

Analysis of system behaviour
using the mCRL2 toolset

Aad Mathijssen

Design and Analysis of Systems group
Laboratory for Quality Software (LaQuSo)

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

NL-TWINS Meeting
Logica, Eindhoven

23th January 2009

1/19

Analysis techniques

Development of distributed systems is inherently complex:

Needed: assessment and improvement of quality

Means: analysis techniques

Analysis techniques used in distributed system development:

Structure: what things are in the system?

Behaviour: what happens in the system?

The two techniques complement each other because they
focus on different aspects of the system.

2/19

Analysis of system behaviour

What is analysis of system behaviour about?

Modelling: create an abstract model of the behaviour of
the system

gain insight in the behaviour
reduce complexity to allow for validation and verification

Validation: are we building the right product?

test requirements on the model for a number of paths
and configurations

Verification: are we building the product right?

verify requirements on the model for all possible paths
and configurations

3/19

mCRL2 toolset

For analysing the behaviour of distributed systems in industry,
tool support is essential.

The mCRL2 toolset:

Supports many aspects of analysis of system behaviour
(modelling, validation, verification)

Can be used to:

detect errors in the design or implementation of software
prevent errors already in the design of software

Goals of the mCRL2 toolset:

Generic basis for the analysis of system behaviour

Research and development of verification techniques

Industrial application of verification techniques

4/19

mCRL2 toolset: overview

Overview of the mCRL2 toolset:

20 years of history:

Late 1980s: Common Representation Language (CRL)
From 1990: µCRL
During 1990s: µCRL toolset
From 2004: mCRL2 and mCRL2 toolset

Collection of tools

External languages and tools are supported:
µCRL, CADP, χ, PNML, TorX, LySa, SystemC, LTSmin

Multi-platform: Windows, Mac and UNIX variants

Free software licence: Boost licence

Release policy: fixed release cycle (January and July)

5/19

mCRL2 toolset: modelling

Ingredients for modelling:

Actions (push button, place order, call f)

Non-deterministic choice
(either push button or place order)

Sequence (first push button, then place order)

Processes (Client, WebShop)

Parallelism (Client in parallel with WebShop)

Synchronous communication
(push button communicates with place order)

Data types
(push button(on), Client(1), call f({x|prime(x)}))

6/19

mCRL2 toolset: modelling (2)

The toolset supports two kinds of modelling:

Textual:

init ∇{r1,s4,c2,c3,c5,c6,i}(Γ{r2|s2→c2,r3|s3→c3,r5|s5→c5,r6|s6→c6}(
S(true) ‖ K ‖ L ‖ R(true)

));

Graphical:

7/19

mCRL2 toolset: validation

Validation of models supported by the toolset:

Manual or semi-automated simulation

Automated testing using the TorX test tool

Different types of visualisation

8/19

mCRL2 toolset: visualisation

Visualisation as a directed graph using automatic positioning:

9/19

mCRL2 toolset: visualisation

Visualisation as a directed graph is limited to small models:

10/19

mCRL2 toolset: visualisation

Visualisation as a graph of clusters of states:

11/19

mCRL2 toolset: visualisation

Visualisation as a 3D tree of clusters of states:

12/19

mCRL2 toolset: verification

Toolset support for automated verification
of requirements on the complete model:

Occurrences of deadlocks

Occurrences of specific actions

Equivalence of models

Formula checking:

express requirements as temporal logic formulas
check these formulas on the model

13/19

Example: dining philosophers

p1

p2

p3 p4

p5

f1

f2

f3

f4

f5

Abstractly represents various concurrency issues
such as deadlock and starvation.

14/19

Example: dining philosophers

Modelling the behaviour of the philosophers:

proc Phil(p : PhilId) =
(get(p, lf (p)) · get(p, rf (p)) + get(p, rf (p)) · get(p, lf (p)))
· eat(p)
· (put(p, lf (p)) · put(p, rf (p)) + put(p, rf (p)) · put(p, lf (p)))
· Phil(p);

Modelling the behaviour of the forks:

proc Fork(f : ForkId) =∑
p:Phil up(p, f) · down(p, f) · Fork(f);

15/19

Example: dining philosophers

Modelling the behaviour of the system as a whole:

init ∇({lock, free, eat},
Γ({get|up→ lock, put|down→ free},

Phil(p1) ‖ Phil(p2) ‖ Phil(p3) ‖ Phil(p4) ‖ Phil(p5) ‖
Fork(f1) ‖ Fork(f2) ‖ Fork(f3))) ‖ Fork(f4) ‖ Fork(f5)
)

);

16/19

Example: dining philosophers

Analysis with the mCRL2 toolset:

Verification reveals traces to deadlock states:

lock(p1, f5)
lock(p5, f4)
lock(p4, f3)
lock(p3, f2)
lock(p2, f1)

lock(p5, f5)
lock(p4, f4)
lock(p3, f3)
lock(p2, f2)
lock(p1, f1)

Traces can be validated by means of simulation

17/19

Industrial case studies

Selection of industrial case studies performed
using the µCRL and mCRL2 toolsets:

18/19

Thank you for your attention

More information can be found on mcrl2.org.

19/19

