$ CRL more applicable in practise. It is extended such that:

- Petri Nets can be facilitated
- the treshold for new users is lowered

#### Future work:

- formalise the syntax and semantics of mCRL2
- finish the toolset and apply it to a number of real world cases
- find a connection between the mCRL2 toolset and other toolsets