
One-and-a-halfth-order Logic

Aad Mathijssen Murdoch J. Gabbay

Department of Mathematics and Computer Science

Technische Universiteit Eindhoven

The Netherlands

TCS Seminar, Vrije Universiteit Amsterdam

8th September 2006

Motivation

Consider the following valid assertions in �rst-order logic:

I φ ⊃ ψ ⊃ φ

I if a 6∈ fn(φ) then φ ⊃ ∀a.φ
I if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
I if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK

These are not valid syntax in �rst-order logic.

This is because of meta-level concepts:

I meta-variables varying over syntax: φ, ψ, a, b, t

I properties of syntax: a 6∈ fn(φ), φJa 7→ tK, α-equivalence

Motivation

Consider the following valid assertions in �rst-order logic:

I φ ⊃ ψ ⊃ φ

I if a 6∈ fn(φ) then φ ⊃ ∀a.φ
I if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
I if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK

These are not valid syntax in �rst-order logic.

This is because of meta-level concepts:

I meta-variables varying over syntax: φ, ψ, a, b, t

I properties of syntax: a 6∈ fn(φ), φJa 7→ tK, α-equivalence

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

(Ax)
ψ, φ ` φ

(⊃R)
φ ` ψ ⊃ φ

(⊃R)
` φ ⊃ ψ ⊃ φ

(Ax)
p(d), p(c) ` p(c)

(⊃R)
p(c) ` p(d) ⊃ p(c)

(⊃R)
` p(c) ⊃ p(d) ⊃ p(c)

And for b 6∈ fn(φ):

(Ax)
∀a.φ ` ∀b.φJa 7→ bK

(⊃R)
` ∀a.φ ⊃ ∀b.φJa 7→ bK

(Ax)
∀c.p(c) ` ∀d .p(d)

(⊃R)
` ∀c.p(c) ⊃ ∀d .p(d)

The left ones are not derivations, they are schemas of derivations.

The right ones might be derivations; they instances of the schemas.

Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

(Ax)
ψ, φ ` φ

(⊃R)
φ ` ψ ⊃ φ

(⊃R)
` φ ⊃ ψ ⊃ φ

(Ax)
p(d), p(c) ` p(c)

(⊃R)
p(c) ` p(d) ⊃ p(c)

(⊃R)
` p(c) ⊃ p(d) ⊃ p(c)

And for b 6∈ fn(φ):

(Ax)
∀a.φ ` ∀b.φJa 7→ bK

(⊃R)
` ∀a.φ ⊃ ∀b.φJa 7→ bK

(Ax)
∀c.p(c) ` ∀d .p(d)

(⊃R)
` ∀c.p(c) ⊃ ∀d .p(d)

The left ones are not derivations, they are schemas of derivations.

The right ones might be derivations; they instances of the schemas.

Motivation (3)

Questions:

I Is there a logic in which these schematic assertions and

derivations are valid syntax too?

I First-order logic and its proof systems formalise reasoning.

But also a lot of reasoning is about �rst-order logic.

So why shouldn't that be formalised?

One-and-a-halfth-order logic tries to address this by formalising:

I meta-variables (φ, ψ, a, b, t)

I properties of syntax (a 6∈ fn(φ), φJa 7→ tK, α-equivalence)

Motivation (3)

Questions:

I Is there a logic in which these schematic assertions and

derivations are valid syntax too?

I First-order logic and its proof systems formalise reasoning.

But also a lot of reasoning is about �rst-order logic.

So why shouldn't that be formalised?

One-and-a-halfth-order logic tries to address this by formalising:

I meta-variables (φ, ψ, a, b, t)

I properties of syntax (a 6∈ fn(φ), φJa 7→ tK, α-equivalence)

Motivation (3)

Questions:

I Is there a logic in which these schematic assertions and

derivations are valid syntax too?

I First-order logic and its proof systems formalise reasoning.

But also a lot of reasoning is about �rst-order logic.

So why shouldn't that be formalised?

One-and-a-halfth-order logic tries to address this by formalising:

I meta-variables (φ, ψ, a, b, t)

I properties of syntax (a 6∈ fn(φ), φJa 7→ tK, α-equivalence)

Overview

I De�nition of One-and-a-halfth-order Logic
I Introduction
I Formal syntax
I Derivability

I Properties of One-and-a-halfth-order Logic
I Proof-theoretical properties
I Equational axiomatisation
I Relation to �rst-order logic
I Semantics

I Conclusions, related and future work

Introduction

In the syntax of one-and-a-halfth-order logic:

I Unknowns P, Q and T represent meta-variables φ, ψ and t.

I Atoms a and b represent meta-variables a and b.

I Freshness a#P represents a 6∈ fn(φ).

I Explicit substitution P[a 7→ T] represents φJa 7→ tK.

Introduction (2)

The meta-level assertions in �rst-order logic

I φ ⊃ ψ ⊃ φ

I if a 6∈ fn(φ) then φ ⊃ ∀a.φ
I if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
I if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK

correspond to valid assertions in one-and-a-halfth-order logic:

I P ⊃ Q ⊃ P

I a#P → P ⊃ ∀[a]P
I a#P → P ⊃ P[a 7→ T]

I b#P → ∀[a]P ⊃ ∀[b]P[a 7→ b]

Introduction (3)

In sequent derivations of one-and-a-halfth-order logic:

I Contexts of freshnesses are added to the sequents.

I Derivability of freshnesses are added as side-conditions.

I Substitutional equivalence on terms is added as two derivation

rules, taking care of α-equivalence and substitution.

Introduction (4)

The (schematic) derivations in �rst-order logic

(Ax)
ψ, φ ` φ

(⊃R)
φ ` ψ ⊃ φ

(⊃R)
` φ ⊃ ψ ⊃ φ

(Ax)
p(d), p(c) ` p(c)

(⊃R)
p(c) ` p(d) ⊃ p(c)

(⊃R)
` p(c) ⊃ p(d) ⊃ p(c)

correspond to valid derivations in one-and-a-halfth-order logic:

(Ax)
Q,P `∅ P

(⊃R)
P `∅ Q ⊃ P

(⊃R)
`∅ P ⊃ Q ⊃ P

(Ax)
p(d), p(c) `∅ p(c)

(⊃R)
p(c) `∅ p(d) ⊃ p(c)

(⊃R)
`∅ p(c) ⊃ p(d) ⊃ p(c)

Introduction (5)

The (schematic) derivations in �rst-order logic, where b 6∈ fn(φ),

(Ax)
∀a.φ ` ∀b.φJa 7→ bK

(⊃R)
` ∀a.φ ⊃ ∀b.φJa 7→ bK

(Ax)
∀c.p(c) ` ∀d .p(d)

(⊃R)
` ∀c.p(c) ⊃ ∀d .p(d)

correspond to valid derivations in one-and-a-halfth-order logic:

(Ax)
∀[a]P `

b#P
∀[a]P

(StructR) (1)
∀[a]P `

b#P
∀[b]P[a 7→ b]

(⊃R)
`
b#P

∀[a]P ⊃ ∀[b]P[a 7→ b]

(Ax)
∀[c]p(c) `∅ ∀[c]p(c)

(StructR) (2)
∀[c]p(c) `∅ ∀[d]p(d)

(⊃R)
`∅ ∀[c]p(c) ⊃ ∀[d]p(d)

(1) b#P `
SUB

∀[a]P = ∀[b]P[a 7→ b]

(2) ∅ `
SUB

∀[c]p(c) = ∀[d]p(d)

Formal syntax
Nominal terms

We use Nominal Terms to specify the syntax, since they have

built-in support for:

I meta-variables

I binding

I freshness

Nominal terms allow for a direct and natural representation of

systems with binding.

Nominal terms are �rst-order, not higher-order.

Formal syntax
Sorts, atoms and unknowns

Base sorts F for `formulas' and T for `terms'.

Atomic sort A for the object-level variables.

Sorts τ :

τ ::= F | T | A | [A]τ

Atoms a, b, c, . . . have sort A.

They represent object-level variable symbols.

Unknowns X ,Y ,Z , . . . have sort τ .
They represent meta-level variable symbols.

Let P,Q,R be unknowns of sort F, and T ,U of sort T.

Formal syntax
Terms

We call π · X a moderated unknown.
This represents the permutation of atoms π acting on an

unknown term. Write X when π is the identity.

Term-formers are of the form f(τ1,...,τn)τ .

Terms t, subscripts indicate sorting rules:

t ::= aA | (π · Xτ)τ | ([aA]tτ)[A]τ | (f(τ1,...,τn)τ (t
1
τ1 , . . . , t

n

τn))τ

We often drop the sorting subscripts:

t ::= a | π · X | [a]t | f(t1, . . . , tn)

Write f for f() if n = 0.

Formal syntax
Terms (2)

Term-formers for one-and-a-halfth-order logic:

I ⊥()F: false

I ⊃(F,F)F: implication, write ⊃(φ, ψ) as φ ⊃ ψ

I ∀([A]F)F: universal quanti�cation, write ∀([a]φ) as ∀[a]φ
I ≈(T,T)F: object-level equality, write ≈(t, u) as t ≈ u

I var(A)T: variable casting, write var(a) as a

I sub([A]τ,T)τ , where τ ∈ {T, [A]T,F, [A]F}:
explicit substitution, write sub([a]v , t) as v [a 7→ t]

I p1(T,...,T)F, . . . , pn(T,...,T)F: object-level predicate term-formers

I f1(T,...,T)T, . . . , fm(T,...,T)T: object-level term-formers

Formal syntax
Terms (3)

Sugar: > is ⊥ ⊃ ⊥ ¬φ is φ ⊃ ⊥
φ ∧ ψ is ¬(φ ⊃ ¬ψ) φ ∨ ψ is ¬φ ⊃ ψ

φ⇔ ψ is (φ ⊃ ψ) ∧ (ψ ⊃ φ) ∃[a]φ is ¬∀[a]¬φ

Descending order of operator precedence:

[a]_, _[_ 7→ _], ≈, {¬,∀,∃}, {∧,∨}, ⊃, ⇔

∧, ∨, ⊃ and ⇔ associate to the right.

We may call terms of sort F formulas.
Example formulas:

P ⊃ Q ⊃ P P ⊃ ∀[a]P P ⊃ P[a 7→ T] ∀[a]P ⊃ ∀[b]P[a 7→ b]

Formal syntax
Terms (3)

Sugar: > is ⊥ ⊃ ⊥ ¬φ is φ ⊃ ⊥
φ ∧ ψ is ¬(φ ⊃ ¬ψ) φ ∨ ψ is ¬φ ⊃ ψ

φ⇔ ψ is (φ ⊃ ψ) ∧ (ψ ⊃ φ) ∃[a]φ is ¬∀[a]¬φ

Descending order of operator precedence:

[a]_, _[_ 7→ _], ≈, {¬,∀,∃}, {∧,∨}, ⊃, ⇔

∧, ∨, ⊃ and ⇔ associate to the right.

We may call terms of sort F formulas.
Example formulas:

P ⊃ Q ⊃ P P ⊃ ∀[a]P P ⊃ P[a 7→ T] ∀[a]P ⊃ ∀[b]P[a 7→ b]

Formal syntax
Freshness and terms-in-context

Freshness (assertions) a#t, which means `a is fresh for t.

If t is an unknown X , the freshness is called primitive.

A freshness context ∆ is a set of primitive freshnesses.

Example freshness contexts:

∅ a#X a#P, b#Q

We call ∆ → t a term-in-context; write t if ∆ = ∅.

Formal syntax
Assertions

Terms-in-context of sort F represent meta-level assertions of

�rst-order logic. For example:

I P ⊃ Q ⊃ P

I a#P → P ⊃ ∀[a]P
I a#P → P ⊃ P[a 7→ T]

I b#P → ∀[a]P ⊃ ∀[b]P[a 7→ b]

represent

I φ ⊃ ψ ⊃ φ

I if a 6∈ fn(φ) then φ ⊃ ∀a.φ
I if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
I if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK

Formal syntax
Assertions

Terms-in-context of sort F represent meta-level assertions of

�rst-order logic. For example:

I P ⊃ Q ⊃ P

I a#P → P ⊃ ∀[a]P
I a#P → P ⊃ P[a 7→ T]

I b#P → ∀[a]P ⊃ ∀[b]P[a 7→ b]

represent

I φ ⊃ ψ ⊃ φ

I if a 6∈ fn(φ) then φ ⊃ ∀a.φ
I if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
I if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK

Derivability
Sequents

Let (formula) contexts Φ,Ψ be �nite sets of formulas.

For example:

∅ φ φ,Φ Φ,Φ′

A sequent is a triple Φ `
∆

Ψ.

We may omit empty formula contexts, e.g. writing `
∆
for ∅ `

∆
∅.

Derivability
Sequent calculus

Rules resembling Gentzen's sequent calculus for �rst-order logic:

(Ax)
φ, Φ `

∆
Ψ, φ

(⊥L)
⊥, Φ `

∆
Ψ

Φ `
∆

Ψ, φ ψ, Φ `
∆

Ψ
(⊃L)

φ ⊃ ψ, Φ `
∆

Ψ

φ, Φ `
∆

Ψ, ψ
(⊃R)

Φ `
∆

Ψ, φ ⊃ ψ

φ[a 7→ t], Φ `
∆

Ψ
(∀L)

∀[a]φ, Φ `
∆

Ψ

Φ `
∆

Ψ, ψ
(∀R) (∆ ` a#Φ,Ψ)

Φ `
∆

Ψ, ∀[a]ψ

φ[a 7→ t ′], Φ `
∆

Ψ
(≈L)

t ′ ≈ t, φ[a 7→ t], Φ `
∆

Ψ

(≈R)
Φ `

∆
Ψ, t ≈ t

Derivability
Sequent calculus (2)

Other rules:

φ′, Φ `
∆

Ψ
(StructL)

φ, Φ `
∆

Ψ
(∆ `

SUB
φ′ = φ)

Φ `
∆

Ψ, ψ′

(StructR)
Φ `

∆
Ψ, ψ

(∆ `
SUB

ψ′ = ψ)

Φ `
∆∪{a#X1,...,a#Xn}

Ψ
(Fresh) (a 6∈ Φ,Ψ,∆)

Φ `
∆

Ψ

Φ `
∆

Ψ, φ φ′, Φ `
∆

Ψ
(Cut)

Φ `
∆

Ψ
(∆ `

SUB
φ = φ′)

Derivability
Example derivations in the sequent calculus

Sequent derivation of a#P → P ⊃ ∀[a]P :

(Ax)
P `

a#P
P

(∀R) (a#P ` a#P)
P `

a#P
∀[a]P

(⊃R)
`
a#P

P ⊃ ∀[a]P

Derivation of a#P → P ⊃ P[a 7→ T]:

(Ax)
P `

a#P
P

(StructR) (a#P `
SUB

P = P[a 7→ T])
P `

a#P
P[a 7→ T]

(⊃R)
`
a#P

P ⊃ P[a 7→ T]

Derivability
Freshness

Write ∆ ` a#t when a#t is derivable from ∆ using the following
inference rules:

(#ab)
a#b

π-1(a)#X
(#X)

a#π · X

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Here, a and b range over distinct atoms.

Examples:

` a#b ` a#∀[a]P a#P ` a#∀[b]P

Derivability
Freshness

Write ∆ ` a#t when a#t is derivable from ∆ using the following
inference rules:

(#ab)
a#b

π-1(a)#X
(#X)

a#π · X

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Here, a and b range over distinct atoms.

Examples:

` a#b ` a#∀[a]P a#P ` a#∀[b]P

Derivability
Equality

Equality (assertions) t = u, where t and u are of the same sort.
Write ∆ `

SUB
t = u when t = u is derivable from ∆ using the

following inference rules, where A are axioms from SUB only:

(re�)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong)

C [t] = C [u]

a#t b#t
(perm)

(a b) · t = t

∆πσ
(axA)

tπσ = uπσ
A is ∆ → t = u

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr) (a 6∈ t, u,∆)

t = u

Derivability
Equality (2)

Axioms of theory SUB:

(var 7→) a[a 7→ T] = T

(# 7→) a#X → X [a 7→ T] = X

(f 7→) f(X1, . . . ,Xn)[a 7→ T] = f(X1[a 7→ T], . . . ,Xn[a 7→ T])
(abs 7→) b#T → ([b]X)[a 7→ T] = [b](X [a 7→ T])
(ren 7→) b#X → X [a 7→ b] = (b a) · X

Examples:

b#P `
SUB

∀[a]P = ∀[b]P[a 7→ b]

`
SUB

X [a 7→ a] = X

a#Y `
SUB

Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X [b 7→ Y]]

Nominal Algebra is the theory of equality on nominal terms.

Derivability
Equality (2)

Axioms of theory SUB:

(var 7→) a[a 7→ T] = T

(# 7→) a#X → X [a 7→ T] = X

(f 7→) f(X1, . . . ,Xn)[a 7→ T] = f(X1[a 7→ T], . . . ,Xn[a 7→ T])
(abs 7→) b#T → ([b]X)[a 7→ T] = [b](X [a 7→ T])
(ren 7→) b#X → X [a 7→ b] = (b a) · X

Examples:

b#P `
SUB

∀[a]P = ∀[b]P[a 7→ b]

`
SUB

X [a 7→ a] = X

a#Y `
SUB

Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X [b 7→ Y]]

Nominal Algebra is the theory of equality on nominal terms.

Derivability
Equality (2)

Axioms of theory SUB:

(var 7→) a[a 7→ T] = T

(# 7→) a#X → X [a 7→ T] = X

(f 7→) f(X1, . . . ,Xn)[a 7→ T] = f(X1[a 7→ T], . . . ,Xn[a 7→ T])
(abs 7→) b#T → ([b]X)[a 7→ T] = [b](X [a 7→ T])
(ren 7→) b#X → X [a 7→ b] = (b a) · X

Examples:

b#P `
SUB

∀[a]P = ∀[b]P[a 7→ b]

`
SUB

X [a 7→ a] = X

a#Y `
SUB

Z [a 7→ X][b 7→ Y] = Z [b 7→ Y][a 7→ X [b 7→ Y]]

Nominal Algebra is the theory of equality on nominal terms.

Proof-theoretical properties
Permutation and instantiation

We may permute atoms and instantiate unknowns in derivations.

Theorem
If Π is a valid derivation of Φ `

∆
Ψ,

then Ππ is a valid derivation of Φπ `
∆π Ψπ.

Theorem
If Π is a valid derivation of Φ `

∆
Ψ and ∆′ ` ∆σ,

then Π(σ,∆′) is a valid derivation of Φσ `
∆′ Ψσ.

Π(σ,∆′) is Π in which:

I each unknown X is replaced by σ(X)

I each freshness context ∆ is replaced by ∆′

Proof-theoretical properties
Instantiation example

Take the following derivations:

(Ax)
P `

a#P P

(StructR) (1)
P `

a#P P[a 7→ T]
(⊃R)

`
a#P P ⊃ P[a 7→ T]

(Ax)
p(c) `∅ p(c)

(StructR) (2)
p(c) `∅ p(c)[a 7→ d]

(⊃R)
`∅ p(c) ⊃ p(c)[a 7→ d]

(1) a#P `
SUB

P = P[a 7→ T])

(2) ∅ `
SUB

p(c) = p(c)[a 7→ d])

The derivation on the right is an instance of the one on the left:

I call the left derivation Π

I then the right one is Π([p(c)/P, d/T], ∅),
which is valid because ∅ ` a#P[p(c)/P, d/T], i.e. ∅ ` a#p(c)

Proof-theoretical properties
Cut elimination

Theorem (Cut elimination)

The (Cut) rule is admissible in the system without it.

Corollary

The sequent calculus is consistent, i.e. `
∆
can never be derived.

Proof-theoretical properties
Cut elimination

Theorem (Cut elimination)

The (Cut) rule is admissible in the system without it.

Corollary

The sequent calculus is consistent, i.e. `
∆
can never be derived.

Axiomatisation
Theory FOL

Theory FOL extends theory SUB with the following axioms:

P ⊃ Q ⊃ P = > ¬¬P ⊃ P = > > ⊃ P = P (Props)

(P ⊃ Q) ⊃ (Q ⊃ R) ⊃ (P ⊃ R) = > ⊥ ⊃ P = >

∀[a]P ⊃ P[a 7→ T] = > (Quants)

∀[a](P ∧ Q) ⇔ ∀[a]P ∧ ∀[a]Q = >
a#P → ∀[a](P ⊃ Q) ⇔ P ⊃ ∀[a]Q = >

T ≈ T = > U ≈ T ∧ P[a 7→ T] ⊃ P[a 7→ U] = > (Eq)

Axioms of the form φ = > intuitively mean `φ is true'.

Note that this is a �nite number of axioms.

Axiomatisation
Equivalence with sequent calculus

Sequent and equational derivability are equivalent:

Theorem
For all formula contexts Φ,Ψ and freshness contexts ∆:

Φ `
∆

Ψ is derivable i� ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >.

Here:

I Φ∧ is the conjunction of all formulas in Φ

I Ψ∨ the disjunction of all formulas in Ψ

Corollary

Theory FOL is consistent, i.e. ∆ `
FOL

> = ⊥ does not hold.

Axiomatisation
Equivalence with sequent calculus

Sequent and equational derivability are equivalent:

Theorem
For all formula contexts Φ,Ψ and freshness contexts ∆:

Φ `
∆

Ψ is derivable i� ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >.

Here:

I Φ∧ is the conjunction of all formulas in Φ

I Ψ∨ the disjunction of all formulas in Ψ

Corollary

Theory FOL is consistent, i.e. ∆ `
FOL

> = ⊥ does not hold.

Relation to First-order Logic

Call a term or a formula context ground if it does not contain

unknowns or explicit substitutions.

Call Φ ` Ψ a �rst-order sequent when Φ and Ψ are ground.
Gentzen's sequent calculus for �rst-order logic:

(Ax)
φ, Φ ` Ψ, φ

(⊥L)
⊥, Φ ` Ψ

Φ ` Ψ, φ ψ, Φ ` Ψ
(⊃L)

φ ⊃ ψ, Φ ` Ψ

φ, Φ ` Ψ, ψ
(⊃R)

Φ ` Ψ, φ ⊃ ψ

φJa 7→ tK, Φ ` Ψ
(∀L)

∀a.φ, Φ ` Ψ

Φ ` Ψ, φ
(∀R)

Φ ` Ψ, ∀a.φ
(a 6∈ fn(Φ,Ψ))

φJa 7→ t ′K, Φ ` Ψ
(≈ L)

t ′ ≈ t, φJa 7→ tK, Φ ` Ψ

(≈ R)
Φ ` Ψ, t ≈ t

Relation to First-order Logic (2)

Note that:

I we write ∀a.φ for ∀[a]φ
I Ja 7→ tK is capture-avoiding substitution

I a 6∈ fn(φ) is `a does not occur in the free names of φ'

I we take formulas up to α-equivalence

On ground terms, one-and-a-halfth-order logic is �rst-order logic:

Theorem
Φ ` Ψ is derivable in the sequent calculus for �rst-order logic, i�

Φ `∅ Ψ is derivable in the sequent calculus for

one-and-a-halfth-order logic.

Relation to First-order Logic (2)

Note that:

I we write ∀a.φ for ∀[a]φ
I Ja 7→ tK is capture-avoiding substitution

I a 6∈ fn(φ) is `a does not occur in the free names of φ'

I we take formulas up to α-equivalence

On ground terms, one-and-a-halfth-order logic is �rst-order logic:

Theorem
Φ ` Ψ is derivable in the sequent calculus for �rst-order logic, i�

Φ `∅ Ψ is derivable in the sequent calculus for

one-and-a-halfth-order logic.

Semantics

For closed terms t, its ground form tJK is t in which each explicit

substitution v [a 7→ u] is replaced by vJa 7→ uK.

Lemma
For closed terms t, `

SUB
t = tJK.

A term-in-context ∆ → φ is valid i� φσJK is valid in �rst-order

logic for all instantiations σ such that φσ is closed and ` ∆σ holds.

The sequent calculus for one-and-a-halfth-order logic is sound for

this semantics:

Theorem
If `

∆
φ is derivable then ∆ → φ is valid.

Semantics

For closed terms t, its ground form tJK is t in which each explicit

substitution v [a 7→ u] is replaced by vJa 7→ uK.

Lemma
For closed terms t, `

SUB
t = tJK.

A term-in-context ∆ → φ is valid i� φσJK is valid in �rst-order

logic for all instantiations σ such that φσ is closed and ` ∆σ holds.

The sequent calculus for one-and-a-halfth-order logic is sound for

this semantics:

Theorem
If `

∆
φ is derivable then ∆ → φ is valid.

Conclusions

Using nominal terms, we can:

I accurately represent systems with binding:

e.g. explicit substitution and �rst-order logic

I specify novel systems with their own mathematical interest:

e.g. one-and-a-halfth-order logic

One-and-a-halfth-order logic:

I makes meta-level concepts of �rst-order logic explicit

I has a sequent calculus with syntax-directed rules

I has a semantics in �rst-order logic

I has a �nite equational axiomatisation

I is the result of axiomatising �rst-order logic in nominal algebra

Related work

In Second-Order logic (SOL) we can quantify over predicates

anywhere: more expressive than one-and-a-halfh-order logic.

On the other hand, we can easily extend theory FOL with one

axiom to express the principle of induction on natural numbers:

P[a 7→ 0] ∧ ∀[a](P ⊃ P[a 7→ succ(a)]) ⊃ ∀[a]P = >.

Higher-Order Logic (HOL) is type raising, while our logic is not:

I P[a 7→ t] corresponds to f (t) in HOL, where f : T → F
I P[a 7→ t][a′ 7→ t ′] corresponds to f ′(t)(t ′) where

f ′ : T → T → F

One-and-a-halfth-order logic is not a subset of SOL or HOL

because of freshnesses.

Future work

Topics:

I Completeness of the sequent calculus with respect to the

semantics.

I Let unknowns range over sequent derivations, and establish a

Curry-Howard correspondence (term-in-contexts as types,

derivations as terms).

I Two-and-a-halfth-order logic (where you can abstract X)?

I Implementation and automation?

Further reading

Murdoch J. Gabbay, Aad Mathijssen:

One-and-a-halfth-order Logic.

PPDP'06.

Murdoch J. Gabbay, Aad Mathijssen:

Capture-Avoiding Substitution as a Nominal Algebra.

ICTAC'06.

Murdoch J. Gabbay, Aad Mathijssen:

Nominal Algebra.

Submitted STACS'07.

Just to scare you

(Ax)
P[b 7→ c][a 7→ c] `

c#P
P[b 7→ c][a 7→ c]

(∀L)
∀[a]P[b 7→ c] `

c#P
P[b 7→ c][a 7→ c]

(StructL) (1)
(∀[a]P)[b 7→ c] `

c#P
P[b 7→ a][a 7→ c]

(∀L)
∀[b]∀[a]P `

c#P
P[b 7→ c][a 7→ c]

(∀R) (2)
∀[b]∀[a]P `

c#P
∀[c]P[b 7→ c][a 7→ c]

(StructR) (3)
∀[b]∀[a]P `

c#P
∀[a]P[b 7→ a]

(Fresh) (4)
∀[b]∀[a]P `∅ ∀[a]P[b 7→ a]

Side-conditions:
(1) c#P `

SUB
∀[a]P[b 7→ c] = (∀[a]P)[b 7→ c]

(2) c#P ` c#∀[b]∀[a]P
(3) c#P `

SUB
∀[c]P[b 7→ c][a 7→ c] = ∀[a]P[b 7→ a]

(4) c 6∈ ∀[b]∀[a]P, ∀[a]P[b 7→ a]

