One-and-a-halfth-order Logic

Aad Mathijssen Murdoch J. Gabbay
Department of Mathematics and Computer Science
Technische Universiteit Eindhoven
The Netherlands
TCS Seminar, Vrije Universiteit Amsterdam 8th September 2006

Motivation

Consider the following valid assertions in first-order logic:

- $\phi \supset \psi \supset \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \forall a . \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- if $b \notin f n(\phi)$ then $\forall a . \phi \supset \forall b . \phi \llbracket a \mapsto b \rrbracket$

Motivation

Consider the following valid assertions in first-order logic:

- $\phi \supset \psi \supset \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \forall a . \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- if $b \notin f n(\phi)$ then $\forall a . \phi \supset \forall b . \phi \llbracket a \mapsto b \rrbracket$

These are not valid syntax in first-order logic.
This is because of meta-level concepts:

- meta-variables varying over syntax: ϕ, ψ, a, b, t
- properties of syntax: $a \notin f n(\phi), \phi \llbracket a \mapsto t \rrbracket, \alpha$-equivalence

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

$$
\begin{gathered}
\frac{\overline{\psi, \phi \vdash \phi}}{\frac{\phi \vdash \psi \supset \phi}{}(\supset \mathbf{R})} \\
\stackrel{\vdash \supset \psi \supset \phi}{\vdash}(\supset \mathbf{R})
\end{gathered}
$$

$$
\begin{gathered}
\frac{\overline{\mathrm{p}(d), \mathrm{p}(c) \vdash \mathrm{p}(c)}}{\frac{\mathrm{p}(c) \vdash \mathrm{p}(d) \supset \mathrm{p}(c)}{\vdash \mathrm{p}(c) \supset \mathrm{p}(d) \supset \mathrm{p}(c)}(\supset \mathbf{R})}(\supset \mathbf{R})
\end{gathered}
$$

And for $b \notin f n(\phi)$:

$$
\frac{\overline{\forall a . \phi \vdash \forall b . \phi \llbracket a \mapsto b \rrbracket}}{\stackrel{\forall a . \phi \supset \forall b . \phi \llbracket a \mapsto b \rrbracket}{\vdash}(\supset \mathbf{R}))}
$$

$$
\frac{\overline{\forall c . \mathrm{p}(c) \vdash \forall d . \mathrm{p}(d)}}{\stackrel{\vdash}{\vdash c . \mathrm{p}(c) \supset \forall d . \mathrm{p}(d)}}(\supset \mathbf{R})
$$

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

$$
\begin{array}{cc}
\frac{\overline{\psi, \phi \vdash \phi}(\mathbf{A x})}{} \quad \overline{\mathrm{p}(d), \mathrm{p}(c) \vdash \mathrm{p}(c)}(\mathbf{A} \mathbf{x}) \\
\frac{\phi \vdash \psi \supset \phi}{\vdash \phi \supset \mathbf{R})} & \frac{\overline{\mathrm{p}(c) \vdash \mathrm{p}(d) \supset \mathrm{p}(c)}(\supset \mathbf{R})}{\vdash(\supset \mathbf{R})}
\end{array}
$$

And for $b \notin f n(\phi)$:

$$
\frac{\overline{\forall a . \phi \vdash \forall b . \phi \llbracket a \mapsto b \rrbracket}}{\vdash \forall a . \phi \supset \forall b . \phi \llbracket a \mapsto b \rrbracket}(\supset \mathbf{R})
$$

$$
\frac{\overline{\forall c . \mathrm{p}(c) \vdash \forall d . \mathrm{p}(d)}}{\vdash \forall c . \mathrm{p}(c) \supset \forall d . \mathrm{p}(d)}(\supset \mathbf{R})
$$

The left ones are not derivations, they are schemas of derivations. The right ones might be derivations; they instances of the schemas.

Questions:

- Is there a logic in which these schematic assertions and derivations are valid syntax too?

Motivation (3)

Questions:

- Is there a logic in which these schematic assertions and derivations are valid syntax too?
- First-order logic and its proof systems formalise reasoning. But also a lot of reasoning is about first-order logic. So why shouldn't that be formalised?

Motivation (3)

Questions:

- Is there a logic in which these schematic assertions and derivations are valid syntax too?
- First-order logic and its proof systems formalise reasoning. But also a lot of reasoning is about first-order logic. So why shouldn't that be formalised?

One-and-a-halfth-order logic tries to address this by formalising:

- meta-variables (ϕ, ψ, a, b, t)
- properties of syntax $(a \notin f n(\phi), \phi \llbracket a \mapsto t \rrbracket, \alpha$-equivalence $)$

Overview

- Definition of One-and-a-halfth-order Logic
- Introduction
- Formal syntax
- Derivability
- Properties of One-and-a-halfth-order Logic
- Proof-theoretical properties
- Equational axiomatisation
- Relation to first-order logic
- Semantics
- Conclusions, related and future work

Introduction
In the syntax of one-and-a-halfth-order logic:

- Unknowns P, Q and T represent meta-variables ϕ, ψ and t.
- Atoms a and b represent meta-variables a and b.
- Freshness a\#P represents a $\notin f n(\phi)$.
- Explicit substitution $P[a \mapsto T]$ represents $\phi \llbracket a \mapsto t \rrbracket$.

Introduction (2)
The meta-level assertions in first-order logic

- $\phi \supset \psi \supset \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \forall a . \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- if $b \notin f n(\phi)$ then $\forall a . \phi \supset \forall b . \phi \llbracket a \mapsto b \rrbracket$
correspond to valid assertions in one-and-a-halfth-order logic:
- $P \supset Q \supset P$
- $a \# P \rightarrow P \supset \forall[a] P$
- $a \# P \rightarrow P \supset P[a \mapsto T]$
- $b \# P \rightarrow \forall[a] P \supset \forall[b] P[a \mapsto b]$

In sequent derivations of one-and-a-halfth-order logic:

- Contexts of freshnesses are added to the sequents.
- Derivability of freshnesses are added as side-conditions.
- Substitutional equivalence on terms is added as two derivation rules, taking care of α-equivalence and substitution.

Introduction (4)
The (schematic) derivations in first-order logic

$$
\begin{array}{cc}
\frac{\overline{\psi, \phi \vdash \phi}(\mathbf{A} \mathbf{x})}{} \quad \overline{\mathrm{p}(d), \mathrm{p}(c) \vdash \mathrm{p}(c)}(\mathbf{A} \mathbf{x}) \\
\frac{\phi \vdash \psi \supset \phi}{\vdash \phi \supset \mathbf{R})}(\supset \mathbf{R}) \\
\vdash \phi \supset \mathbf{p}(c) \vdash \mathrm{p}(d) \supset \mathrm{p}(c) & \frac{\vdash \mathrm{R})}{\vdash \mathrm{p}(c) \supset \mathrm{p}(d) \supset \mathrm{p}(c)}(\supset \mathbf{R})
\end{array}
$$

correspond to valid derivations in one-and-a-halfth-order logic:

$$
\begin{gathered}
\frac{\overline{Q, P \vdash_{\emptyset} P}}{\overline{P \vdash_{\emptyset} Q \supset P}}(\mathbf{A x}) \\
\frac{\vdash_{\emptyset} P \supset Q \supset P}{}(\supset \mathbf{R})
\end{gathered}
$$

$$
\begin{aligned}
& \text { (Ax) }
\end{aligned}
$$

The (schematic) derivations in first-order logic, where $b \notin f n(\phi)$,

$$
\frac{\overline{\forall a . \phi \vdash \forall b . \phi \llbracket a \mapsto b \rrbracket}}{\vdash \forall a . \phi \supset \forall b . \phi \llbracket a \mapsto b \rrbracket}(\supset \mathbf{R})
$$

$$
\frac{\overline{\forall c . \mathrm{p}(c) \vdash \forall d . \mathrm{p}(d)}}{\stackrel{\mathrm{Ax}}{\vdash \forall c . \mathrm{p}(c) \supset \forall d . \mathrm{p}(d)}}(\supset \mathbf{R})
$$

correspond to valid derivations in one-and-a-halfth-order logic:

$$
\begin{equation*}
\text { (1) } \frac{\overline{\forall[c] \mathbf{p}(c) \vdash_{\emptyset} \forall[c] \mathbf{p}(c)}}{\frac{\forall \mathbf{A x})}{\forall[c] \mathbf{p}(c) \vdash_{\emptyset} \forall[d] \mathbf{p}(d)}}(\mathbf{S t r u c t R}) \tag{2}
\end{equation*}
$$

(1) $b \# P \vdash_{\text {sub }} \forall[a] P=\forall[b] P[a \mapsto b]$
(2) $\emptyset \vdash_{\text {sUB }} \forall[c] p(c)=\forall[d] \mathrm{p}(d)$

$$
\begin{aligned}
& \overline{\forall[a] P \vdash_{\mathbf{b} \# \boldsymbol{P}} \forall[\mathrm{a}] P}(\mathbf{A x}) \\
& \frac{\overline{\forall[a] P \vdash_{b \# P} \forall[b] P[a \mapsto b]}}{\vdash_{b \# P} \forall[a] P \supset \forall[b] P[a \mapsto b]}(\supset \mathbf{R})
\end{aligned}
$$

Formal syntax

Nominal terms
We use Nominal Terms to specify the syntax, since they have built-in support for:

- meta-variables
- binding
- freshness

Nominal terms allow for a direct and natural representation of systems with binding.

Nominal terms are first-order, not higher-order.

Formal syntax

Sorts, atoms and unknowns
Base sorts \mathbb{F} for 'formulas' and \mathbb{T} for 'terms'.
Atomic sort \mathbb{A} for the object-level variables.
Sorts τ :

$$
\tau::=\mathbb{F}|\mathbb{T}| \mathbb{A} \mid[\mathbb{A}] \tau
$$

Atoms a, b, c, \ldots have sort \mathbb{A}.
They represent object-level variable symbols.
Unknowns X, Y, Z, \ldots have sort τ.
They represent meta-level variable symbols.
Let P, Q, R be unknowns of sort \mathbb{F}, and T, U of sort \mathbb{T}.

Formal syntax

Terms
We call $\pi \cdot X$ a moderated unknown.
This represents the permutation of atoms π acting on an unknown term. Write X when π is the identity.

Term-formers are of the form $\mathrm{f}_{\left(\tau_{1}, \ldots, \tau_{n}\right) \tau}$.
Terms t, subscripts indicate sorting rules:

$$
t::=a_{\mathbb{A}}\left|\left(\pi \cdot X_{\tau}\right)_{\tau}\right|\left(\left[a_{\mathbb{A}}\right] t_{\tau}\right)_{[\mathbb{A}] \tau} \mid\left(\mathrm{f}_{\left(\tau_{1}, \ldots, \tau_{n}\right) \tau}\left(t_{\tau_{1}}^{1}, \ldots, t_{\tau_{n}}^{n}\right)\right)_{\tau}
$$

We often drop the sorting subscripts:

$$
t::=a|\pi \cdot X|[a] t \mid f\left(t_{1}, \ldots, t_{n}\right)
$$

Write f for $f()$ if $n=0$.

Formal syntax

Terms (2)
Term-formers for one-and-a-halfth-order logic:

- $\perp_{() \mathbb{F}}:$ false
- $\supset_{(\mathbb{F}, \mathbb{F}) \mathbb{F}}$: implication, write $\supset(\phi, \psi)$ as $\phi \supset \psi$
- $\forall_{([\mathbb{A}] \mathbb{F}) \mathbb{F}}$: universal quantification, write $\forall([a] \phi)$ as $\forall[a] \phi$
- $\approx_{(\mathbb{T}, \mathbb{T}) \mathbb{F}}$: object-level equality, write $\approx(t, u)$ as $t \approx u$
- $\operatorname{var}_{(\mathbb{A}) \mathbb{T}}$: variable casting, write $\operatorname{var}(a)$ as a
- $\operatorname{sub}_{([\mathbb{A}] \tau, \mathbb{T}) \tau}$, where $\tau \in\{\mathbb{T},[\mathbb{A}] \mathbb{T}, \mathbb{F},[\mathbb{A}] \mathbb{F}\}$: explicit substitution, write $\operatorname{sub}([a] v, t)$ as $v[a \mapsto t]$
- $\mathrm{p}_{1(\mathbb{T}, \ldots, \mathbb{T}) \mathbb{F}}, \ldots, \mathrm{p}_{\mathrm{n}}(\mathbb{T}, \ldots, \mathbb{T}) \mathbb{F}$: object-level predicate term-formers
- $\mathrm{f}_{1(\mathbb{T}, \ldots, \mathbb{T}) \mathbb{T}}, \ldots, \mathrm{f}_{\mathrm{m}(\mathbb{T}, \ldots, \mathbb{T}) \mathbb{T}}$: object-level term-formers

Formal syntax

Terms (3)
Sugar:

$$
\begin{gathered}
\top \text { is } \perp \supset \perp \quad \neg \phi \text { is } \phi \supset \perp \\
\phi \wedge \psi \text { is } \neg(\phi \supset \neg \psi) \quad \phi \vee \psi \text { is } \neg \phi \supset \psi \\
\phi \Leftrightarrow \psi \text { is }(\phi \supset \psi) \wedge(\psi \supset \phi) \quad \exists[a] \phi \text { is } \neg \forall[a] \neg \phi
\end{gathered}
$$

Descending order of operator precedence:

$$
[a]_{-}, \quad\left[_\mapsto ~\right], \approx,\{\neg, \forall, \exists\},\{\wedge, \vee\}, \supset, \Leftrightarrow
$$

\wedge, \vee, \supset and \Leftrightarrow associate to the right.

Formal syntax

Terms (3)
Sugar:

$$
\begin{gathered}
\top \text { is } \perp \supset \perp \quad \neg \phi \text { is } \phi \supset \perp \\
\phi \wedge \psi \text { is } \neg(\phi \supset \neg \psi) \quad \phi \vee \psi \text { is } \neg \phi \supset \psi \\
\phi \Leftrightarrow \psi \text { is }(\phi \supset \psi) \wedge(\psi \supset \phi) \quad \exists[a] \phi \text { is } \neg \forall[a] \neg \phi
\end{gathered}
$$

Descending order of operator precedence:

$$
[a]_{-}, \quad\left[_\mapsto ~\right], \approx,\{\neg, \forall, \exists\},\{\wedge, \vee\}, \supset, \Leftrightarrow
$$

\wedge, \vee, \supset and \Leftrightarrow associate to the right.
We may call terms of sort \mathbb{F} formulas.
Example formulas:
$P \supset Q \supset P \quad P \supset \forall[a] P \quad P \supset P[a \mapsto T] \quad \forall[a] P \supset \forall[b] P[a \mapsto b]$

Formal syntax

Freshness and terms-in-context
Freshness (assertions) $a \# t$, which means ' a is fresh for t. If t is an unknown X, the freshness is called primitive.

A freshness context Δ is a set of primitive freshnesses.
Example freshness contexts:

$$
\emptyset \quad a \# X \quad a \# P, b \# Q
$$

We call $\Delta \rightarrow t$ a term-in-context; write t if $\Delta=\emptyset$.

Formal syntax

Assertions
Terms-in-context of sort \mathbb{F} represent meta-level assertions of first-order logic. For example:

- $P \supset Q \supset P$
- $a \# P \rightarrow P \supset \forall[a] P$
- $a \# P \rightarrow P \supset P[a \mapsto T]$
- $b \# P \rightarrow \forall[a] P \supset \forall[b] P[a \mapsto b]$

Formal syntax

Assertions
Terms-in-context of sort \mathbb{F} represent meta-level assertions of first-order logic. For example:

- $P \supset Q \supset P$
- $a \# P \rightarrow P \supset \forall[a] P$
- $a \# P \rightarrow P \supset P[a \mapsto T]$
- $b \# P \rightarrow \forall[a] P \supset \forall[b] P[a \mapsto b]$
represent
- $\phi \supset \psi \supset \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \forall a . \phi$
- if $a \notin f n(\phi)$ then $\phi \supset \phi \llbracket a \mapsto t \rrbracket$
- if $b \notin f n(\phi)$ then $\forall a . \phi \supset \forall b . \phi \llbracket a \mapsto b \rrbracket$

Derivability

Sequents
Let (formula) contexts Φ, Ψ be finite sets of formulas.
For example:

$$
\emptyset \quad \phi \quad \phi, \Phi \quad \Phi, \Phi^{\prime}
$$

A sequent is a triple $\Phi \vdash_{\Delta} \Psi$.
We may omit empty formula contexts, e.g. writing \vdash_{Δ} for $\emptyset \vdash_{\Delta} \emptyset$.

Derivability

Sequent calculus
Rules resembling Gentzen's sequent calculus for first-order logic:

$$
\begin{aligned}
& \text { (Ax) } \\
& \overline{\perp, \Phi \vdash_{\Delta} \psi}(\perp \mathbf{L}) \\
& \frac{\Phi \vdash_{\Delta} \Psi, \phi \quad \psi, \Phi \vdash_{\Delta} \Psi}{\phi \supset \psi, \Phi \vdash_{\Delta} \psi}(\supset \mathbf{L}) \quad \frac{\phi, \Phi \vdash_{\Delta} \Psi, \psi}{\Phi \vdash_{\Delta} \Psi, \phi \supset \psi}(\supset \mathbf{R}) \\
& \frac{\phi[a \mapsto t], \Phi \vdash_{\Delta} \psi}{\forall[a] \phi, \Phi \vdash_{\Delta} \psi}(\forall \mathbf{L}) \quad \frac{\Phi \vdash_{\Delta} \psi, \psi}{\Phi \vdash_{\Delta} \Psi, \forall[a] \psi}(\forall \mathbf{R}) \quad(\Delta \vdash a \# \Phi, \psi) \\
& \frac{\phi\left[a \mapsto t^{\prime}\right], \Phi \vdash_{\Delta} \psi}{t^{\prime} \approx t, \phi[a \mapsto t], \Phi \vdash_{\Delta} \psi}(\approx \mathbf{L}) \quad \overline{\Phi \vdash_{\Delta} \Psi, t \approx t}(\approx \mathbf{R})
\end{aligned}
$$

Derivability

Sequent calculus (2)
Other rules:

$$
\begin{gathered}
\frac{\phi^{\prime}, \Phi \vdash_{\Delta} \Psi}{\phi, \Phi \vdash_{\Delta} \Psi}(\text { StructL }) \quad\left(\Delta \vdash_{\text {sUB }} \phi^{\prime}=\phi\right) \\
\frac{\Phi \vdash_{\Delta} \Psi, \psi^{\prime}}{\Phi \vdash_{\Delta} \Psi, \psi}(\text { StructR }) \quad\left(\Delta \vdash_{\text {sUB }} \psi^{\prime}=\psi\right) \\
\frac{\Phi \vdash_{\Delta \cup\left\{a \# x_{1}, \ldots, a \neq x_{n}\right\}} \psi}{\Phi \vdash_{\Delta} \Psi}(\text { Fresh }) \quad(a \notin \Phi, \Psi, \Delta) \\
\frac{\Phi \vdash_{\Delta} \Psi, \phi \phi^{\prime}, \Phi \vdash_{\Delta} \Psi}{\Phi \vdash_{\Delta} \Psi}(\mathbf{C u t}) \quad\left(\Delta \vdash_{\text {sUB }} \phi=\phi^{\prime}\right)
\end{gathered}
$$

Derivability
Example derivations in the sequent calculus
Sequent derivation of $a \# P \rightarrow P \supset \forall[a] P:$

Derivation of $a \# P \rightarrow P \supset P[a \mapsto T]:$

$$
\frac{\overline{P \vdash_{\mathbf{a} \# P} P}(\mathbf{A x})}{P \vdash_{\mathbf{a} \# P} P[a \mapsto T]}(\text { StructR }) \quad\left(a \# P \vdash_{\text {suB }} P=P[a \mapsto T]\right)
$$

Derivability

Freshness

Write $\Delta \vdash a \# t$ when $a \# t$ is derivable from Δ using the following inference rules:

$$
\begin{gathered}
\frac{}{a \# b}(\# \mathbf{a b}) \frac{\pi^{-1}(a) \# X}{a \# \pi \cdot X}(\# \mathbf{X}) \\
\frac{a \#[a] t}{a \# \#[] \mathbf{a}) \frac{a \# t}{a \#[b] t}(\#[] \mathbf{b}) \frac{a \# t_{1} \cdots a \# t_{n}}{a \# \mathrm{f}\left(t_{1}, \ldots, t_{n}\right)}(\# \mathbf{f})} .
\end{gathered}
$$

Here, a and b range over distinct atoms.

Derivability

Freshness

Write $\Delta \vdash a \# t$ when $a \# t$ is derivable from Δ using the following inference rules:

$$
\begin{gathered}
\frac{}{a \# b}(\# \mathbf{a b}) \frac{\pi^{-1}(a) \# X}{a \# \pi \cdot X}(\# \mathbf{X}) \\
\frac{a \#[a] t}{a \# \#[] \mathbf{a}) \frac{a \# t}{a \#[b] t}(\#[] \mathbf{b}) \frac{a \# t_{1} \cdots a \# t_{n}}{a \# \mathrm{f}\left(t_{1}, \ldots, t_{n}\right)}(\# \mathbf{f})} .
\end{gathered}
$$

Here, a and b range over distinct atoms.
Examples:

$$
\vdash a \# b \quad \vdash a \# \forall[a] P \quad a \# P \vdash a \# \forall[b] P
$$

Derivability
 Equality

Equality (assertions) $t=u$, where t and u are of the same sort. Write $\Delta \vdash_{\text {sUB }} t=u$ when $t=u$ is derivable from Δ using the following inference rules, where A are axioms from SUB only:

$$
\begin{aligned}
& \overline{t=t}(\text { refl }) \quad \frac{t=u}{u=t}(\text { symm }) \quad \frac{t=u \quad u=v}{t=v}(\operatorname{tran}) \\
& \frac{t=u}{C[t]=C[u]}(\text { cong }) \quad \frac{a \# t \quad b \# t}{(a b) \cdot t=t}(\text { perm }) \\
& {\left[a \# X_{1}, \ldots, a \# X_{n}\right] \Delta} \\
& \frac{\Delta^{\pi} \sigma}{t^{\pi} \sigma=u^{\pi} \sigma}\left(\mathbf{a x}_{\mathrm{A}}\right) A \text { is } \Delta \rightarrow t=u \\
& t=u \\
& \overline{t=u}(\mathbf{f r}) \quad(a \notin t, u, \Delta)
\end{aligned}
$$

Derivability

Equality (2)

Axioms of theory SUB:

$$
\begin{aligned}
(\mathbf{v a r} \mapsto) & a[a \mapsto T] & =T \\
(\# \mapsto) & a \# X \rightarrow X[a \mapsto T] & =X \\
(\mathbf{f} \mapsto) & f\left(X, \ldots, X_{n},[a \mapsto T]\right. & =\mathfrak{f}\left(X_{1}[a \mapsto T], \ldots, X_{n}[a \mapsto T]\right) \\
(\mathbf{a b s} \mapsto) & b \# T \rightarrow([b] X)[a \mapsto T] & =[b](X[a \mapsto T]) \\
(\mathbf{r e n} \mapsto) & b \# X \rightarrow X[a \mapsto b] & =(b a) \cdot X
\end{aligned}
$$

Derivability
Equality (2)
Axioms of theory SUB:

$$
\begin{aligned}
(\text { var } \mapsto) & a[a \mapsto T] & =T \\
(\# \mapsto) & a \# X \rightarrow X[a \mapsto T] & =X \\
(\mathbf{f} \mapsto) & f\left(X_{1}, \ldots, X_{n}\right)[a \mapsto T] & =\mathfrak{f}\left(X_{1}[a \mapsto T], \ldots, X_{n}[a \mapsto T]\right) \\
(\text { abs } \mapsto) & b \# T \rightarrow([b] X)[a \mapsto T] & =[b](X[a \mapsto T]) \\
(\mathbf{r e n} \mapsto) & b \# X \rightarrow X[a \mapsto b] & =(b a) \cdot X
\end{aligned}
$$

Examples:

$$
\begin{gathered}
b \# P \vdash_{\text {sUB }} \forall[a] P=\forall[b] P[a \mapsto b] \\
\vdash_{\text {sUB }} X[a \mapsto a]=X \\
a \# Y \vdash_{\text {sUB }} Z[a \mapsto X][b \mapsto Y]=Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]
\end{gathered}
$$

Derivability
Equality (2)
Axioms of theory SUB:

$$
\begin{aligned}
(\mathbf{v a r} \mapsto) & a[a \mapsto T] & =T \\
(\# \mapsto) & a \# X \rightarrow X[a \mapsto T] & =X \\
(\mathbf{f} \mapsto) & f\left(X_{1}, \ldots, X_{n}\right)[a \mapsto T] & =\mathfrak{f}\left(X_{1}[a \mapsto T], \ldots, X_{n}[a \mapsto T]\right) \\
(\mathbf{a b s} \mapsto) & b \# T \rightarrow([b] X)[a \mapsto T] & =[b](X[a \mapsto T]) \\
(\mathbf{r e n} \mapsto) & b \# X \rightarrow X[a \mapsto b] & =(b a) \cdot X
\end{aligned}
$$

Examples:

$$
\begin{gathered}
b \# P \stackrel{\vdash_{\text {suB }} \forall[a] P=\forall[b] P[a \mapsto b]}{\vdash_{\text {suB }} X[a \mapsto a]=X} \\
a \# Y \vdash_{\text {sUB }} Z[a \mapsto X][b \mapsto Y]=Z[b \mapsto Y][a \mapsto X[b \mapsto Y]]
\end{gathered}
$$

Nominal Algebra is the theory of equality on nominal terms.

Proof-theoretical properties

Permutation and instantiation

We may permute atoms and instantiate unknowns in derivations.
Theorem
If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$, then Π^{π} is a valid derivation of $\Phi^{\pi} \vdash_{\Delta^{\pi}} \Psi^{\pi}$.

Theorem
If Π is a valid derivation of $\Phi \vdash_{\Delta} \Psi$ and $\Delta^{\prime} \vdash \Delta \sigma$, then $\Pi\left(\sigma, \Delta^{\prime}\right)$ is a valid derivation of $\Phi \sigma \vdash_{\Delta^{\prime}} \Psi \sigma$.
$\Pi\left(\sigma, \Delta^{\prime}\right)$ is Π in which:

- each unknown X is replaced by $\sigma(X)$
- each freshness context Δ is replaced by Δ^{\prime}

Proof-theoretical properties
Instantiation example
Take the following derivations:

$$
\begin{aligned}
& \overline{P \vdash_{\mathbf{a n P}} P}(\mathbf{A x}) \\
& \frac{\overline{P \vdash_{\mathbf{a \# P}} P[a \mapsto T]}}{\vdash_{\mathbf{a} \# P} P \supset P[a \mapsto T]}(\supset \mathbf{R}) \\
& \begin{array}{c}
\frac{\overline{\mathrm{p}(c) \vdash_{\emptyset} \mathrm{p}(c)}(\mathbf{A} \mathbf{x})}{\frac{\mathrm{p}(c) \vdash_{\emptyset} \mathrm{p}(c)[\mathrm{a} \mapsto d]}{\vdash_{\emptyset} \mathrm{p}(c) \supset \mathrm{p}(c)[\mathrm{a} \mapsto d]}(\supset \mathbf{R})} .
\end{array}
\end{aligned}
$$

(1) $\left.a \# P \vdash_{\text {suв }} P=P[a \mapsto T]\right)$
(2) $\left.\emptyset \vdash_{\text {SUB }} \mathrm{p}(c)=\mathrm{p}(c)[a \mapsto d]\right)$

The derivation on the right is an instance of the one on the left:

- call the left derivation Π
- then the right one is $\Pi([\mathrm{p}(c) / P, d / T], \emptyset)$, which is valid because $\emptyset \vdash a \# P[p(c) / P, d / T]$, i.e. $\emptyset \vdash a \# \mathrm{p}(c)$

Proof-theoretical properties
Cut elimination
Theorem (Cut elimination)
The (Cut) rule is admissible in the system without it.

Proof-theoretical properties
Cut elimination
Theorem (Cut elimination)
The (Cut) rule is admissible in the system without it.

Corollary
The sequent calculus is consistent, i.e. \vdash_{Δ} can never be derived.

Axiomatisation

Theory FOL
Theory FOL extends theory SUB with the following axioms:

$$
\begin{gather*}
P \supset Q \supset P=\top \quad \neg \neg P \supset P=\top \quad \top \supset P=P \quad \text { (Props) } \\
(P \supset Q) \supset(Q \supset R) \supset(P \supset R)=\top \quad \perp \supset P=\top \\
\forall[a] P \supset P[a \mapsto T]=\top \quad \text { (Quants) } \\
\forall[a](P \wedge Q) \Leftrightarrow \forall[a] P \wedge \forall[a] Q=\top \\
a \# P \rightarrow \forall[a](P \supset Q) \Leftrightarrow P \supset \forall[a] Q=\top \\
T \approx T=\top \quad U \approx T \wedge P[a \mapsto T] \supset P[a \mapsto U]=\top \quad \text { (Eq) } \tag{Eq}
\end{gather*}
$$

Axioms of the form $\phi=\top$ intuitively mean ' ϕ is true'.
Note that this is a finite number of axioms.

Axiomatisation

Equivalence with sequent calculus
Sequent and equational derivability are equivalent:
Theorem
For all formula contexts Φ, Ψ and freshness contexts Δ :
$\Phi \vdash_{\Delta} \Psi$ is derivable iff $\Delta \vdash_{\mathrm{FOL}} \Phi^{\wedge} \supset \Psi^{\vee}=T$.
Here:

- Φ^{\wedge} is the conjunction of all formulas in Φ
- Ψ^{\vee} the disjunction of all formulas in Ψ

Axiomatisation

Equivalence with sequent calculus
Sequent and equational derivability are equivalent:
Theorem
For all formula contexts Φ, Ψ and freshness contexts Δ : $\Phi \vdash_{\Delta} \Psi$ is derivable iff $\Delta \vdash_{\mathrm{FOL}} \Phi^{\wedge} \supset \Psi^{\vee}=T$.

Here:

- Φ^{\wedge} is the conjunction of all formulas in Φ
- Ψ^{\vee} the disjunction of all formulas in Ψ

Corollary
Theory FOL is consistent, i.e. $\Delta \vdash_{\text {FOL }} T=\perp$ does not hold.

Relation to First-order Logic

Call a term or a formula context ground if it does not contain unknowns or explicit substitutions.
Call $\Phi \vdash \Psi$ a first-order sequent when Φ and Ψ are ground. Gentzen's sequent calculus for first-order logic:

$$
\begin{aligned}
& \text { (Ax) } \\
& \overline{\perp, \Phi \vdash \Psi}(\perp \mathbf{L}) \\
& \frac{\Phi \vdash \Psi, \phi \quad \psi, \Phi \vdash \psi}{\phi \supset \psi, \Phi \vdash \Psi}(\supset \mathbf{L}) \quad \frac{\phi, \Phi \vdash \psi, \psi}{\Phi \vdash \Psi, \phi \supset \psi}(\supset \mathbf{R}) \\
& \frac{\phi \llbracket a \mapsto t \rrbracket, \Phi \vdash \Psi}{\forall a \cdot \phi, \Phi \vdash \Psi}(\forall \mathbf{L}) \quad \frac{\Phi \vdash \Psi, \phi}{\Phi \vdash \Psi, \forall a \cdot \phi}(\forall \mathbf{R}) \quad(a \notin f n(\Phi, \psi)) \\
& \frac{\phi \llbracket a \mapsto t^{\prime} \rrbracket, \Phi \vdash \Psi}{t^{\prime} \approx t, \phi \llbracket a \mapsto t \rrbracket, \Phi \vdash \Psi}(\approx \mathbf{L}) \quad \overline{\Phi \vdash \Psi, t \approx t}(\approx \mathbf{R})
\end{aligned}
$$

Relation to First-order Logic (2)

Note that:

- we write $\forall a . \phi$ for $\forall[a] \phi$
- $\llbracket a \mapsto t \rrbracket$ is capture-avoiding substitution
- $a \notin f n(\phi)$ is 'a does not occur in the free names of ϕ '
- we take formulas up to α-equivalence

Relation to First-order Logic (2)

Note that:

- we write $\forall a . \phi$ for $\forall[a] \phi$
- $\llbracket a \mapsto t \rrbracket$ is capture-avoiding substitution
- $a \notin f n(\phi)$ is 'a does not occur in the free names of ϕ '
- we take formulas up to α-equivalence

On ground terms, one-and-a-halfth-order logic is first-order logic:
Theorem
$\Phi \vdash \Psi$ is derivable in the sequent calculus for first-order logic, iff
$\Phi \vdash_{\emptyset} \Psi$ is derivable in the sequent calculus for one-and-a-halfth-order logic.

Semantics

For closed terms t, its ground form $t \llbracket \rrbracket$ is t in which each explicit substitution $v[a \mapsto u]$ is replaced by $v \llbracket a \mapsto u \rrbracket$.

Lemma
For closed terms $t, \quad \vdash_{\text {SUB }} t=t \llbracket \rrbracket$.
A term-in-context $\Delta \rightarrow \phi$ is valid iff $\phi \sigma \llbracket \rrbracket$ is valid in first-order logic for all instantiations σ such that $\phi \sigma$ is closed and $\vdash \Delta \sigma$ holds.

Semantics

For closed terms t, its ground form $t \llbracket \rrbracket$ is t in which each explicit substitution $v[a \mapsto u]$ is replaced by $v \llbracket a \mapsto u \rrbracket$.
Lemma
For closed terms $t, \quad \vdash_{\text {SUB }} t=t \llbracket \rrbracket$.
A term-in-context $\Delta \rightarrow \phi$ is valid iff $\phi \sigma \llbracket \rrbracket$ is valid in first-order logic for all instantiations σ such that $\phi \sigma$ is closed and $\vdash \Delta \sigma$ holds.

The sequent calculus for one-and-a-halfth-order logic is sound for this semantics:

Theorem
If $\vdash_{\Delta} \phi$ is derivable then $\Delta \rightarrow \phi$ is valid.

Conclusions

Using nominal terms, we can:

- accurately represent systems with binding: e.g. explicit substitution and first-order logic
- specify novel systems with their own mathematical interest:
e.g. one-and-a-halfth-order logic

One-and-a-halfth-order logic:

- makes meta-level concepts of first-order logic explicit
- has a sequent calculus with syntax-directed rules
- has a semantics in first-order logic
- has a finite equational axiomatisation
- is the result of axiomatising first-order logic in nominal algebra

Related work

In Second-Order logic (SOL) we can quantify over predicates anywhere: more expressive than one-and-a-halfh-order logic.

On the other hand, we can easily extend theory FOL with one axiom to express the principle of induction on natural numbers:

$$
P[a \mapsto 0] \wedge \forall[a](P \supset P[a \mapsto \operatorname{succ}(a)]) \supset \forall[a] P=\top .
$$

Higher-Order Logic (HOL) is type raising, while our logic is not:

- $P[a \mapsto t]$ corresponds to $f(t)$ in HOL, where $f: \mathbb{T} \rightarrow \mathbb{F}$
- $P[a \mapsto t]\left[a^{\prime} \mapsto t^{\prime}\right]$ corresponds to $f^{\prime}(t)\left(t^{\prime}\right)$ where $f^{\prime}: \mathbb{T} \rightarrow \mathbb{T} \rightarrow \mathbb{F}$

One-and-a-halfth-order logic is not a subset of SOL or HOL because of freshnesses.

Future work

Topics:

- Completeness of the sequent calculus with respect to the semantics.
- Let unknowns range over sequent derivations, and establish a Curry-Howard correspondence (term-in-contexts as types, derivations as terms).
- Two-and-a-halfth-order logic (where you can abstract X)?
- Implementation and automation?

Further reading

Rivi Murdoch J. Gabbay, Aad Mathijssen:
One-and-a-halfth-order Logic.
PPDP'06.
围 Murdoch J. Gabbay, Aad Mathijssen:
Capture-Avoiding Substitution as a Nominal Algebra.
ICTAC'06.
R Murdoch J. Gabbay, Aad Mathijssen:
Nominal Algebra.
Submitted STACS'07.

Just to scare you

$$
\begin{align*}
& \begin{array}{l}
\frac{\overline{P[b \mapsto c][a \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}}{\forall[a] P[b \mapsto c] \vdash_{c \# P} P[b \mapsto c][a \mapsto c]} \\
\frac{\forall \mathbf{x})}{(\forall[a] P)[b \mapsto c] \vdash_{c \# P} P[b \mapsto a][a \mapsto c]}(\text { StructL })
\end{array} \tag{1}\\
& \frac{\forall[b] \forall[a] P \vdash_{c \# P} P[b \mapsto c][a \mapsto c]}{\forall[b] \forall[a] P \vdash_{c \neq P} \forall[c] P[b \mapsto c][a \mapsto c]}(\forall \mathbf{R}) \tag{2}\\
& \text { (StructR) } \tag{3}\\
& \frac{\forall[b] \forall[a] P \vdash_{c \neq P} \forall[a] P[b \mapsto a]}{\forall[b] \forall[a] P \vdash_{0} \forall[a] P[b \mapsto a]} \text { (Fresh) }
\end{align*}
$$

Side-conditions:

$$
\begin{aligned}
& \text { (1) } c \# P \vdash_{\text {sus }} \forall[a] P[b \mapsto c]=(\forall[a] P)[b \mapsto c] \\
& \text { (2) } c \# P \vdash c \# \forall[b] \forall[a] P \\
& \text { (3) } c \# P \vdash_{\text {sus }} \forall[c] P[b \mapsto c][a \mapsto c]=\forall[a] P[b \mapsto a] \\
& \text { (4) } c \notin \forall[b] \forall[a] P, \forall[a] P[b \mapsto a]
\end{aligned}
$$

