
Verified Design of an Automated Parking Garage

Aad Mathijssen and A. Johannes Pretorius

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{a.h.j.mathijssen,a.j.pretorius}@tue.nl

Abstract. Parking garages that stow and retrieve cars automatically
are becoming viable solutions for parking shortages. However, these are
complex systems and a number of severe incidents involving such garages
have been reported. Many of these are related to safety issues in soft-
ware. We apply verification techniques to develop a software design for
an automated parking garage. This design meets a number of safety re-
quirements. We provide a software architecture that allows one to split
implementation, safety and algorithmic aspects of the software. Conse-
quently, we give a high-level description of the safety aspects and verify
a number of safety requirements on this model. Also, we briefly discuss
how this analysis is simplified by using a custom visualization tool.

1 Introduction

Many large cities cope with parking shortages. Traditionally, this has been dealt
with by building parking garages below street level or by erecting multi-storey
parking arcades. However, large parts of the floor area cannot be used for parking
since driving lanes need to be provided. Automated parking garages do not
require drivers to park their cars themselves. Instead, cars are placed into parking
spaces fully automatically, using a combination of hardware and software. The
area needed by such placement mechanisms is usually much less than that needed
for driving lanes. This drastically increases parking capacity. Apart from being
space efficient, automated parking garages often serve as status symbols for
companies or city councils.

Automated parking garages are complex systems. This is reflected by their
complex hardware. It is even more evident if one considers some of the incidents
involving such systems [1]. These range from users obtaining the wrong car,
or no car at all, to cars and equipment being reduced to rubble. The latter is a
so-called safety issue: the system causes irrecoverable damage to cars or to itself.

In this article we treat safety aspects involved in the software design of a
typical automated parking garage. By the time that we were consulted, the
hardware design of the investigated system had been finalized. As a result, it
is completely fixed and far from optimal regarding safety. This puts an extra
burden on the software. Unfortunately, this seems to be a frequent mind-set when
designing integrated systems: “don’t worry, we’ll make it work with software”.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 165–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

166 A. Mathijssen and A.J. Pretorius

The approach we take is to obtain a high-level behavioural description of the
system. Safety requirements are verified on each state of this model. By identify-
ing violations of the requirements, we are able to discover shortcomings and im-
prove our specification to ensure safety. Process algebras are well suited for such
verified design. We use the new mCRL2 language and toolset [2,3,4] to describe
system behaviour and to verify requirements. mCRL2 succeeds and extends
μCRL [5,6] with which a number of complex systems have been analysed [7,8,9].

In Sect. 2 we describe the automated parking garage in more detail. Based
on this description, we define our goals in Sect. 3. In Sect. 4 we discuss how we
conceptually divide the system software into three layers: a hardware abstraction
layer, a safety layer and a logical layer. This allows us to concentrate on the safety
layer, which we argue is essential for ensuring that the system is safe. In Sect. 5,
we describe the design of the safety layer. We follow this with a discussion of
implementation issues in Sect. 6. We also describe a simple visualization plug-in
for the mCRL2 toolset and the insights we gained by using it. We conclude in
Sect. 7.

2 Operational Description

The garage we consider was commissioned by property developers and its hard-
ware designed by a company specialising in automated parking systems. It is
due to be installed below street level in the basement of an existing building.

Access to the garage is provided by a vertical lift shaft with a door at street
level. A single car can be driven into the lift through this door. When the driver
and passengers have exited the car and the lift, the car is automatically lowered
to an intermediate level, rotated 180◦ horizontally, lowered to the basement and
stowed using a number of conveyor belts and shuttles. To retrieve a car, the
same system of conveyor belts and shuttles is used to bring the car to the lift
with which it is raised to street level. Since the car had been rotated before, it
now faces the street.

The system provides a number of security and safety checks during check-in
and check-out of a car. This includes reading a transponder card and checking
a database of registered users before opening the lift door. As the car is driven
into the lift, the driver is provided with cues to ensure a correct positioning.
There is also a check to ensure that the handbrake is engaged. Before lowering
the car to the basement, the lift is scanned to ensure that there are no living
beings present.

In the remainder of this article, we consciously abstract from hardware details.
We also restrict ourselves to the vertical lift and the basement level parking
garage. We do not consider the mechanisms put in place for regulating traffic
outside the lift, correctly positioning the car in the lift, or cues to enter and leave
the lift. We do this to tightly draw the bounds of our scope. It also allows us to
focus on the most important safety aspects of the system.

We assume the operation of the system is initiated every time a car is posi-
tioned appropriately in the lift at street level or when a request for retrieving

Verified Design of an Automated Parking Garage 167

a car is received. The lift can be in one of three vertical positions: street level,
rotation level or basement level. At rotation level, the lift is able to rotate 180◦

horizontally, provided that there are no cars positioned immediately adjacent to
the lift shaft (on either side) at basement level. The floor of the lift consists of
a conveyor belt. When the lift is at the basement level this conveyor belt is able
to move sideways (see the description below). The most complex and interesting
part of the system is the basement level. Here the movement of cars is facilitated
by a number of conveyor belts and shuttles. This is illustrated in the floor plan
of the basement in Fig. 1.

Fig. 1. Floor plan of the parking garage, basement level

As shown in Fig.1, the garage is divided into three rows (r1, r2 and r3) and ten
columns (c1–c10). Conveyor belts are represented by grey rectangles with arrows
on their ends and are identified by labels such as b r1a sh. The arrows indicate
their direction of movement. Columns c1 and c10 contain three shuttles each. In
each of these columns one shuttle may be tilted upwards on its long end facing
the wall. This results in an open position to which adjacent lowered shuttles may
be moved. A tilted shuttle may also move to a new row position behind lowered
shuttles (this implies that it is possible for two shuttles to be in the same row
and column position, provided that one is tilted and the other lowered). Black
arrows indicate the directions in which shuttles can move. Similar to the lift,
every shuttle contains a conveyor belt that can move sideways.

The lift shaft is in row r1. Notice that it is not placed over a full position,
but intersects two columns (c6 and c7). This is due to the construction of the
building in which the garage is to be installed (and beyond the control of the
engineers who designed the parking installation). More importantly, this implies
that it must be possible to move cars half-column distances in the first row. For

168 A. Mathijssen and A.J. Pretorius

this reason, every column in row r1 is also divided into an a (left) and b (right)
part as indicated by the dashed lines in Fig. 1. We use this same convention in
naming the conveyor belts. Hence, b r1a sh refers to the conveyor belt of the
shuttle on the left-hand side of row r1, and so forth.

It is possible for adjacent conveyor belts to move simultaneously to function
as a single larger conveyor belt. For instance, b r3a sh and b r3 can be moved in
unison. The system hardware can determine whether any (half-)position is free
or occupied. For any column in r1, it is possible to determine the status of its a
(left) and b (right) part. It is possible to determine whether there is a lowered,
a tilted or no shuttle at all in any row of c1 and c10. Furthermore, the current
height of the lift and its status (free or occupied) can be determined.

3 Problem Description

We have mentioned that hardware design is outside the scope of this article. It is
also not our goal to develop algorithms. Instead, our aim is to provide specialists
in algorithm design with an interface to an abstraction of the underlying hard-
ware that guarantees the safe and correct operation of the system. This provides
a clear separation of concerns.

Placement and retrieval algorithms need to ensure that cars are efficiently
stowed and retrieved in a fashion that resembles a large sliding puzzle. Even if
these algorithms contain errors, the safety interface should not allow the parking
garage or the cars in it to get damaged. It needs to specify the necessary checks
and restrictions that guarantee the execution of only safe or legal moves. For
example, when an algorithm requests that a car be moved to a position that
is already occupied by another car, the safety layer should not allow this. The
safety interface must also be able to report on the success or failure of issued
commands. Properly designed algorithms should be able to respond to such
feedback in an appropriate fashion.

4 Conceptual System Design

We now provide a high-level software design for the automated parking garage.

4.1 Architecture

Our aim is to specify a safety interface that sits between placement and retrieval
algorithms and the abstract hardware of the automated parking garage. This
interface must allow only safe or legal instructions and report on their success
or failure. To achieve this, we introduce a three-layered architecture consisting
of a logical layer (LL), a safety layer (SL) and a hardware abstraction layer
(HAL) (see Fig. 2). With this division into layers, the safety layer ensures the
safe operation of the system independently of the particular algorithms that
are implemented and without being concerned with hardware implementation
issues.

Verified Design of an Automated Parking Garage 169

Fig. 2. Three-layered architecture

Data. The following data are communicated between the layers:

– Event : an event outside the scope of our design that has an impact on the
system. We identify the following events:

• add car : a new car enters the lift.
• remove car : a car is removed from the lift.

– InstructionSet : a set of instructions to be executed concurrently by the HAL.
It consists of a number of elements of type Instruction. The notion of a set
of instructions allows for the execution of multiple instructions that apply to
non-overlapping areas of the basement. For instance, with a single request it
is possible to issue different instructions for moving conveyor belts as long
as the belts in question do not overlap (see next section).

– Instruction: a single instruction that the hardware should execute. Instruc-
tions should be implemented by the HAL (see Sect. 4.2). There are 5 different
instructions:

• move belts(bs: BeltSet, d: Direction, ms: MoveSize): move the set of belts
bs in direction d by a distance of size ms (half or full position).

• move shuttles(shs: ShuttleSet, o: ShuttleOrientation, d: Direction): move
the set of shuttles shs in orientation o (lowered or tilted upwards) in
direction d by a distance of one row interval.

• tilt shuttle(p: ShuttlePosition, o: ShuttleOrientation): lower or tilt the
shuttle in positions p and orientation o to the orientation that is the
opposite of o.

• move lift(h: Height): move the lift to vertical position h.
• rotate lift : rotate the lift 180◦ horizontally.

– Result : indicates whether a set of instructions has been executed successfully
(ok) or whether it has failed (fail).

– GlobalState: the current system state. That is, for every position whether
it is free or occupied (FloorState), for every shuttle whether it is lowered
or tilted upwards (ShuttleState), and for the lift its current vertical position
and also whether it is free or occupied (LiftState).

170 A. Mathijssen and A.J. Pretorius

Interactions. To facilitate communication between the different layers, we in-
troduce the following interactions:

– occur(e: Event): the occurrence of an event e. When the HAL detects e, the
SL is informed by the action occur(e). The SL informs the LL by issuing
a similar occur(e) action. For the sake of design modularity, the LL is not
directly informed by the HAL.

– req(is: InstructionSet): request the execution of instructions is. A request
from the LL to execute instructions is propagated to the HAL via the SL.

– ack req(is: InstructionSet): a signal from the SL that the instructions in is
are safe.

– deny req(is: InstructionSet): a signal from the SL that the instructions in is
are unsafe. The SL makes no subsequent requests to the HAL.

– ack exec(is: InstructionSet, r: Result): the instructions in is have been com-
pleted with result r. The HAL issues an ack exec(is, r) action to the SL.
Consequently, the SL issues this action to the LL.

– req state: request the current global state of the system.
– ack state(gs: GlobalState): communicate the current global state from the

HAL to higher layers. This is done in response to a req state action.

4.2 Hardware Abstraction Layer (HAL)

We assume that the HAL serves as a coherent interface to all individual hardware
components in the garage. The HAL receives requests for sets of instructions
from the SL (action req). For each set of instructions the HAL attempts to
execute the individual instructions and reports back on the result of the attempt
(action ack exec). For the specification of the SL to yield the intended results,
instructions must be implemented correctly by the HAL. We assume that this
is the case. Apart from executing instructions, the HAL also provides the SL
with the current system state before and after issuing any instructions. Such a
system state is constructed by the HAL using sensors that monitor the status
of the conveyor belts, the shuttles and the lift.

4.3 Logical Layer (LL)

The LL allows for the development of algorithms by experts who can plug their
specifications into the SL. These algorithms may contain errors that trigger the
request of unsafe instructions. Due to the safety layer, such requests are harmless
and will be blocked. More concretely, the LL utilises the SL by requesting that
sets of instructions be executed. The SL reports back to the LL in the form of
ack req, deny req and ack exec actions. It also informs the LL of events that have
occurred (a new car to stow or the removal of an existing car). The logical layer
should respond to such feedback appropriately.

4.4 Safety Layer (SL)

The SL sits between the LL and the HAL. It receives requests (req) from the
LL, which it acknowledges (ack req) or denies (deny req), based on whether

Verified Design of an Automated Parking Garage 171

the instruction is safe for the current state. After an acknowledgement is sent,
the request is passed on to the HAL. In other cases the SL passes information
between the HAL and the LL. We treat the SL in more detail in the next section.

5 Verified Design of the Safety Layer

In this section, we identify the safety requirements for the SL and we develop
a specification in mCRL2, for which these should be satisfied. Consequently, we
verify that this is indeed the case. A more detailed account of the analysis can be
found in the corresponding technical report [10]. The full mCRL2 specification
and verification code is also included in the report.

5.1 Informal Requirements

The SL should meet the following safety requirements:

1. Conveyor belts:
(a) When a car is moved from one belt to another, both belts should move

in the same direction.
(b) Cars should never be moved into walls.
(c) Cars should never be moved to a belt that is not available (when a shuttle

is tilted, or when the lift belt is not at the basement level).
2. Shuttles:

(a) Shuttles should never be moved into a wall.
(b) When moving shuttles, no shuttles should be damaged.
(c) When moving shuttles, cars should not be damaged.
(d) When tilting a shuttle, no shuttles should be damaged.
(e) When tilting a shuttle, cars should not be damaged.

3. Lift:
(a) When moving the lift, cars should not be damaged.
(b) When rotating the lift, cars should not be damaged.

5.2 Specification of Data Types

The data types described in Sect. 4.1 can be translated into mCRL2 in a rela-
tively straightforward way:

sort
Instruction = struct move belts(R1BeltSet,DirCol, MoveSize)

| move belts(R2BeltSet,DirCol, MoveSize)
| move belts(R3BeltSet,DirCol, MoveSize)
| move shuttles(ShuttlePosSet,ShuttleOrientation,DirRow)
| tilt shuttle(ShuttlePos,ShuttleOrientation)
| move lift(LiftHeight)
| rotate lift;

InstructionSet = List(Instruction);% representing a set of instructions
Event = struct add car | remove car;
Result = struct ok | fail;
GlobalState = struct glob state(fs : FloorState, shs : ShuttleState, ls : LiftState);

The ambiguity of the definition of Instruction is resolved by the fact that
R1BeltSet, R2BeltSet and R3BeltSet are different types. These types are defined

172 A. Mathijssen and A.J. Pretorius

in fashion similar to the above definition. Note that the data language of mCRL2
is fully higher-order and we use this to implement some data types as functions.
For instance, the datatype FloorState is defined as FloorPos → OccState. That
is, a function from floor positions to occurrence states indicating whether a po-
sition is free or occupied.

Allowed Instruction Sets. The informal requirements introduced in Sect. 5.1
apply to the InstructionSet data type. In our specification of the SL we use an
allowed function on sets of instructions to determine whether they are safe. A
set of instructions is is allowed if:

1. is specifies at least one instruction.
2. The instructions in is do not overlap. That is, the positions on which the

instructions operate are pairwise disjoint. Consequently, it is safe to execute
the instructions in is simultaneously.

3. Each individual instruction in is is allowed.
Formulated in mCRL2:

map
allowed : InstructionSet × GlobalState → Bool;
% allowed(is, gs) indicates if instruction set is is allowed given global state gs
allowed : Instruction × GlobalState → Bool;
% allowed(i, gs) indicates if instruction i is allowed given global state gs
overlap : Instruction × InstructionSet → Bool;
% overlap(i, is) indicates if instruction i overlaps with any of the instructions in is

var
gs : GlobalState;
i, j : Instruction;
is : InstructionSet;

eqn
allowed([], gs) = false;
allowed(i � [], gs) = allowed(i, gs);
allowed(i � j � is, gs) = allowed(i, gs) ∧ ¬overlap(i, j � is) ∧ allowed(j � is, gs);

Here × represents the Cartesian product and � represents the list cons operation.
We are now left with the task of defining the functions overlap and allowed. We
elaborate on the latter, which is the least trivial.

Allowed Instructions. The core of the allowed function on instruction sets
is an allowed function on individual instructions. We describe this function for
every instruction.

move belts(bs: BeltSet, d: Direction, ms: MoveSize) is allowed if:

1. bs contains at least one conveyor belt.
2. All conveyor belts in bs directly border each other (this also implies that

they must be in the same row).
3. All conveyor belts in bs are available (this applies to belts on the lift and on

shuttles).
4. At least one position of size ms (full or half) is free at the end of the set of

belts specified. This free position is on the side indicated by d.
5. If the specified belts are in row r1, there is no car with one half on a belt in

bs and the other half on a neighbouring belt not in bs.

Verified Design of an Automated Parking Garage 173

move shuttles(shs: ShuttleSet, o: ShuttleOrientation, d: Direction) is allowed if:

1. shs contains at least one shuttle.
2. All shuttles in shs border each other (this implies that they are all in column

c1 or c10).
3. All specified shuttles are available in the orientation specified by o (lowered

or tilted).
4. There is an open position at the end of shs in orientation o and direction d.

This ensures that there is an open position for the shuttles to move to.
5. For every lowered r1 shuttle s in shs, there is no car with one half on s and

the other half on a neighbouring belt.

tilt shuttle(p: ShuttlePosition, o: ShuttleOrientation) is allowed if:

1. It is not the case that there is both a lowered and a tilted shuttle at the
position specified by p.

2. If o is lowered, there is no car on the shuttle (fully or partially).

move lift(h: Height) is allowed if:

1. h is not the current height.
2. If the current height is basement level, there are no cars with one half on

the lift and the other half on a neighbouring belt.

rotate lift is allowed if:

1. The lift is at rotation level.
2. Three half-positions on both sides of the lift are free. This prevents cars in

these positions from being damaged by the rotation mechanism.

As an illustrative example of how the allowed function has been formally defined,
we provide its definition for the rotate lift instruction below. The complete formal
specification of the allowed function can be found in [10].

var
fs : FloorState;
shs : ShuttleState;
ls : ListState;

eqn
allowed(rotatelift, globstate(fs, shs, ls)) =

height(ls) ≈ rotate ∧
free([pos r1(c5, pa), pos r1(c5, pb),pos r1(c6, pa),

pos r1(c7, pb),pos r1(c8,pa), pos r1(c8,pb)], fs);

Here ≈ denotes the equality function on data types.

5.3 Specification of Behaviour

For the specification of the behaviour of the SL we note the following:

– At any point in time, the SL processes a single set of instructions. Multiple
sets of instructions would complicate the system without having performance
benefits (instead of buffering instruction sets in the LL, they would also have
to be buffered in the SL).

174 A. Mathijssen and A.J. Pretorius

– We do not take the message passing of the system state or external events
into account, as this does not impact safety.

The interactions of Sect. 4.1 are specified by splitting them into actions repre-
senting the send and receive parts, as illustrated below. The Layer parameters
indicate the sending and receiving layer of the action, respectively.

sort
Layer = struct logical | safety | hardware;

act
snd req, rcv req : Layer × Layer × InstructionSet;
snd ack req, rcv ack req : Layer × Layer × InstructionSet;
snd deny req, rcv deny req : Layer × Layer × InstructionSet;
snd ack exec, rcv ack exec : Layer × Layer × InstructionSet × Result;
snd state, rcv state : Layer × Layer × GlobalState;
snd event, rcv event : Layer × Layer × Event;

Finally, using the actions defined above, the behaviour of the SL is specified as
follows:

sort
ProcState = struct ps idle | ps ack deny | ps req | ps exec | ps ack exec;

proc
SL(ps : ProcState,gs sl : GlobalState, is : InstructionSet, r : Result) =

(ps ≈ ps idle) →
(
�

isa:InstructionSet valid(isa) → rcv req(logical, safety, isa) ·
SL(ps ack deny, gs sl, isa, r)

)
+

(ps ≈ ps ack deny) →
(allowed(is, gs sl) →

(snd ack req(safety, logical, is) · SL(ps req, gs sl, is, r)) �
(snd deny req(safety, logical, is) · SL(ps idle, gs sl, is, r))

)
+

(ps ≈ ps req) →
snd req(safety,hardware, is) · SL(ps exec,gs sl, is, r)

+
(ps ≈ ps exec) →

(
�

ra:Result rcv ack exec(safety,hardware, is, ra) ·
SL(ps ack exec,nextstate(is, ra, gs sl), is, ra)

)
+

(ps ≈ ps ack exec) →
snd ack exec(safety, logical, is, r) · SL(ps idle, gs sl, is, r)

+
(ps ≈ ps idle) →

(
�

e:Event possible(e,gs sl) → rcv event(hardware, safety, e) ·
SL(ps,nextstate(e, gs sl), is, r)

)
;

init
SL(ps idle, init gs, [], ok);

Verified Design of an Automated Parking Garage 175

This specifies a process SL with 4 parameters, representing the current state
of the process (ps) and the garage (gs sl), and the instruction set (is) and
execution result (r) that are to be processed. The behaviour is a collection of
alternatives formed from condition-action-result sequences. A summation over
a data type indicates a choice over all elements of that data type. Finally, we
use three additional functions: valid ensures that the lists we use to model sets
do not contain duplicates, possible indicates whether it is possible for an event
to occur, and nextstate returns the new state of the system. We do not provide
specifications of these functions here.

5.4 Reductions

Due to the enormous number of possible instruction sets that can be requested
and executed, it is impossible to perform simulation, let alone verification, on the
behavioural specification. This section describes a number of reductions we apply
to enable verification. The corresponding specifications can be found in [10].

Reduction 1. Abstract from sets of instructions by focusing on single instruc-
tions only.

On the one hand this abstraction is dangerous, because sets of instructions are
an essential part of the system. On the other hand, the core safety issue lies in
the allowed function applied to single instructions. Furthermore, the number of
possible system configurations remains the same, since the result of executing a
set of instructions concurrently is the same as executing them sequentially. This
implies that in the corresponding state space the number of states remains fixed,
but the number of transitions is reduced substantially.

Although the former reduction makes it possible to perform simulation, it is
not very effective. The aim is to focus on logical mistakes and not hardware
failures. For this reason, we also abstract from non-essential messages.

Reduction 2. Abstract from requests and acknowledgements. It is assumed
that instructions are executed successfully by the HAL.

The state space corresponding to the specification after applying the above re-
ductions is still prohibitively large. It consists of a calculated total of 6.4 × 1011

(640 billion) states, and a multiple of this in transitions. Hence, we apply one
last abstraction.

Reduction 3. The number of positions of the belts is reduced to the minimum
that retains the behavioural characteristics of the original configuration. This
entails the following. The positions on the conveyor belts b r2 and b r3 are
reduced to two positions each (see Fig. 3). Also, belts b r1a and b r1b are reduced
to 1 1

2 full positions (or 3 half positions) each.

The resulting state space has 3.3×106 (3.3 million) states and 9.8×107 (98 mil-
lion) transitions, which existing verification tools can manage. Although strictly
speaking we are not concerned with proving deadlock-free behaviour, we note
that this state space contains no deadlock.

176 A. Mathijssen and A.J. Pretorius

Fig. 3. Reduction of the floor plan

5.5 Formal Requirements and Verification

We verify our safety requirements by extending the specification with error ac-
tions that are only executed when a requirement is violated. Hence, the require-
ments are fulfilled when the state space does not contain any error actions. To
do this, we translate the high-level requirements from Sect. 5.1 to a lower level
of detail. For example, requirement 3(a) is translated to the following.

For all heights h the instruction move lift(h) should not be allowed if both:

1. The lift is at the basement level.
2. The lift contains a car placed halfway on the lift.

This is translated to mCRL2 as the condition-action-result sequence shown be-
low, and is appended to the original specification.

�
i:Instruction,lh:LiftHeight(i ≈ move lift(lh) ∧ valid(i) ∧ allowed(i, gs sl) ∧
ls(gs sl) ≈ ls basement ∧
¬free(positions(b r1lift), fs(gs sl)) ∧
¬(even occ(positions b r1([b r1a sh, b r1a]), fs(gs sl)) ∧

even occ(positions b r1([b r1b,b r1b sh]), fs(gs sl)))
) → error(req3a, 1) · δ

Extra care is taken to specify the enabling conditions of the error actions: the
use of elements of the definition of the allowed function are avoided as much
as possible, since mistakes in the original specification could carry over to the
verification. When we extend the original specification in this fashion, it does
not contain any errors. This means that all the requirements are fulfilled.

We conclude this section with some figures. The complete specification con-
tains 991 lines of mCRL2 code, whereas the verification code contains 217 lines
of mCRL2, amounting to a total of 1208 lines. Verification took 35 hours and 16
minutes on a single PC (3 GHz CPU, 4 GB RAM), and 5 hours and 38 minutes on
a cluster of 34 CPUs (3 GHz CPU, 2 GB RAM). The specification and analysis
of the safety layer required approximately 480 man hours to complete.

6 Discussion

Before we draw conclusions, we elaborate on two issues. We discuss how visu-
alization helped us during the analysis. Also, we mention some issues regarding
the implementation of software based on our specification.

Verified Design of an Automated Parking Garage 177

6.1 Visualization

During specification we often resorted to simulating the behaviour of the system
using the mCRL2 toolset. The simulator tool allows us to quickly and incremen-
tally check whether our specification results in the behaviour we had anticipated.
This is opposed to generating and examining an entire state space which is quite
a time consuming undertaking. However, we soon realised that interpreting the
text-based output of the simulator is arduous, not entirely intuitive, and prone
to human error.

To address these problems and inspired by other visualization initiatives for
systems analysis [11,12], we implemented a very simple visualization tool as a
plug-in to the simulator. This tool receives the current system state from the
simulator and maps it onto a simple 2D floor plan of the parking garage (see
Fig. 4). The visualization uses visual cues to indicate the vertical lift position
and whether a specific position is occupied (red or dark grey), free (green or
medium gray) or unavailable (light gray). Tilted shuttles are also shown. After
selecting a new transition, the visualization is updated and the user is able to
analyse the system using this representation. The plug-in is distributed with the
mCRL2 toolset [4].

(a) Shuttle-induced error

(b) Lift-induced error

Fig. 4. Mistakes identified with the visualization plug-in

Using our visualization tool we discovered a number of problems related to
the fact that cars may be moved by half positions in row r1. For instance, we
moved a car toward the side of the garage and positioned it with one half on
a conveyor belt and one half on a shuttle. To our surprise, it was possible to

178 A. Mathijssen and A.J. Pretorius

subsequently move the shuttle, literally tearing the car in half (see Fig. 4(a))!
This first bug was relatively easy to fix. A similar problem occurred when two
cars were positioned side-by-side on the lift, each with one half on a neighbouring
conveyor belt. In this case, despite our best efforts to explicitly check for such a
situation, it was possible to move the lift upward, tearing two cars in half (see
Fig. 4(b)). This turned out to be a harder problem to solve and involved keeping
track of the number of half-positions occupied in row r1 (see Sect. 5.5).

We found the representation of our visualization tool to be intuitively clear
and easy to understand. We also believe that this mode of analysis saved a great
amount of time. Since we could follow cars as they were transported down the
lift and moved to new positions using the conveyor belts and shuttles, we were
able to construct potentially dangerous scenarios, such as those discussed above
relatively easily. This allowed us to identify and correct a number of problems
early on. These included mistakes on our part as well as unknown complexities
about the system setup. Although all requirements should also be checked during
formal verification, we emphasise that this rests on the assumption that all
relevant questions have been identified and formalised. By visualizing the current
state it is possible to identify issues that may not have been noted otherwise.

6.2 Implementation

As far as software development is concerned, the next step would be to use the
specification of data types and behaviour discussed in this article as a starting
point for an implementation. Moreover, we believe that reuse of the allowed
function is of crucial importance. Should software be designed and implemented
without considering this, we believe that some of the problems we identified
and addressed could easily creep into the implementation despite considerable
precaution on the part of the programmers. Unfortunately, we know of cases
where such an approach was not taken and where both cars and vital equipment
were damaged [1].

Before starting to implement the safety layer, the following aspects require
further investigation:

– We have only formally verified the specification for individual instructions
(see Sect. 5.5). Although we believe that the specification is also correct for
sets of instructions, this cannot be guaranteed.

– We do not distinguish between the occurrence of a recoverable and an unre-
coverable hardware failure. All failures are assumed to be recoverable. Fur-
thermore, execution of a set of instructions only gives one result which holds
for all instructions. For more detailed error handling, the execution of indi-
vidual instructions should also return results. That is, after the execution of
a set of instructions, some elements may return ok while others may return
fail.

– In practice, the events add car and remove car are not atomic. They need
to be split up into a begin and end part. This results in additional safety
requirements. For example, it should be impossible to execute a move lift
instruction between the begin and end part of an event.

Verified Design of an Automated Parking Garage 179

Although we have not investigated the efficiency of the automated parking
garage we foresee a performance challenge in terms of the timely stowing and
recovery of cars in practice.

7 Conclusion

We have described the verified design of an automated parking garage. We pro-
posed a system design consisting of three layers: a logical layer, a safety layer
and a hardware abstraction layer. We have discussed the verified design of the
safety layer. Verification guarantees that in every valid configuration of the sys-
tem, no damage can occur due to the execution of unsafe instructions. We argue
that our work comprises the essence of the system design regarding safety. We
recommend that a future implementation should closely follow this design.

With regard to the analysis process, although formal verification is necessary
to ensure that requirements are never violated, we want to stress that simula-
tion should not be underestimated. All defects in the specification were found
using simulation. Also, simulation allowed us to identify and address interesting
behavioural characteristics that would probably not have been included in the
requirements otherwise. In particular, we found visually supported simulation to
be extremely effective. In this way we were able to gain insight into the system
in a way that goes further than simply listing and verifying requirements.

Finally, in this case study software development only started after the hard-
ware design was finished. We argue that both hardware and software experts
should be involved in the entire design process to ensure that an optimal solu-
tion is found. For this reason, we argue that the current combination of hardware
and software is far from optimal.

Acknowledgements

We thank Bas Ploeger and Muck van Weerdenburg for their input and sugges-
tions. Hannes Pretorius is supported by the Netherlands Foundation for Scientific
Research (NWO) under grant 612.065.410.

References

1. Verdult, E.: In de prak geparkeerd. De Ingenieur 7 (2005) 32–35
2. Groote, J.F., Mathijssen, A., Van Weerdenburg, M., Usenko, Y.S.: From μCRL to

mCRL2: motivation and outline. In: Proc. Workshop on Algebraic Process Calculi:
The First Twenty Five Years and Beyond. BRICS NS-05-3 (2005) 126–131

3. Groote, J.F., Mathijssen, A., Ploeger, B., Reniers, M., Van Weerdenburg, M.,
Van der Wulp, J.: Process algebra and mCRL2, IPA basic course on formal methods
2006. www.mcrl2.org (2006)

4. mCRL2: mCRL2 homepage (2006) www.mcrl2.org.
5. Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Algebra of

Communicating Processes, Workshops in Computing. (1994) 26–62
6. Groote, J.F., Reniers, M.: Algebraic process verification. In: Handbook of Process

Algebra. Elsevier (2001) 1151–1208

180 A. Mathijssen and A.J. Pretorius

7. Fokkink, W., Groote, J.F., Pang, J., Badban, B., Van de Pol, J.: Verifying a sliding
window protocol in μCRL. In: Proc. 10th Int’l Conf. Algebraic Methodology and
Software Technology. Number 3116 in LNCS, Springer (2004) 148–163

8. Groote, J.F., Pang, J., Wouters, A.G.: Analysis of a distributed system for lifting
trucks. J. Logic and Algebraic Programming 55(1–2) (2003) 21–56

9. Pang, J., Fokkink, W., Hofman, R., Veldema, R.: Model checking a cache coherence
protocol for a Java DSM implementation. In: Proc. International Parallel and
Distributed Processing Symposium (IPDPS’03), IEEE CS Press (2003)

10. Mathijssen, A., Pretorius, A.J.: Specification, analysis, and verification of an auto-
mated parking garage. Technical Report 05-25, Technische Universiteit Eindhoven
(2005)

11. Pretorius, A.J., Van Wijk, J.J.: Multidimensional visualization of transition sys-
tems. In: Proc. 9th Int’l Conf. Information Visualization (IV05), IEEE CS Press
(2005) 323–328

12. Van Ham, F., Van de Wetering, H., Van Wijk, J.J.: Interactive visualization
of state transition systems. IEEE Transactions on Visualization and Computer
Graphics 8(4) (2002) 319–329

	Introduction
	Operational Description
	Problem Description
	Conceptual System Design
	Architecture
	Hardware Abstraction Layer (HAL)
	Logical Layer (LL)
	Safety Layer (SL)

	Verified Design of the Safety Layer
	Informal Requirements
	Specification of Data Types
	Specification of Behaviour
	Reductions
	Formal Requirements and Verification

	Discussion
	Visualization
	Implementation

	Conclusion

