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Motivation

Consider the following valid assertions in �rst-order logic:

I φ ⊃ ψ ⊃ φ

I if a 6∈ fn(φ) then φ ⊃ ∀a.φ
I if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
I if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK

These are not valid syntax in �rst-order logic.

This is because of meta-level concepts:

I meta-variables varying over syntax: φ, ψ, a, b, t

I properties of syntax: a 6∈ fn(φ), φJa 7→ tK, α-equivalence
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Motivation (2)

Consider the following derivations in Gentzen's sequent calculus:

(Ax)
ψ, φ ` φ

(⊃R)
φ ` ψ ⊃ φ

(⊃R)
` φ ⊃ ψ ⊃ φ

(Ax)
p(d), p(c) ` p(c)

(⊃R)
p(c) ` p(d) ⊃ p(c)

(⊃R)
` p(c) ⊃ p(d) ⊃ p(c)

And for b 6∈ fn(φ):

(Ax)
∀a.φ ` ∀b.φJa 7→ bK

(⊃R)
` ∀a.φ ⊃ ∀b.φJa 7→ bK

(Ax)
∀c.p(c) ` ∀d .p(d)

(⊃R)
` ∀c.p(c) ⊃ ∀d .p(d)

The left ones are not derivations, they are schemas of derivations.

The right ones might be derivations; they instances of the schemas.
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Motivation (3)

Questions:

I Is there a logic in which these schematic assertions and

derivations are valid syntax too?

I First-order logic and its proof systems formalise reasoning.

But also a lot of reasoning is about �rst-order logic.

So why shouldn't that be formalised?

One-and-a-halfth-order logic tries to address this by formalising:

I meta-variables (φ, ψ, a, b, t)

I properties of syntax (a 6∈ fn(φ), φJa 7→ tK, α-equivalence)
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Introduction

In the syntax of one-and-a-halfth-order logic:

I Unknowns P, Q and T represent meta-variables φ, ψ and t.

I Atoms a and b represent meta-variables a and b.

I Freshness a#P represents a 6∈ fn(φ).

I Explicit substitution P[a 7→ T ] represents φJa 7→ tK.



Introduction (2)

The meta-level assertions in �rst-order logic

I φ ⊃ ψ ⊃ φ

I if a 6∈ fn(φ) then φ ⊃ ∀a.φ
I if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
I if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK

correspond to valid assertions in one-and-a-halfth-order logic:

I P ⊃ Q ⊃ P

I a#P → P ⊃ ∀[a]P
I a#P → P ⊃ P[a 7→ T ]

I b#P → ∀[a]P ⊃ ∀[b]P[a 7→ b]



Introduction (3)

In sequent derivations of one-and-a-halfth-order logic:

I Contexts of freshnesses are added to the sequents.

I Derivability of freshnesses are added as side-conditions.

I Substitutional equivalence on terms is added as two derivation

rules, taking care of α-equivalence and substitution.



Introduction (4)

The (schematic) derivations in �rst-order logic

(Ax)
ψ, φ ` φ

(⊃R)
φ ` ψ ⊃ φ

(⊃R)
` φ ⊃ ψ ⊃ φ

(Ax)
p(d), p(c) ` p(c)

(⊃R)
p(c) ` p(d) ⊃ p(c)

(⊃R)
` p(c) ⊃ p(d) ⊃ p(c)

correspond to valid derivations in one-and-a-halfth-order logic:

(Ax)
Q,P `∅ P

(⊃R)
P `∅ Q ⊃ P

(⊃R)
`∅ P ⊃ Q ⊃ P

(Ax)
p(d), p(c) `∅ p(c)

(⊃R)
p(c) `∅ p(d) ⊃ p(c)

(⊃R)
`∅ p(c) ⊃ p(d) ⊃ p(c)



Introduction (5)

The (schematic) derivations in �rst-order logic, where b 6∈ fn(φ),

(Ax)
∀a.φ ` ∀b.φJa 7→ bK

(⊃R)
` ∀a.φ ⊃ ∀b.φJa 7→ bK

(Ax)
∀c.p(c) ` ∀d .p(d)

(⊃R)
` ∀c.p(c) ⊃ ∀d .p(d)

correspond to valid derivations in one-and-a-halfth-order logic:

(Ax)
∀[a]P `

b#P
∀[a]P

(StructR) (1)
∀[a]P `

b#P
∀[b]P[a 7→ b]

(⊃R)
`
b#P

∀[a]P ⊃ ∀[b]P[a 7→ b]

(Ax)
∀[c]p(c) `∅ ∀[c]p(c)

(StructR) (2)
∀[c]p(c) `∅ ∀[d ]p(d)

(⊃R)
`∅ ∀[c]p(c) ⊃ ∀[d ]p(d)

(1) b#P `
SUB

∀[a]P = ∀[b]P[a 7→ b]

(2) ∅ `
SUB

∀[c]p(c) = ∀[d ]p(d)



Formal syntax
Nominal terms

We use Nominal Terms to specify the syntax, since they have

built-in support for:

I meta-variables

I binding

I freshness

Nominal terms allow for a direct and natural representation of

systems with binding.

Nominal terms are �rst-order, not higher-order.



Formal syntax
Sorts, atoms and unknowns

Base sorts F for `formulas' and T for `terms'.

Atomic sort A for the object-level variables.

Sorts τ :

τ ::= F | T | A | [A]τ

Atoms a, b, c, . . . have sort A.

They represent object-level variable symbols.

Unknowns X ,Y ,Z , . . . have sort τ .
They represent meta-level variable symbols.

Let P,Q,R be unknowns of sort F, and T ,U of sort T.



Formal syntax
Terms

We call π · X a moderated unknown.
This represents the permutation of atoms π acting on an

unknown term. Write X when π is the identity.

Term-formers are of the form f(τ1,...,τn)τ .

Terms t, subscripts indicate sorting rules:

t ::= aA | (π · Xτ )τ | ([aA]tτ )[A]τ | (f(τ1,...,τn)τ (t
1
τ1 , . . . , t

n

τn))τ

We often drop the sorting subscripts:

t ::= a | π · X | [a]t | f(t1, . . . , tn)

Write f for f() if n = 0.



Formal syntax
Terms (2)

Term-formers for one-and-a-halfth-order logic:

I ⊥()F: false

I ⊃(F,F)F: implication, write ⊃(φ, ψ) as φ ⊃ ψ

I ∀([A]F)F: universal quanti�cation, write ∀([a]φ) as ∀[a]φ
I ≈(T,T)F: object-level equality, write ≈(t, u) as t ≈ u

I var(A)T: variable casting, write var(a) as a

I sub([A]τ,T)τ , where τ ∈ {T, [A]T,F, [A]F}:
explicit substitution, write sub([a]v , t) as v [a 7→ t]

I p1(T,...,T)F, . . . , pn(T,...,T)F: object-level predicate term-formers

I f1(T,...,T)T, . . . , fm(T,...,T)T: object-level term-formers



Formal syntax
Terms (3)

Sugar: > is ⊥ ⊃ ⊥ ¬φ is φ ⊃ ⊥
φ ∧ ψ is ¬(φ ⊃ ¬ψ) φ ∨ ψ is ¬φ ⊃ ψ

φ⇔ ψ is (φ ⊃ ψ) ∧ (ψ ⊃ φ) ∃[a]φ is ¬∀[a]¬φ

Descending order of operator precedence:

[a]_, _[_ 7→ _], ≈, {¬,∀,∃}, {∧,∨}, ⊃, ⇔

∧, ∨, ⊃ and ⇔ associate to the right.

We may call terms of sort F formulas.
Example formulas:

P ⊃ Q ⊃ P P ⊃ ∀[a]P P ⊃ P[a 7→ T ] ∀[a]P ⊃ ∀[b]P[a 7→ b]
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Formal syntax
Freshness and terms-in-context

Freshness (assertions) a#t, which means `a is fresh for t.

If t is an unknown X , the freshness is called primitive.

A freshness context ∆ is a set of primitive freshnesses.

Example freshness contexts:

∅ a#X a#P, b#Q

We call ∆ → t a term-in-context; write t if ∆ = ∅.



Formal syntax
Assertions

Terms-in-context of sort F represent meta-level assertions of

�rst-order logic. For example:

I P ⊃ Q ⊃ P

I a#P → P ⊃ ∀[a]P
I a#P → P ⊃ P[a 7→ T ]

I b#P → ∀[a]P ⊃ ∀[b]P[a 7→ b]

represent

I φ ⊃ ψ ⊃ φ

I if a 6∈ fn(φ) then φ ⊃ ∀a.φ
I if a 6∈ fn(φ) then φ ⊃ φJa 7→ tK
I if b 6∈ fn(φ) then ∀a.φ ⊃ ∀b.φJa 7→ bK
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Derivability
Sequents

Let (formula) contexts Φ,Ψ be �nite sets of formulas.

For example:

∅ φ φ,Φ Φ,Φ′

A sequent is a triple Φ `
∆

Ψ.

We may omit empty formula contexts, e.g. writing `
∆
for ∅ `

∆
∅.



Derivability
Sequent calculus

Rules resembling Gentzen's sequent calculus for �rst-order logic:

(Ax)
φ, Φ `

∆
Ψ, φ

(⊥L)
⊥, Φ `

∆
Ψ

Φ `
∆

Ψ, φ ψ, Φ `
∆

Ψ
(⊃L)

φ ⊃ ψ, Φ `
∆

Ψ

φ, Φ `
∆

Ψ, ψ
(⊃R)

Φ `
∆

Ψ, φ ⊃ ψ

φ[a 7→ t], Φ `
∆

Ψ
(∀L)

∀[a]φ, Φ `
∆

Ψ

Φ `
∆

Ψ, ψ
(∀R) (∆ ` a#Φ,Ψ)

Φ `
∆

Ψ, ∀[a]ψ

φ[a 7→ t ′], Φ `
∆

Ψ
(≈L)

t ′ ≈ t, φ[a 7→ t], Φ `
∆

Ψ

(≈R)
Φ `

∆
Ψ, t ≈ t



Derivability
Sequent calculus (2)

Other rules:

φ′, Φ `
∆

Ψ
(StructL)

φ, Φ `
∆

Ψ
(∆ `

SUB
φ′ = φ)

Φ `
∆

Ψ, ψ′

(StructR)
Φ `

∆
Ψ, ψ

(∆ `
SUB

ψ′ = ψ)

Φ `
∆∪{a#X1,...,a#Xn}

Ψ
(Fresh) (a 6∈ Φ,Ψ,∆)

Φ `
∆

Ψ

Φ `
∆

Ψ, φ φ′, Φ `
∆

Ψ
(Cut)

Φ `
∆

Ψ
(∆ `

SUB
φ = φ′)



Derivability
Example derivations in the sequent calculus

Sequent derivation of a#P → P ⊃ ∀[a]P :

(Ax)
P `

a#P
P

(∀R) (a#P ` a#P)
P `

a#P
∀[a]P

(⊃R)
`
a#P

P ⊃ ∀[a]P

Derivation of a#P → P ⊃ P[a 7→ T ]:

(Ax)
P `

a#P
P

(StructR) (a#P `
SUB

P = P[a 7→ T ])
P `

a#P
P[a 7→ T ]

(⊃R)
`
a#P

P ⊃ P[a 7→ T ]



Derivability
Freshness

Write ∆ ` a#t when a#t is derivable from ∆ using the following
inference rules:

(#ab)
a#b

π-1(a)#X
(#X)

a#π · X

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Here, a and b range over distinct atoms.

Examples:

` a#b ` a#∀[a]P a#P ` a#∀[b]P



Derivability
Freshness
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Derivability
Equality

Equality (assertions) t = u, where t and u are of the same sort.
Write ∆ `

SUB
t = u when t = u is derivable from ∆ using the

following inference rules, where A are axioms from SUB only:

(re�)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong)

C [t] = C [u]

a#t b#t
(perm)

(a b) · t = t

∆πσ
(axA)

tπσ = uπσ
A is ∆ → t = u

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr) (a 6∈ t, u,∆)

t = u



Derivability
Equality (2)

Axioms of theory SUB:

(var 7→) a[a 7→ T ] = T

(# 7→) a#X → X [a 7→ T ] = X

(f 7→) f(X1, . . . ,Xn)[a 7→ T ] = f(X1[a 7→ T ], . . . ,Xn[a 7→ T ])
(abs 7→) b#T → ([b]X )[a 7→ T ] = [b](X [a 7→ T ])
(ren 7→) b#X → X [a 7→ b] = (b a) · X

Examples:

b#P `
SUB

∀[a]P = ∀[b]P[a 7→ b]

`
SUB

X [a 7→ a] = X

a#Y `
SUB

Z [a 7→ X ][b 7→ Y ] = Z [b 7→ Y ][a 7→ X [b 7→ Y ]]

Nominal Algebra is the theory of equality on nominal terms.
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Proof-theoretical properties
Permutation and instantiation

We may permute atoms and instantiate unknowns in derivations.

Theorem
If Π is a valid derivation of Φ `

∆
Ψ,

then Ππ is a valid derivation of Φπ `
∆π Ψπ.

Theorem
If Π is a valid derivation of Φ `

∆
Ψ and ∆′ ` ∆σ,

then Π(σ,∆′) is a valid derivation of Φσ `
∆′ Ψσ.

Π(σ,∆′) is Π in which:

I each unknown X is replaced by σ(X )

I each freshness context ∆ is replaced by ∆′



Proof-theoretical properties
Instantiation example

Take the following derivations:

(Ax)
P `

a#P P

(StructR) (1)
P `

a#P P[a 7→ T ]
(⊃R)

`
a#P P ⊃ P[a 7→ T ]

(Ax)
p(c) `∅ p(c)

(StructR) (2)
p(c) `∅ p(c)[a 7→ d ]

(⊃R)
`∅ p(c) ⊃ p(c)[a 7→ d ]

(1) a#P `
SUB

P = P[a 7→ T ])

(2) ∅ `
SUB

p(c) = p(c)[a 7→ d ])

The derivation on the right is an instance of the one on the left:

I call the left derivation Π

I then the right one is Π([p(c)/P, d/T ], ∅),
which is valid because ∅ ` a#P[p(c)/P, d/T ], i.e. ∅ ` a#p(c)



Proof-theoretical properties
Cut elimination

Theorem (Cut elimination)

The (Cut) rule is admissible in the system without it.

Corollary

The sequent calculus is consistent, i.e. `
∆
can never be derived.
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Axiomatisation
Theory FOL

Theory FOL extends theory SUB with the following axioms:

P ⊃ Q ⊃ P = > ¬¬P ⊃ P = > > ⊃ P = P (Props)

(P ⊃ Q) ⊃ (Q ⊃ R) ⊃ (P ⊃ R) = > ⊥ ⊃ P = >

∀[a]P ⊃ P[a 7→ T ] = > (Quants)

∀[a](P ∧ Q) ⇔ ∀[a]P ∧ ∀[a]Q = >
a#P → ∀[a](P ⊃ Q) ⇔ P ⊃ ∀[a]Q = >

T ≈ T = > U ≈ T ∧ P[a 7→ T ] ⊃ P[a 7→ U] = > (Eq)

Axioms of the form φ = > intuitively mean `φ is true'.

Note that this is a �nite number of axioms.



Axiomatisation
Equivalence with sequent calculus

Sequent and equational derivability are equivalent:

Theorem
For all formula contexts Φ,Ψ and freshness contexts ∆:

Φ `
∆

Ψ is derivable i� ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >.

Here:

I Φ∧ is the conjunction of all formulas in Φ

I Ψ∨ the disjunction of all formulas in Ψ

Corollary

Theory FOL is consistent, i.e. ∆ `
FOL

> = ⊥ does not hold.
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Relation to First-order Logic

Call a term or a formula context ground if it does not contain

unknowns or explicit substitutions.

Call Φ ` Ψ a �rst-order sequent when Φ and Ψ are ground.
Gentzen's sequent calculus for �rst-order logic:

(Ax)
φ, Φ ` Ψ, φ

(⊥L)
⊥, Φ ` Ψ

Φ ` Ψ, φ ψ, Φ ` Ψ
(⊃L)

φ ⊃ ψ, Φ ` Ψ

φ, Φ ` Ψ, ψ
(⊃R)

Φ ` Ψ, φ ⊃ ψ

φJa 7→ tK, Φ ` Ψ
(∀L)

∀a.φ, Φ ` Ψ

Φ ` Ψ, φ
(∀R)

Φ ` Ψ, ∀a.φ
(a 6∈ fn(Φ,Ψ))

φJa 7→ t ′K, Φ ` Ψ
(≈ L)

t ′ ≈ t, φJa 7→ tK, Φ ` Ψ

(≈ R)
Φ ` Ψ, t ≈ t



Relation to First-order Logic (2)

Note that:

I we write ∀a.φ for ∀[a]φ
I Ja 7→ tK is capture-avoiding substitution

I a 6∈ fn(φ) is `a does not occur in the free names of φ'

I we take formulas up to α-equivalence

On ground terms, one-and-a-halfth-order logic is �rst-order logic:

Theorem
Φ ` Ψ is derivable in the sequent calculus for �rst-order logic, i�

Φ `∅ Ψ is derivable in the sequent calculus for

one-and-a-halfth-order logic.
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Semantics

For closed terms t, its ground form tJK is t in which each explicit

substitution v [a 7→ u] is replaced by vJa 7→ uK.

Lemma
For closed terms t, `

SUB
t = tJK.

A term-in-context ∆ → φ is valid i� φσJK is valid in �rst-order

logic for all instantiations σ such that φσ is closed and ` ∆σ holds.

The sequent calculus for one-and-a-halfth-order logic is sound for

this semantics:

Theorem
If `

∆
φ is derivable then ∆ → φ is valid.
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Conclusions

Using nominal terms, we can:

I accurately represent systems with binding:

e.g. explicit substitution and �rst-order logic

I specify novel systems with their own mathematical interest:

e.g. one-and-a-halfth-order logic

One-and-a-halfth-order logic:

I makes meta-level concepts of �rst-order logic explicit

I has a sequent calculus with syntax-directed rules

I has a semantics in �rst-order logic

I has a �nite equational axiomatisation

I is the result of axiomatising �rst-order logic in nominal algebra



Related work

In Second-Order logic (SOL) we can quantify over predicates

anywhere: more expressive than one-and-a-halfh-order logic.

On the other hand, we can easily extend theory FOL with one

axiom to express the principle of induction on natural numbers:

P[a 7→ 0] ∧ ∀[a](P ⊃ P[a 7→ succ(a)]) ⊃ ∀[a]P = >.

Higher-Order Logic (HOL) is type raising, while our logic is not:

I P[a 7→ t] corresponds to f (t) in HOL, where f : T → F
I P[a 7→ t][a′ 7→ t ′] corresponds to f ′(t)(t ′) where

f ′ : T → T → F

One-and-a-halfth-order logic is not a subset of SOL or HOL

because of freshnesses.



Future work

Topics:

I Completeness of the sequent calculus with respect to the

semantics.

I Let unknowns range over sequent derivations, and establish a

Curry-Howard correspondence (term-in-contexts as types,

derivations as terms).

I Two-and-a-halfth-order logic (where you can abstract X)?

I Implementation and automation?



Further reading

Murdoch J. Gabbay, Aad Mathijssen:

One-and-a-halfth-order Logic.
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Murdoch J. Gabbay, Aad Mathijssen:

Nominal Algebra.

Submitted STACS'07.



Just to scare you

(Ax)
P[b 7→ c][a 7→ c] `

c#P
P[b 7→ c][a 7→ c]

(∀L)
∀[a]P[b 7→ c] `

c#P
P[b 7→ c][a 7→ c]

(StructL) (1)
(∀[a]P)[b 7→ c] `

c#P
P[b 7→ a][a 7→ c]

(∀L)
∀[b]∀[a]P `

c#P
P[b 7→ c][a 7→ c]

(∀R) (2)
∀[b]∀[a]P `

c#P
∀[c]P[b 7→ c][a 7→ c]

(StructR) (3)
∀[b]∀[a]P `

c#P
∀[a]P[b 7→ a]

(Fresh) (4)
∀[b]∀[a]P `∅ ∀[a]P[b 7→ a]

Side-conditions:
(1) c#P `

SUB
∀[a]P[b 7→ c] = (∀[a]P)[b 7→ c]

(2) c#P ` c#∀[b]∀[a]P
(3) c#P `

SUB
∀[c]P[b 7→ c][a 7→ c] = ∀[a]P[b 7→ a]

(4) c 6∈ ∀[b]∀[a]P, ∀[a]P[b 7→ a]


