
1/16

Specification, Analysis and
Verification of an Automated

Parking Garage

Aad Mathijssen A. Johannes Pretorius

24th November 2005



2/16

Introduction



3/16

Problem description (1)

Design software for the following system:



4/16

Problem description (2)

Design software for the following system:

• 30 parking spots, maximum 29 occupied

• awkward lift position



5/16

Approach (1)

Design the software in such a way that safety is guaranteed.



6/16

Approach (2)

After formulating functional requirements, do not start implementing immedi-
ately.

Design a model of the software:

• gain insight in the system

• detect errors in the proposed design

• foundation for implementation

Interactions are of primary concern: model behaviour



7/16

Approach (3)

Pipeline:



8/16

Conceptual system design: architecture

Distinction between three layers in order to maintain separation of concerns:



8/16

Conceptual system design: architecture

Distinction between three layers in order to maintain separation of concerns:

logical layer: the parking/retrieval algorithm



8/16

Conceptual system design: architecture

Distinction between three layers in order to maintain separation of concerns:

hardware abstraction layer:

• receive and execute instructions; provide feedback on results

• issue events to the safety layer



8/16

Conceptual system design: architecture

Distinction between three layers in order to maintain separation of concerns:

safety layer:

• pass messsages between the logical and hardware layer

• only if they are safe, deny otherwise



9/16

Simulation

Simulation enables us to:

• test the quality of our specification

• construct and analyse potentially dangerous scenarios

Custom made visualization plugin makes this much more effective



10/16

Observations

Major complicating factors:

• due to lift position, cars are able to move in half positions

• shuttles can be tilted

Consequences:

• components are much more intertwined
e.g. a car can be on both the lift and the bordering conveyor belt

• more checks are needed

• complex checks are needed



11/16

Requirements Example

When we want to move the lift, a requirement is:

• there must be no car suspended between the lift and bordering conveyor
belts



12/16

Verification (1)

Verification:

• guarantees requirements are fulfilled for each possible system state

• requirements need to be formalised

• model checking is space and time consuming

Unfeasible with the original model: 640 billion states (6, 4 ∗ 1011)



13/16

Verification (2)

Solution: restrict the number of positions:

−→

Result: 3,3 million (3, 3 ∗ 106) states and 98 million (9, 8 ∗ 107) transitions

Feasible



14/16

Tech Specs

Specification language: mCRL2 (Process Algebra + Data)

Specification: 991 lines of mCRL2 code

Verification: 217 lines of mCRL2 code

Visualization: 1583 lines of C++ code

Verification time (real time):

• 2 hours on a cluster of 34 CPUs (3 GHz CPU, 2 GB RAM)

• 35 hours on a single PC (3 GHz CPU, 4 GB RAM)

Time spent: approximately 500 man hour



15/16

Conclusions (1)

For systems that interact with their environment, focus on behaviour.

Model the behaviour:

• gain insight in the system

• detect errors in the design

• foundation for implementation



16/16

Conclusions (2)

Simulation: confidence in safety of our model

Visualization:

• speeds up simulation

• revealed a number of errors in the model

• enhances communication

Verification: prove safety of our model


