LOGICAL CALCULI FOR REASONING WITH BINDING

ADRIANUS HUBERTUS JOHANNES MATHIJSSEN

Logic studies reasoning.

Logic studies reasoning.

Example

"If the committee is satisfied then I will obtain my degree."

Logic studies reasoning.

Example
"If the committee is satisfied then I will obtain my degree."
Expressed in logic by the following formula:
 committee_satisfied ⇒ obtain_degree

Logic studies reasoning.

Example
"If the committee is satisfied then I will obtain my degree."
Expressed in logic by the following formula:
 committee_satisfied ⇒ obtain_degree

"If all human beings are mortal then Socrates is mortal."

Logic studies reasoning.

Example "If the committee is satisfied then I will obtain my degree." *Expressed in logic by the following formula:* committee_satisfied \Rightarrow obtain_degree "If all human beings are mortal then Socrates is mortal." *Expressed in logic by the following formula:* $\forall_{x \in Humans} mortal(x) \Rightarrow mortal(Socrates)$

In many cases we reason about logics:

 $\phi \ \Rightarrow \ (\psi \ \Rightarrow \ \phi)$

In many cases we reason about logics:

 $\phi \Rightarrow (\psi \Rightarrow \phi)$

 ϕ and ψ are **meta-variables** ranging over arbitrary formulas. We have a **schema** of formulas, one for each instantiation of ϕ and ψ .

In many cases we reason about logics:

 $\phi \Rightarrow (\psi \Rightarrow \phi)$

 ϕ and ψ are **meta-variables** ranging over arbitrary formulas. We have a **schema** of formulas, one for each instantiation of ϕ and ψ .

Example

Take committee_satisfied for ϕ and obtain_degree for ψ :

 $committee_satisfied \Rightarrow (obtain_degree \Rightarrow committee_satisfied)$

Reasoning about logics with binders

Reasoning about logics with binders

In many cases we reason about logics with **binders**, such as \forall :

 $\phi \Rightarrow \forall x.\phi$ if x does not occur free in ϕ $\forall x.\phi \Rightarrow \phi[t/x]$

 ϕ is a meta-variable ranging over formulas. t is a meta-variable ranging over terms.

Reasoning about logics with binders

In many cases we reason about logics with **binders**, such as \forall :

 $\phi \Rightarrow \forall x.\phi$ if x does not occur free in ϕ $\forall x.\phi \Rightarrow \phi[t/x]$

 ϕ is a meta-variable ranging over formulas. t is a meta-variable ranging over terms.

We need to define the following concepts:
freshness conditions: if x does not occur free in φ
substitution φ[t/x]

Observation

If logic teaches us to study reasoning, we should also study reasoning about logics.

Logics for reasoning about logics

Logics for reasoning about logics

Extend logics with explicit meta-variables P, Q, \ldots and T, U, \ldots :

 $P \Rightarrow (Q \Rightarrow P)$ $P \Rightarrow \forall x.P \qquad if x does not occur free in P$ $\forall x.P \Rightarrow P[T/x]$

Side-conditions are problematic... How do we define:
freshness conditions "if x does not occur free in P"?
substitution P[T/x]?

Logics for reasoning about logics

Extend logics with explicit meta-variables, freshness conditions and explicit substitutions:

 $F P \Rightarrow (Q \Rightarrow P)$ $F_{x\#P} P \Rightarrow \forall x.P$ $F \forall x.P \Rightarrow P[x \mapsto T]$

Problematic side-conditions are built-in: • $\vdash_{x^{\# P}}$ represents "if x does not occur free in P" • $P[x \mapsto T]$ represents P[T/x]

Contents of the thesis

The thesis introduces two logics to reason about logics with binders:

Equational logic:

- equational calculus (Chapter 2)
- semantics in nominal sets (Chapter 3)
- axiomatisation of explicit substitution (Chapter 4)

First-order logic:

- sequent calculus (Chapter 5)
- axiomatisation of the sequent calculus (Chapter 6)

Conclusion

This thesis shows how we can formalise the meta-level of logics with binding in a way that is close to informal practice.

