I! ! { technische universiteit eindhoven

mCRL2

Towards a practical formal specification language

Aad Mathijssen Jan Friso Groote Muck van Weerdenburg

31th May 2005

“«<Ar» / department of mathematics and computer science 1/33

I! ! { technische universiteit eindhoven

Motivation: Petri Nets

Bring stand-alone developments of specification languages together.
GenSpect: find a common base for hierarchical Petri Nets and process algebra

with data.

o H

It should be possible to translate Petri Nets to process algebra:

e places are unordered buffers
e transitions are memoryless input/output relations

e arcs define communication between places and transitions

“«<Ar» / department of mathematics and computer science 2/33

I! ! { technische universiteit eindhoven

Motivation: Petri Nets (2)

We would like to use fCRL as a target for this translation. Unfortunately, there
are a number of problems:

e all actions involved in the firing of transitions occur at the same time

e hierarchical approach enforces that operators are compositional, but com-
munication is not

“«aaAr» / department of mathematics and computer science 3/33

I! ! { technische universiteit eindhoven

Motivation: concrete data types

Problems with the use of (CRL in practise, because of the lack of concrete data
types.

e specifications are too long
e standard notions are specified differently amongst different specifications

e lack of higher-order notions

Specifying all data types yourself distracts from doing the real work.

“«aaAr» / department of mathematics and computer science 4/33

I! ! { technische universiteit eindhoven

Motivation: linear process equations

Every guarded untimed pCRL specification can be transformed to a linear pro-
cess equation (LPE), which has the following form:

_— . —

P(d:D) =Yy Yo ail i (d,) - P(gi(d,) < ei(dy ;) > 6

An LPE is a symbolic representation of a state space.
It is the core language used by the (CRL toolset.
Two things are lacking:

e time

e don’t care values

“«<Ar» / department of mathematics and computer science 5/33

I! ! { technische universiteit eindhoven

mCRL2

Design a new language and toolset, using both theoretical and practical experi-
ence with ¢CRL. Basically, the mCRL2 language is timed p¢CRL with the follow-
ing changes/additions:

e true concurrency (multi-actions)
e local communication
e higher-order algebraic specification

e concrete data types

The toolset will use a new LPE format, which supports multi-actions, higher-
order algebraic specification, time and don’t care values.

“«aaAr» / department of mathematics and computer science 6/33

I! ! { technische universiteit eindhoven

mCRL2 (2)

To find out if the language and the toolset is useful in practise, we took the
following approach to design the language:

1. start with an initial design of the language and a toolset

2. iteratively:
(a) test using real-world examples
(b) improve formal language
(c) improve toolset

«<Ar» / department of mathematics and computer science 7/33

I! ! { technische universiteit eindhoven

mCRL2 process language

Process expressions have the following syntax:

pi=ald) |87 |p+p|p-plplplelelplp] X(d)
| (d=d)—=p,p|p-d| > =D
| Vv(p) | Ot (p) | T1e(p) | Te(p) | pr(P)

e sync operator | does not communicate

e a sync of actions is called a multi-action, e.g.

a, alb, bla, alble, albla, a(t)[b(u)]a(v)
e V' and [/ H are sets of parameterless multi-actions/actions

e (' and R are sets of renamings of parameterless multi-actions/actions to
actions; the lhs’s of C'/ R must be disjoint

“«aaAr» / department of mathematics and computer science 8/33

I! ! { technische universiteit eindhoven

mCRL2 process language (2)

Communication and restriction:

e communication operator ['¢ realises communication of multi-actions with
equal parameters, e.g. where t = u and t # v:
e (@) () = (), Tapecy(a(t)[b(v) = a(t)]b(o),
[apple—ay(alblcld) = d|d, T(ajplemdga—ay(alb|c|d) = d|d
2a:p Da—aylald)]alt)) = 2 4pd =1t — a(t), a(d)]a(t)

e visibility operator V, only multi-actions that are in the set V, e.g.
Vieprla||d) =a-b+0b-a, Vig(a| d) =ald,
Viapy(alblc) =0, Viape(a 0]l) = a- (bc) + (blc) - a

e blocking operator 0; 5 blocks all actions that occur in the set [H, e.g.

Oray(a+b-(alc)) =b-9

“«aaAr» / department of mathematics and computer science 9/33

I! ! { technische universiteit eindhoven

mCRL2 process language (3)

Process equations are formed as follows:

pe =X (x:8)=p

Process specifications:

sp = (act (a; |a:sx---xs;)" | proc (pe;)")" init p;

“«“<aar» / department of mathematics and computer science 10/33

I! ! { technische universiteit eindhoven

Petri Net translation

Petri Nets can be expressed in mCRL2:

};ﬁk@l x2j4|

Translation to mCRL2:

Sqlri,o T ZnNget (>|pUto(2)) Sqri,o
Pio(b: Bag(N)) = > puti(n) - Pio

S wn € b— get,(n
DSqr; ; = Vi (Te(Sqriy || Pra(0

/\h
v\—/ C
Q
—

S
_—
~—

S
——
~—

where

C' = { put,|put, — puty, get,|get, — get, },V = { get,|put,, get,| put; }

«<Ar» / department of mathematics and computer science 11/33

I! ! { technische universiteit eindhoven

Beyond Petri Nets

Connected places:

P? = V¢ put, passget; } (U getglgety—passi } (Pip(0) || Prs(0)))

Connected transitions:

}7 dup mul 4|

nc

«<Ar» / department of mathematics and computer science 12/33

I! ! { technische universiteit eindhoven

mCRL2 data language

[s it advantageous to use an existing data language?
Not likely, because:

e algebraic specification languages are often first-order and lack concrete data
types

e functional programming languages cannot handle open terms and are fo-
cused on evaluation only

e it is often hard to integrate an existing language in a toolset

“«aaAr» / department of mathematics and computer science 13/33

I! ! { technische universiteit eindhoven

mCRL2 data language (2)

Conclusion: we define our own language, but keep the door open to existing
algebraic specification languages.

Approach:

e define a core theory of higher-order algebraic specification

e add concrete data types:

— add syntax
— implement data types within the core theory

“«aaAr» / department of mathematics and computer science 14/33

I! ! { technische universiteit eindhoven

Higher-order algebraic specification

Concepts: sorts, operations, terms and equations
Higher-order sorts are constructed as follows, where b is a set of base sorts:

s=bls—s

An operation is of the form f : s, which means that all operations are constants.

Data terms are constructed from variables and operations:

d:=x:s|f:s|d(d)

“«<Ar» / department of mathematics and computer science 15/33

I! ! { technische universiteit eindhoven

Higher-order algebraic specification (2)

We use a conditional equational logic to express properties of data:

¢::=V25.d=dAN---ANd=d—d=4d

Data specification elements:

dse ::=sort (b;)"

|cons (: 5;)°
| map (f :s;)"
| (var (z: 5;)7)7 eqn (¢;)"
Data specification:
ds ::= dse”

“«aaAr» / department of mathematics and computer science

16/33

I! ! { technische universiteit eindhoven

HOAS in practise

Changes/additions:

e conditional equations are restricted to d — d = d, where the condition is a
term of predefined sort B

® 5y X -+- X S, — sis a shorthand for sy — --- — s, — s, where — is
right-associative

o t(tg,...,t,) is a shorthand for t(¢y)---(t,), where application is left-
associative

e sort references can be defined:

sort B=C — D;

e add prefix, infix and mixfix notation for concrete data types, together with
operator precedence

“«<Ar» / department of mathematics and computer science 17/33

I! ! { technische universiteit eindhoven

HOAS in practise: concrete data types

General:

e equality d == d, inequality d # d and conditional if (d, d, d)
e lambda expressions A\z:3.d

e where clausesd whrx =d, ...,z = dend
Basic data types:

e Booleans (B)
true, false,~d,d Nd,d V d,d = d,Vx:5.d, 3z:5.d

e Numbers (P, N and Z)
0,1,-1,2,-2,...
d<d,d<d,d>d,d>d,—d,d+d,d—d,dxd,ddivd,dmodd,...

“«<Ar» / department of mathematics and computer science 18/33

I! ! { technische universiteit eindhoven

HOAS in practise: concrete data types (2)

Type constructors:

e structured types (sum types and product types)

struct ¢,(pry, Avg, oo, P, 2 Ak Tis_c
| ca(proy : Agxy « ooy Doy, @ Aak,)7i5_Cy
| ca(prpy t Angy oo s DT, Ak) TiS_Cy

o lists (List(s))
[, 1d,....d,#d,d>d,d<d,d+d,d.d

e sets and bags (Set(s), Bag(s))
0,{d,....d},{dd,....dd}{zs|d}
#d,d e d,dCd,dCd,dud,d\d,dnd,d

«<Ar» / department of mathematics and computer science 19/33

technische universiteit eindhoven

Example: Sliding Window Protocol

Buf data(getdata:D)] | empty:
emptyEBuf: Buf;
insert: D# #Euf -» Buf:
FEmMOVE #Euf -» Euf:;
release: 2 gEuf -» Buf:
nextempty: H#Euf -» :
inWindow: H H -
i,3,k: ;od: Dy gr Buf:
emptyEuf = lambda j: LEmpty:
insert(d,i,cq) = lambda Jj: Ldf(i== 3, data(d) g3
remove (1,0 = lambda J: LAf(i==),empty, g0
release(i,j, g1 =
ifi{i mod =2*n)==(7 mod =*n),

qﬂ'

release [(i+1) mod “*n,j,remove (i, dlll:
nextempty (i, q) = ifig(il==empty,i,nextempty((i+1) mod n,q)):
inWindow(i,j, k1 = (i<=] && J<k) || i(k<i && i<=73) || 11<k && k<i):

/ department of mathematics and computer science

technische universiteit eindhoven

Example: Sliding Window Protocol (2)

Sil,m: srBuf)
sum d:D. inWindow(l,m, (l+n) mwod
riid 1, (w+1) 1o

P

sum k: =
sum k:

Fil: SO:Buf) =
sum d:D,k:
[inWinc (l,k, (14+n) mod =2%n) -> R(l,insert(d,k 1.,EB(Ll, g1+
(1) '=empty) —= digetdata (g (L)) BEi(1+1) mod Z*n,remove (1, o))+

sE (nextempty {1, o))

E = sum 4d:D,k: . rBid, k). (] (d, ki +73) . E;

L sum k: . YE{(k).(j.sF(k)+]3).L;

“«<Ar» / department of mathematics and computer science 21/33

I! ! { technische universiteit eindhoven

Implementation of concrete data types

General requirements:

e computability: reading the equations from left to right, we obtain a term
rewrite system that is confluent, terminating and complete (if possible)

e simplicity: internal representation should be unique
o efficiency:

— reduction lengths should be minimised

— the number of equations should be minimised

e provability: the number of properties that can be proved on open terms
should be maximised

“«<Ar» / department of mathematics and computer science 22/33

I! ! { technische universiteit eindhoven

Implementation of concrete data types (2)

Data type specific:

e lambda expressions and where clauses are implemented as named func-
tions, e.g. A\y:N.(z + y) becomes f(x), where f:N — N — N satisfies
f@)(y) =x+y, forallz,y: N

e quantifications over sort s are implemented as functions of sort

(s—B)—B
e numbers have a unique binary representation:

— sort P has constructors 1 : Pand cDub : B x P — P
— sort N has constructors 0 : Nand ¢cNat : P — N
— sort Z has constructors cint : N — Z and cNeg : P — Z

e sets and bags over sort s are implemented as functions s — Band s — N

“«<Ar» / department of mathematics and computer science 23/33

I! ! { technische universiteit eindhoven

Linear process equations

(CRL LPE:

—

P(dD) =Y Yrm il fi(d,) - P(F(d,) < cild,) & 0

mCRL2 LPE:
— —
P(d) — el e—E>)

where:;

e data types are higher-order

e free variables are used to model don’t care values

“«<Ar» / department of mathematics and computer science 24/33

I! ! { technische universiteit eindhoven

Tool support

Because of the changes to the core language (LPEs), reuse of existing tools is
hard. So we re-implemented some of them.

New goals:

e graphical user interface that will:

— lower the treshold for new users

— simplify the analysis process
o flexible LPE simulator with different pluggable views
e model checking directly on LPEs

e visualisation of large LTSs

“«aaAr» / department of mathematics and computer science 25/33

I! ! { technische universiteit eindhoven

GUI: Analysis interface

Features:

e tree represents an analysis:

— each node is labelled with the result of an analysis step
— each analysis step corresponds to the execution of a tool

e parameters can be supplied to tools using a graphical interface

e analysis trees abstract from temporary files: treated as cache

“«<Ar» / department of mathematics and computer science 26/33

technische universiteit eindhoven

GUI: Analysis interface (2)

4T *pProject C¥SS: Analysis of req_low =10 x|
File Edit View MNode Subtree Specification | LFE LTS Help
Step Simulate, ..
El--@ S pecification cves_lov Wigw,
El@ Linearization using method regular,

E-=a=F LPE rewiite IR mLAE.

E@ LPE zummation elimination Eemareiz b,
=% Instantiation SENEEE PR
=-eate LTS minimalisation Check Formula. .
- LTS check of reql
E LTS check of req2_low [aborted)
E---iﬂ LTS update uzing req_low_hide
=-ga%e LTS minimalisation modulo branching bisimilarity

_Ll:lg

-
[~
/4

Modified 11 steps 950 ME cache

«<Ar» / department of mathematics and computer science 27/33

technische universiteit eindhoven

Graphical simulator

Features: simulate LPEs, pluggable views

Fle Edit \ews Help

Current State

Parameter Value

gs_hal glob_state(update(pos(rl, c6, pb), eccupied, update(pos(rl, ¢7, pa), occupied, init_fs)), init_

4 | IO}

Transitions

Action State Change

exec{move_lift(street))
exec{move_lift(rotate))

gs_hal := glob_state(update(pos(rl, c6, pb), free, updatelposirl, ¢7,
gs_hal := glob_state(update(posirl. c6, pb), free, update(posirl, c7,
exec(move_shuttle(lowered, r2b, r3a))

exec(move_shuttle(lowered, r2b, r3b))

exec{move_shuttle(lowered, r2a, r3b))

exec(move_shuttleltilted, r3b, r1a))

exec(move_shuttle(tilted, r3b, r1b))

exec{move_shuttle(tilted, r3b, r2a))

exec(move_shuttleltilted, r3b, rzb))

exec(move_shuttleltilted, r3a, rlal)

exec{move_shuttle(tilted, r3a, rib))

exec(move_shuttleltilted, r3a, rza))

exec(move_shuttleltilted, r3a, r2b))

4] i

=

[o] xsim Trace

[x

Transitions

|Action

State

o]
1 occur(add_car)
2 exec(move_lift(basement))

glob_state(init_fs, init_shs, Isf_stre
glob_state(init_fs, init_shs, Iso_stre
glob_state(update(pos(rl, ¢6, pb),

4

<« < AD> >

/ department of mathematics and computer science

28/33

I! ! { technische universiteit eindhoven

Model checking on LPEs

Parameterised Boolean Equation Systems (PBESs): mixture of BES and HOAS
Technique: LPE + property — PBES — BES

Muck van Weerdenburg, Jan Friso Groote

«<Ar» / department of mathematics and computer science 29/33

I! ! { technische universiteit eindhoven

Visualisation of large LTSs (Hannes Pretorius)

«<Ar» / department of mathematics and computer science 30/33

I! ! { technische universiteit eindhoven

Tool development status

Finished (mostly):

e parser
e type checker

e implementation of concrete data types
e lineariser

e rewriter

e simulator (both textual and graphical)
e instantiator

e 2D LTS visualiser

“«<Ar» / department of mathematics and computer science 31/33

I! ! { technische universiteit eindhoven

Tool development status (2)

To be implemented:

e LPE reduction tools

e LPE model checker

e graphical analysis interface

e prover

e Petri Net to mCRL2 convertor

e LCRL to mCRL2 convertor and vice versa

«<Ar» / department of mathematics and computer science 32/33

I! ! { technische universiteit eindhoven

Conclusions and future work

mCRL2 is an attempt to make ¢ CRL more applicable in practise.
It is extended such that:

e Petri Nets can be facilitated

e the treshold for new users is lowered
Future work:

e formalise the syntax and semantics of mCRL2
e finish the toolset and apply it to a number of real world cases

e find a connection between the mCRL2 toolset and other toolsets

“«<Ar» / department of mathematics and computer science 33/33

