

One-and-a-halfth-order Logic

Aad Mathijssen Murdoch J. Gabbay

Department of Mathematics and Computer Science Technische Universiteit Eindhoven The Netherlands

TCS Seminar, Vrije Universiteit Amsterdam 8th September 2006

Motivation

Consider the following valid assertions in first-order logic:

- $\blacktriangleright \phi \supset \psi \supset \phi$
- if $a \not\in fn(\phi)$ then $\phi \supset \forall a.\phi$
- ▶ if $a \notin fn(\phi)$ then $\phi \supset \phi[\![a \mapsto t]\!]$
- ▶ if $b \notin fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi[\![a \mapsto b]\!]$

Motivation

Consider the following valid assertions in first-order logic:

- $\blacktriangleright \ \phi \supset \psi \supset \phi$
- if $a \not\in fn(\phi)$ then $\phi \supset \forall a. \phi$
- if $a \notin fn(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- ▶ if $b \notin fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi[[a \mapsto b]]$

These are not valid syntax in first-order logic. This is because of meta-level concepts:

- meta-variables varying over syntax: ϕ , ψ , a, b, t
- ▶ properties of syntax: $a \notin fn(\phi), \phi[[a \mapsto t]], \alpha$ -equivalence

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

$$\frac{\overline{\psi, \phi \vdash \phi}}{\phi \vdash \psi \supset \phi} (\mathsf{A}\mathsf{x}) \qquad \qquad \frac{\overline{p(d), p(c) \vdash p(c)}}{p(c) \vdash p(d) \supset p(c)} (\mathsf{A}\mathsf{x}) \\ \xrightarrow{\phi \vdash \psi \supset \phi} (\supset \mathsf{R}) \qquad \qquad \frac{\overline{p(c) \vdash p(d) \supset p(c)}}{\vdash p(c) \supset p(d) \supset p(c)} (\supset \mathsf{R})$$

And for $b \notin fn(\phi)$:

$$\frac{\overline{\forall a.\phi \vdash \forall b.\phi[\![a \mapsto b]\!]} (\mathsf{A}\mathsf{x})}{\vdash \forall a.\phi \supset \forall b.\phi[\![a \mapsto b]\!]} (\supset \mathsf{R})} \qquad \qquad \frac{\overline{\forall c.p(c) \vdash \forall d.p(d)}}{\vdash \forall c.p(c) \supset \forall d.p(d)} (\supset \mathsf{R})}$$

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

$$\frac{\overline{\psi, \phi \vdash \phi}}{\varphi \vdash \psi \supset \phi} (\supset \mathbf{R}) \qquad \qquad \frac{\overline{p(d), p(c) \vdash p(c)}}{p(c) \vdash p(d) \supset p(c)} (\supset \mathbf{R}) \\ (\supset \mathbf{R}) \qquad \qquad \frac{\overline{p(c) \vdash p(d) \supset p(c)}}{\vdash p(c) \supset p(d) \supset p(c)} (\supset \mathbf{R})$$

And for $b \notin fn(\phi)$:

$$\frac{}{\forall a.\phi \vdash \forall b.\phi[\![a \mapsto b]\!]} (\mathbf{A}\mathbf{x}) \qquad \qquad \frac{}{\forall c.p(c) \vdash \forall d.p(d)} (\mathbf{A}\mathbf{x}) \\ \hline \forall c.p(c) \supset \forall d.p(d)} (\supset \mathbf{R}) \qquad \qquad \frac{}{\forall c.p(c) \supset \forall d.p(d)} (\supset \mathbf{R})$$

The left ones are not derivations, they are *schemas* of derivations. The right ones might be derivations; they *instances* of the schemas.

Motivation (3)

Questions:

Is there a logic in which these schematic assertions and derivations are valid syntax too?

Motivation (3)

TU

Questions:

- Is there a logic in which these schematic assertions and derivations are valid syntax too?
- First-order logic and its proof systems formalise reasoning. But also a lot of reasoning is about first-order logic. So why shouldn't that be formalised?

Motivation (3)

TU

Questions:

- Is there a logic in which these schematic assertions and derivations are valid syntax too?
- First-order logic and its proof systems formalise reasoning. But also a lot of reasoning is about first-order logic. So why shouldn't that be formalised?

One-and-a-halfth-order logic tries to address this by formalising:

- meta-variables (ϕ , ψ , a, b, t)
- ▶ properties of syntax ($a \notin fn(\phi)$, $\phi[[a \mapsto t]]$, α -equivalence)

Overview

- Definition of One-and-a-halfth-order Logic
 - Introduction
 - Formal syntax
 - Derivability
- Properties of One-and-a-halfth-order Logic
 - Proof-theoretical properties
 - Equational axiomatisation
 - Relation to first-order logic
 - Semantics
- Conclusions, related and future work

Introduction

TU/e

In the syntax of one-and-a-halfth-order logic:

technische universiteit eindhoven

- Unknowns P, Q and T represent meta-variables ϕ , ψ and t.
- Atoms a and b represent meta-variables a and b.
- Freshness a # P represents $a \notin fn(\phi)$.
- Explicit substitution $P[a \mapsto T]$ represents $\phi[\![a \mapsto t]\!]$.

Introduction (2)

The meta-level assertions in first-order logic

$$\blacktriangleright \phi \supset \psi \supset \phi$$

- if $a \not\in fn(\phi)$ then $\phi \supset \forall a.\phi$
- if $a \notin fn(\phi)$ then $\phi \supset \phi[\![a \mapsto t]\!]$
- if $b \not\in fn(\phi)$ then $\forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket$

correspond to valid assertions in one-and-a-halfth-order logic:

$$\blacktriangleright P \supset Q \supset P$$

$$\blacktriangleright a \# P \to P \supset \forall [a] P$$

$$\blacktriangleright a \# P \to P \supset P[a \mapsto T]$$

$$\blacktriangleright b \# P \to \forall [a] P \supset \forall [b] P [a \mapsto b]$$

Introduction (3)

TU

In sequent derivations of one-and-a-halfth-order logic:

- Contexts of freshnesses are added to the sequents.
- Derivability of freshnesses are added as side-conditions.
- Substitutional equivalence on terms is added as two derivation rules, taking care of α -equivalence and substitution.

Introduction (4)

The (schematic) derivations in first-order logic

correspond to valid derivations in one-and-a-halfth-order logic:

Introduction (5)

The (schematic) derivations in first-order logic, where $b
ot\in fn(\phi)$,

$$\frac{}{\forall a.\phi \vdash \forall b.\phi \llbracket a \mapsto b \rrbracket} (\mathsf{A}\mathsf{x}) \qquad \qquad \frac{}{\forall c.p(c) \vdash \forall d.p(d)} (\mathsf{A}\mathsf{x}) \\ \vdash \forall a.\phi \supset \forall b.\phi \llbracket a \mapsto b \rrbracket} (\supset \mathsf{R}) \qquad \qquad \frac{}{\vdash \forall c.p(c) \supset \forall d.p(d)} (\supset \mathsf{R})$$

correspond to valid derivations in one-and-a-halfth-order logic:

$$\frac{\overline{\forall [a]P \vdash_{b\#P} \forall [a]P}}{\overline{\forall [a]P \vdash_{b\#P} \forall [b]P[a \mapsto b]}} (\mathsf{StructR}) (1) \frac{\overline{\forall [c]p(c) \vdash_{\emptyset} \forall [c]p(c)}}{\overline{\forall [c]p(c) \vdash_{\emptyset} \forall [d]p(d)}} (\mathsf{StructR}) (2) \\
\frac{\overline{\forall [a]P \vdash_{b\#P} \forall [b]P[a \mapsto b]}}{\overline{\vdash_{b\#P} \forall [a]P \supset \forall [b]P[a \mapsto b]}} (\supset \mathsf{R}) \frac{\overline{\forall [c]p(c) \vdash_{\emptyset} \forall [d]p(d)}}{\overline{\vdash_{\emptyset} \forall [c]p(c) \supset \forall [d]p(d)}} (\supset \mathsf{R}) \\
(1) b\#P \vdash_{\mathsf{suB}} \forall [a]P = \forall [b]P[a \mapsto b] \\
(2) \emptyset \vdash_{\mathsf{suB}} \forall [c]p(c) = \forall [d]p(d)$$

TU

We use **Nominal Terms** to specify the syntax, since they have built-in support for:

meta-variables

technische universiteit eindhoven

- binding
- ► freshness

Nominal terms allow for a direct and natural representation of systems with binding.

Nominal terms are first-order, not higher-order.

Formal syntax Sorts, atoms and unknowns

Base sorts $\mathbb F$ for 'formulas' and $\mathbb T$ for 'terms'.

Atomic sort $\mathbb A$ for the object-level variables.

Sorts τ :

 $\tau ::= \mathbb{F} \mid \mathbb{T} \mid \mathbb{A} \mid [\mathbb{A}] \tau$

Atoms a, b, c, \ldots have sort \mathbb{A} . They represent *object-level* variable symbols.

Unknowns X, Y, Z, ... have sort τ . They represent *meta-level* variable symbols. Let P, Q, R be unknowns of sort \mathbb{F} , and T, U of sort \mathbb{T} . Formal syntax Terms

TU

We call $\pi \cdot X$ a **moderated unknown**. This represents the **permutation of atoms** π acting on an unknown term. Write X when π is the *identity*.

Term-formers are of the form $f_{(\tau_1,...,\tau_n)\tau}$.

technische universiteit eindhoven

Terms *t*, subscripts indicate sorting rules:

$$t ::= a_{\mathbb{A}} \mid (\pi \cdot X_{\tau})_{\tau} \mid ([a_{\mathbb{A}}]t_{\tau})_{[\mathbb{A}]\tau} \mid (f_{(\tau_1,\ldots,\tau_n)\tau}(t_{\tau_1}^1,\ldots,t_{\tau_n}^n))_{\tau}$$

We often drop the sorting subscripts:

$$t ::= a \mid \pi \cdot X \mid [a]t \mid f(t_1, \ldots, t_n)$$

Write f for f() if n = 0.

technische universiteit eindhoven

Formal syntax Terms (2)

Term-formers for one-and-a-halfth-order logic:

- ► ⊥₍₎_F: false
- $\supset_{(\mathbb{F},\mathbb{F})\mathbb{F}}$: *implication*, write $\supset(\phi,\psi)$ as $\phi\supset\psi$
- ► $\forall_{([\mathbb{A}]\mathbb{F})\mathbb{F}}$: universal quantification, write $\forall([a]\phi)$ as $\forall[a]\phi$
- $\blacktriangleright pprox_{(\mathbb{T},\mathbb{T})\mathbb{F}}$: object-level equality, write pprox(t,u) as tpprox u
- ▶ var_{(A)T}: variable casting, write var(a) as a
- sub_{([A]τ,T)τ}, where τ ∈ {T, [A]T, F, [A]F}: explicit substitution, write sub([a]v, t) as v[a → t]
- p_{1(T,...,T)}F,..., p_{n(T,...,T)}F: object-level predicate term-formers
 f_{1(T,...,T)}T,..., f_{m(T,...,T)}F: object-level term-formers

Formal syntax Terms (3)

TU/e

Descending order of operator precedence:

$$[a]_, \ _[_ \mapsto _], \ \approx, \ \{\neg, \forall, \exists\}, \ \{\land, \lor\}, \ \supset, \ \Leftrightarrow$$

 \land , \lor , \supset and \Leftrightarrow associate to the right.

Formal syntax Terms (3)

TU

Sugar:
$$\top$$
 is $\bot \supset \bot$ $\neg \phi$ is $\phi \supset \bot$ $\phi \land \psi$ is $\neg(\phi \supset \neg\psi)$ $\phi \lor \psi$ is $\neg\phi \supset \psi$ $\phi \Leftrightarrow \psi$ is $(\phi \supset \psi) \land (\psi \supset \phi)$ $\exists [a] \phi$ is $\neg \forall [a] \neg \phi$

Descending order of operator precedence:

$$[a]_{-}, \ _[_ \mapsto _], \ \approx, \ \{\neg, \forall, \exists\}, \ \{\land, \lor\}, \ \supset, \ \Leftrightarrow$$

 \land , \lor , \supset and \Leftrightarrow associate to the right.

We may call terms of sort $\mathbb F$ formulas. Example formulas:

 $P \supset Q \supset P \qquad P \supset \forall [a]P \qquad P \supset P[a \mapsto T] \qquad \forall [a]P \supset \forall [b]P[a \mapsto b]$

Formal syntax Freshness and terms-in-context

TU

Freshness (assertions) a # t, which means 'a is fresh for t. If t is an unknown X, the freshness is called **primitive**.

A freshness context Δ is a set of *primitive* freshnesses.

Example freshness contexts:

technische universiteit eindhoven

$$\emptyset \quad a\#X \quad a\#P,b\#Q$$

We call $\Delta \rightarrow t$ a **term-in-context**; write *t* if $\Delta = \emptyset$.

TU/e technische universiteit eindhoven

Formal syntax Assertions

Terms-in-context of sort $\mathbb F$ represent meta-level assertions of first-order logic. For example:

- $\blacktriangleright P \supset Q \supset P$
- $\blacktriangleright a \# P \to P \supset \forall [a] P$
- $\blacktriangleright a \# P \to P \supset P[a \mapsto T]$
- $\blacktriangleright \ b \# P \to \forall [a] P \supset \forall [b] P [a \mapsto b]$

technische universiteit eindhoven

Formal syntax Assertions

TU

Terms-in-context of sort $\mathbb F$ represent meta-level assertions of first-order logic. For example:

- $\blacktriangleright P \supset Q \supset P$
- $\blacktriangleright a \# P \to P \supset \forall [a] P$
- $a \# P \to P \supset P[a \mapsto T]$
- $\blacktriangleright b \# P \to \forall [a] P \supset \forall [b] P [a \mapsto b]$

represent

- $\blacktriangleright \phi \supset \psi \supset \phi$
- if $a \notin fn(\phi)$ then $\phi \supset \forall a.\phi$
- ▶ if $a \notin fn(\phi)$ then $\phi \supset \phi[\![a \mapsto t]\!]$
- ▶ if $b \not\in fn(\phi)$ then $\forall a. \phi \supset \forall b. \phi \llbracket a \mapsto b \rrbracket$

TU/e

Let (formula) contexts Φ, Ψ be finite sets of formulas. For example:

technische universiteit eindhoven

$$\emptyset \quad \phi \quad \phi, \Phi \quad \Phi, \Phi'$$

A sequent is a triple $\Phi \vdash_{\Delta} \Psi$. We may omit empty formula contexts, e.g. writing \vdash_{Δ} for $\emptyset \vdash_{\Delta} \emptyset$.

Sequent calculus

Rules resembling Gentzen's sequent calculus for first-order logic:

$$\frac{\overline{\phi}, \Phi \vdash_{\Delta} \Psi, \phi}{\phi, \Phi \vdash_{\Delta} \Psi} (\mathsf{A}\mathsf{x}) \qquad \frac{\overline{\bot}, \Phi \vdash_{\Delta} \Psi}{\bot, \Phi \vdash_{\Delta} \Psi} (\bot \mathsf{L})$$

$$\frac{\Phi \vdash_{\Delta} \Psi, \phi - \psi, \Phi \vdash_{\Delta} \Psi}{\phi \supset \psi, \Phi \vdash_{\Delta} \Psi} (\supset \mathsf{L}) \qquad \frac{\phi, \Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \phi \supset \psi} (\supset \mathsf{R})$$

$$\frac{\phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi}{\forall [a]\phi, \Phi \vdash_{\Delta} \Psi} (\forall \mathsf{L}) \qquad \frac{\Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \forall [a]\psi} (\forall \mathsf{R}) \quad (\Delta \vdash a \# \Phi, \Psi)$$

$$\frac{\phi[a \mapsto t'], \Phi \vdash_{\Delta} \Psi}{t' \approx t, \phi[a \mapsto t], \Phi \vdash_{\Delta} \Psi} (\approx \mathsf{L}) \qquad \overline{\Phi \vdash_{\Delta} \Psi, t \approx t} (\approx \mathsf{R})$$

Derivability Sequent calculus (2)

Other rules:

$$\begin{split} \frac{\phi', \Phi \vdash_{\Delta} \Psi}{\phi, \Phi \vdash_{\Delta} \Psi} \left(\textbf{StructL} \right) & \left(\Delta \vdash_{\textbf{sub}} \phi' = \phi \right) \\ \frac{\Phi \vdash_{\Delta} \Psi, \psi'}{\Phi \vdash_{\Delta} \Psi, \psi} \left(\textbf{StructR} \right) & \left(\Delta \vdash_{\textbf{sub}} \psi' = \psi \right) \\ \frac{\Phi \vdash_{\Delta \cup \{a \notin X_1, \dots, a \notin X_n\}} \Psi}{\Phi \vdash_{\Delta} \Psi} \left(\textbf{Fresh} \right) & \left(a \notin \Phi, \Psi, \Delta \right) \\ \frac{\Phi \vdash_{\Delta} \Psi, \phi - \phi', \Phi \vdash_{\Delta} \Psi}{\Phi \vdash_{\Delta} \Psi} \left(\textbf{Cut} \right) & \left(\Delta \vdash_{\textbf{sub}} \phi = \phi' \right) \end{split}$$

TU/e technische universiteit eindhoven

Derivability Example derivations in the sequent calculus

Sequent derivation of $a \# P \rightarrow P \supset \forall [a] P$:

$$\frac{\overline{P \vdash_{a\#P} P} (\mathbf{A}\mathbf{x})}{P \vdash_{a\#P} \forall [a]P} (\forall \mathbf{R}) \quad (a\#P \vdash a\#P)$$
$$\vdash_{a\#P} P \supset \forall [a]P} (\supset \mathbf{R})$$

Derivation of $a \# P \rightarrow P \supset P[a \mapsto T]$:

$$\frac{\frac{}{P \vdash_{a^{\#}P} P} (\mathsf{Ax})}{\frac{}{P \vdash_{a^{\#}P} P[a \mapsto T]} (\mathsf{StructR}) \quad (a^{\#}P \vdash_{\mathsf{sub}} P = P[a \mapsto T])}{}_{a^{\#}P} P \supset P[a \mapsto T]} (\supset \mathsf{R})$$

Derivability Freshness

TU/e

Write $\Delta \vdash a \# t$ when a # t is derivable from Δ using the following inference rules:

$$\frac{1}{a\#b} (\#\mathbf{ab}) \quad \frac{\pi^{-1}(a)\#X}{a\#\pi \cdot X} (\#\mathbf{X})$$
$$\frac{1}{a\#[a]t} (\#[]\mathbf{a}) \quad \frac{a\#t}{a\#[b]t} (\#[]\mathbf{b}) \quad \frac{a\#t_1 \cdots a\#t_n}{a\#f(t_1, \dots, t_n)} (\#\mathbf{f})$$

Here, *a* and *b* range over *distinct* atoms.

technische universiteit eindhoven

Derivability Freshness

TU/e

Write $\Delta \vdash a \# t$ when a # t is derivable from Δ using the following inference rules:

$$\frac{1}{a\#b} (\#\mathbf{ab}) \quad \frac{\pi^{-1}(a)\#X}{a\#\pi \cdot X} (\#\mathbf{X})$$
$$\frac{1}{a\#[a]t} (\#[]\mathbf{a}) \quad \frac{a\#t}{a\#[b]t} (\#[]\mathbf{b}) \quad \frac{a\#t_1 \cdots a\#t_n}{a\#f(t_1, \dots, t_n)} (\#\mathbf{f})$$

Here, *a* and *b* range over *distinct* atoms.

technische universiteit eindhoven

Examples:

$$\vdash a \# b \qquad \vdash a \# \forall [a] P \qquad a \# P \vdash a \# \forall [b] P$$

Derivability _{Equality}

TU/

Equality (assertions) t = u, where t and u are of the same sort. Write $\Delta \vdash_{SUB} t = u$ when t = u is derivable from Δ using the following inference rules, where A are axioms from SUB only:

technische universiteit eindhoven

 $\begin{array}{c} \mathsf{Derivability} \\ \mathsf{Equality} \ (2) \end{array}$

Axioms of theory SUB:

$$\begin{array}{ll} (\operatorname{var} \mapsto) & a[a \mapsto T] = T \\ (\# \mapsto) & a\#X \to X[a \mapsto T] = X \\ (\mathbf{f} \mapsto) & \mathbf{f}(X_1, \dots, X_n)[a \mapsto T] = \mathbf{f}(X_1[a \mapsto T], \dots, X_n[a \mapsto T]) \\ (\operatorname{abs} \mapsto) & b\#T \to ([b]X)[a \mapsto T] = [b](X[a \mapsto T]) \\ (\operatorname{ren} \mapsto) & b\#X \to X[a \mapsto b] = (b \ a) \cdot X \end{array}$$

 $\begin{array}{c} \mathsf{Derivability} \\ \mathsf{Equality} \ (2) \end{array}$

Axioms of theory SUB:

$$\begin{array}{ll} (\operatorname{var} \mapsto) & a[a \mapsto T] = T \\ (\# \mapsto) & a\#X \to X[a \mapsto T] = X \\ (\mathbf{f} \mapsto) & \mathbf{f}(X_1, \dots, X_n)[a \mapsto T] = \mathbf{f}(X_1[a \mapsto T], \dots, X_n[a \mapsto T]) \\ (\operatorname{abs} \mapsto) & b\#T \to ([b]X)[a \mapsto T] = [b](X[a \mapsto T]) \\ (\operatorname{ren} \mapsto) & b\#X \to X[a \mapsto b] = (b \ a) \cdot X \end{array}$$

Examples:

$$b \# P \vdash_{\mathsf{SUB}} \forall [a] P = \forall [b] P[a \mapsto b]$$
$$\vdash_{\mathsf{SUB}} X[a \mapsto a] = X$$
$$a \# Y \vdash_{\mathsf{SUB}} Z[a \mapsto X][b \mapsto Y] = Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]$$

Derivability Equality (2)

Axioms of theory SUB:

$$\begin{array}{ll} (\operatorname{var} \mapsto) & a[a \mapsto T] = T \\ (\# \mapsto) & a\#X \to X[a \mapsto T] = X \\ (\mathbf{f} \mapsto) & \mathbf{f}(X_1, \dots, X_n)[a \mapsto T] = \mathbf{f}(X_1[a \mapsto T], \dots, X_n[a \mapsto T]) \\ (\operatorname{abs} \mapsto) & b\#T \to ([b]X)[a \mapsto T] = [b](X[a \mapsto T]) \\ (\operatorname{ren} \mapsto) & b\#X \to X[a \mapsto b] = (b \ a) \cdot X \end{array}$$

Examples:

$$b \# P \vdash_{\mathsf{SUB}} \forall [a] P = \forall [b] P[a \mapsto b]$$
$$\vdash_{\mathsf{SUB}} X[a \mapsto a] = X$$
$$a \# Y \vdash_{\mathsf{SUB}} Z[a \mapsto X][b \mapsto Y] = Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]$$

Nominal Algebra is the theory of equality on nominal terms.

/department of mathematics and computer science

technische universiteit eindhoven

Proof-theoretical properties Permutation and instantiation

We may permute atoms and instantiate unknowns in derivations.

Theorem

TU

If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$, then Π^{π} is a valid derivation of $\Phi^{\pi} \vdash_{\Delta^{\pi}} \Psi^{\pi}$.

Theorem

If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$ and $\Delta' \vdash \Delta \sigma$, then $\Pi(\sigma, \Delta')$ is a valid derivation of $\Phi \sigma \vdash_{\Delta'} \Psi \sigma$.

 $\Pi(\sigma, \Delta')$ is Π in which:

- each unknown X is replaced by $\sigma(X)$
- \blacktriangleright each freshness context Δ is replaced by Δ'

technische universiteit eindhoven

Proof-theoretical properties Instantiation example

TU/

Take the following derivations:

$$\frac{\overline{P \vdash_{a\#P} P}(\mathsf{Ax})}{\frac{P \vdash_{a\#P} P[a \mapsto T]}{\vdash_{a\#P} P \supset P[a \mapsto T]}(\mathsf{StructR})} (1) \qquad \frac{\overline{p(c) \vdash_{\emptyset} p(c)}(\mathsf{Ax})}{\frac{p(c) \vdash_{\emptyset} p(c)[a \mapsto d]}{\vdash_{\emptyset} p(c) \supset p(c)[a \mapsto d]}} (\mathsf{StructR}) (2)$$

$$(1) a\#P \vdash_{\mathsf{SUB}} P = P[a \mapsto T])$$

(2) $\emptyset \vdash_{\mathsf{SUB}} \mathsf{p}(c) = \mathsf{p}(c)[a \mapsto d])$

The derivation on the right is an instance of the one on the left:

- call the left derivation Π
- then the right one is Π([p(c)/P, d/T], Ø), which is valid because Ø ⊢ a#P[p(c)/P, d/T], i.e. Ø ⊢ a#p(c)

Proof-theoretical properties Cut elimination

Theorem (Cut elimination)

The (Cut) rule is admissible in the system without it.

Proof-theoretical properties Cut elimination

Theorem (Cut elimination)

The (Cut) rule is admissible in the system without it.

Corollary

TU/e

The sequent calculus is consistent, i.e. \vdash_{Δ} can never be derived.

TU/e technische universiteit eindhoven Axiomatisation

Theory FOL

Theory FOL extends theory SUB with the following axioms:

$$P \supset Q \supset P = \top \neg \neg P \supset P = \top \top \supset P = P \quad (Props)$$
$$(P \supset Q) \supset (Q \supset R) \supset (P \supset R) = \top \perp \supset P = \top$$
$$\forall [a]P \supset P[a \mapsto T] = \top \qquad (Quants)$$
$$\forall [a](P \land Q) \Leftrightarrow \forall [a]P \land \forall [a]Q = \top$$
$$a \# P \rightarrow \forall [a](P \supset Q) \Leftrightarrow P \supset \forall [a]Q = \top$$
$$T \approx T = \top \quad U \approx T \land P[a \mapsto T] \supset P[a \mapsto U] = \top \qquad (Eq)$$

Axioms of the form $\phi = \top$ intuitively mean ' ϕ is true'. Note that this is a finite number of axioms.

Axiomatisation Equivalence with sequent calculus

Sequent and equational derivability are equivalent:

Theorem

For all formula contexts Φ, Ψ and freshness contexts $\Delta:$

$$\PhiDesignade _{\Delta}\Psi$$
 is derivable $~~$ iff $~~\DeltaDesignade _{\mathsf{FOL}}\Phi^{\wedge}\supset\Psi^{ee}= op$.

Here:

- Φ^{\wedge} is the *conjunction* of all formulas in Φ
- Ψ^{ee} the *disjunction* of all formulas in Ψ

Axiomatisation Equivalence with sequent calculus

Sequent and equational derivability are equivalent:

Theorem

For all formula contexts Φ, Ψ and freshness contexts $\Delta:$

$$\PhiDesignade _{\Delta}\Psi$$
 is derivable $~~$ iff $~~\DeltaDesignade _{\mathsf{FOL}}\Phi^{\wedge}\supset\Psi^{ee}= op$.

Here:

- Φ^{\wedge} is the *conjunction* of all formulas in Φ
- Ψ^{ee} the *disjunction* of all formulas in Ψ

Corollary

Theory FOL is consistent, i.e. $\Delta \vdash_{FOL} \top = \bot$ does not hold.

Relation to First-order Logic

TU/e

Call a term or a formula context **ground** if it does not contain *unknowns* or *explicit substitutions*.

Call $\Phi \vdash \Psi$ a first-order sequent when Φ and Ψ are ground. Gentzen's sequent calculus for first-order logic:

$$\frac{\overline{\phi, \Phi \vdash \Psi, \phi}}{\phi, \Phi \vdash \Psi, \phi} (\mathsf{Ax}) \qquad \overline{\perp, \Phi \vdash \Psi} (\bot\mathsf{L}) \\
\frac{\Phi \vdash \Psi, \phi \quad \psi, \Phi \vdash \Psi}{\phi \supset \psi, \Phi \vdash \Psi} (\supset\mathsf{L}) \qquad \frac{\phi, \Phi \vdash \Psi, \psi}{\Phi \vdash \Psi, \phi \supset \psi} (\supset\mathsf{R}) \\
\frac{\phi[\![a \mapsto t]\!], \Phi \vdash \Psi}{\forall a.\phi, \Phi \vdash \Psi} (\forall\mathsf{L}) \qquad \frac{\Phi \vdash \Psi, \phi}{\Phi \vdash \Psi, \forall a.\phi} (\forall\mathsf{R}) \quad (a \notin fn(\Phi, \Psi)) \\
\frac{\phi[\![a \mapsto t']\!], \Phi \vdash \Psi}{t' \approx t, \phi[\![a \mapsto t]\!], \Phi \vdash \Psi} (\approx \mathsf{L}) \qquad \overline{\Phi \vdash \Psi, t \approx t} (\approx \mathsf{R})$$

Relation to First-order Logic (2)

Note that:

TU/e

- we write $\forall a. \phi$ for $\forall [a] \phi$
- $\llbracket a \mapsto t \rrbracket$ is capture-avoiding substitution
- $a
 ot\in fn(\phi)$ is 'a does not occur in the free names of ϕ '
- \blacktriangleright we take formulas up to lpha-equivalence

Relation to First-order Logic (2)

Note that:

TU

- we write $\forall a. \phi$ for $\forall [a] \phi$
- $\llbracket a \mapsto t \rrbracket$ is capture-avoiding substitution
- ▶ $a
 ot \in fn(\phi)$ is 'a does not occur in the free names of ϕ '
- \blacktriangleright we take formulas up to lpha-equivalence

On ground terms, one-and-a-halfth-order logic is first-order logic:

Theorem

 $\Phi \vdash \Psi$ is derivable in the sequent calculus for first-order logic, iff $\Phi \vdash_{\emptyset} \Psi$ is derivable in the sequent calculus for one-and-a-halfth-order logic.

Semantics

TU/

For *closed* terms *t*, its **ground form** t[[]] is *t* in which each explicit substitution $v[a \mapsto u]$ is replaced by $v[[a \mapsto u]]$.

Lemma

For closed terms t, $\vdash_{SUB} t = t$ [].

technische universiteit eindhoven

A term-in-context $\Delta \rightarrow \phi$ is **valid** iff $\phi \sigma$ []] is valid in first-order logic for all instantiations σ such that $\phi \sigma$ is closed and $\vdash \Delta \sigma$ holds.

Semantics

TU

For *closed* terms t, its **ground form** t[[]] is t in which each explicit substitution $v[a \mapsto u]$ is replaced by $v[[a \mapsto u]]$.

Lemma

For closed terms t, $\vdash_{SUB} t = t[]]$.

technische universiteit eindhoven

A term-in-context $\Delta \rightarrow \phi$ is **valid** iff $\phi \sigma$ []] is valid in first-order logic for all instantiations σ such that $\phi \sigma$ is closed and $\vdash \Delta \sigma$ holds.

The sequent calculus for one-and-a-halfth-order logic is sound for this semantics:

Theorem

If $\vdash_{\Delta} \phi$ is derivable then $\Delta \rightarrow \phi$ is valid.

TU

Using nominal terms, we can:

technische universiteit eindhoven

accurately represent systems with binding:
 e.g. explicit substitution and first-order logic

specify novel systems with their own mathematical interest:
 e.g. one-and-a-halfth-order logic

One-and-a-halfth-order logic:

- makes meta-level concepts of first-order logic explicit
- has a sequent calculus with syntax-directed rules
- has a semantics in first-order logic
- has a *finite* equational axiomatisation
- ▶ is the *result* of axiomatising first-order logic in nominal algebra

Related work

TU

technische universiteit eindhoven

In **Second-Order logic (SOL)** we can quantify over predicates *anywhere*: more expressive than one-and-a-halfh-order logic.

On the other hand, we can easily extend theory FOL with *one* axiom to express the principle of induction on natural numbers:

$$P[a \mapsto 0] \land \forall [a](P \supset P[a \mapsto succ(a)]) \supset \forall [a]P = \top.$$

Higher-Order Logic (HOL) is type raising, while our logic is not:

- ▶ $P[a \mapsto t]$ corresponds to f(t) in HOL, where $f : \mathbb{T} \to \mathbb{F}$
- ▶ $P[a \mapsto t][a' \mapsto t']$ corresponds to f'(t)(t') where $f': \mathbb{T} \to \mathbb{T} \to \mathbb{F}$

One-and-a-halfth-order logic is not a subset of SOL or HOL because of freshnesses.

Future work

Topics:

- Completeness of the sequent calculus with respect to the semantics.
- Let unknowns range over sequent derivations, and establish a Curry-Howard correspondence (term-in-contexts as types, derivations as terms).
- Two-and-a-halfth-order logic (where you can abstract X)?
- Implementation and automation?

Further reading

TU/

- Murdoch J. Gabbay, Aad Mathijssen: One-and-a-halfth-order Logic. PPDP'06.
- Murdoch J. Gabbay, Aad Mathijssen: Capture-Avoiding Substitution as a Nominal Algebra. ICTAC'06.
- Murdoch J. Gabbay, Aad Mathijssen: Nominal Algebra. Submitted STACS'07.

Just to scare you

TU/

$$\frac{P[b \mapsto c][a \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{[\langle \mathsf{A} \mathsf{X} \rangle]} (\mathsf{A} \mathsf{X}) \\
\frac{P[b \mapsto c][a \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{[\langle \mathsf{A} \mathsf{A} \rangle]} (\mathsf{A} \mathsf{L}) \\
\frac{P[b \mapsto c][a \mapsto c]}{[\langle \mathsf{A} \mathsf{A} \rangle]} (\mathsf{A} \mathsf{L}) \\
\frac{P[b] \vdash c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{[\langle \mathsf{A} \mathsf{A} \rangle]} (\mathsf{A} \mathsf{L}) \\
\frac{P[b] \lor \mathsf{A} \mathsf{A} \land \mathsf{A} \land$$

Side-conditions: (1) $c \# P \vdash_{s \cup B} \forall [a] P[b \mapsto c] = (\forall [a] P)[b \mapsto c]$ (2) $c \# P \vdash c \# \forall [b] \forall [a] P$ (3) $c \# P \vdash_{s \cup B} \forall [c] P[b \mapsto c][a \mapsto c] = \forall [a] P[b \mapsto a]$ (4) $c \notin \forall [b] \forall [a] P, \forall [a] P[b \mapsto a]$

/department of mathematics and computer science