
A Formal Calculus for Informal Equality

with Binding

Aad Mathijssen

Department of Mathematics and Computer Science

Technische Universiteit Eindhoven

Joint work with Murdoch J. Gabbay

WoLLIC'2007

14th Workshop on Logic, Language, Information and Computation

Rio de Janeiro, Brazil

2nd July 2007

Motivation
The λ-calculus

The λ-calculus:

t ::= x | tt | λx .t

| X

Axioms:

(α) λx .t = λy .(t[x 7→ y]) if y 6∈ fv(t)
(β) (λx .t)u = t[x 7→ u]
(η) λx .(tx) = t if x 6∈ fv(t)

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}

Motivation
The λ-calculus

The λ-calculus:

t ::= x | tt | λx .t

| X

Axiom schemata:

(α) λx .t = λy .(t[x 7→ y]) if y 6∈ fv(t)
(β) (λx .t)u = t[x 7→ u]
(η) λx .(tx) = t if x 6∈ fv(t)

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}

t and u are meta-variables ranging over terms.

Motivation
The λ-calculus

The λ-calculus with meta-variables:

t ::= x | tt | λx .t | X

Axioms:

(α) λx .X = λy .(X [x 7→ y]) if y 6∈ fv(X)
(β) (λx .X)Y = X [x 7→ Y]
(η) λx .(Xx) = X if x 6∈ fv(X)

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}

Motivation
The λ-calculus

The λ-calculus with meta-variables:

t ::= x | tt | λx .t | X

Axioms:

(α) λx .X = λy .(X [x 7→ y]) if y 6∈ fv(X)
(β) (λx .X)Y = X [x 7→ Y]
(η) λx .(Xx) = X if x 6∈ fv(X)

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}

Freshness occurs in the presence of meta-variables:
We only know if x 6∈ fv(X) when X is instantiated.

Motivation
Other examples

In informal mathematical usage, we see equalities like:

• First-order logic: (∀x .φ) ∧ ψ = ∀x .(φ ∧ ψ) if x 6∈ fv(ψ)

• π-calculus: (νx .P) | Q = νx .(P | Q) if x 6∈ fv(Q)

• µCRL/mCRL2:
∑

x
.p = p if x 6∈ fv(p)

And for any binder ξ ∈ {λ,∀, ν,
∑
}:

• (ξx .t)[y 7→ u] = ξx .(t[y 7→ u]) if x 6∈ fv(u)

• α-equivalence: ξx .t = ξy .(t[x 7→ y]) if y 6∈ fv(t)

Here:

I φ, ψ,P,Q, p, t, u are meta-variables ranging over terms.

I Freshness occurs in the presence of meta-variables.

Motivation
Other examples

In informal mathematical usage, we see equalities like:

• First-order logic: (∀x .φ) ∧ ψ = ∀x .(φ ∧ ψ) if x 6∈ fv(ψ)

• π-calculus: (νx .P) | Q = νx .(P | Q) if x 6∈ fv(Q)

• µCRL/mCRL2:
∑

x
.p = p if x 6∈ fv(p)

And for any binder ξ ∈ {λ,∀, ν,
∑
}:

• (ξx .t)[y 7→ u] = ξx .(t[y 7→ u]) if x 6∈ fv(u)

• α-equivalence: ξx .t = ξy .(t[x 7→ y]) if y 6∈ fv(t)

Here:

I φ, ψ,P,Q, p, t, u are meta-variables ranging over terms.

I Freshness occurs in the presence of meta-variables.

Motivation
Other examples

In informal mathematical usage, we see equalities like:

• First-order logic: (∀x .φ) ∧ ψ = ∀x .(φ ∧ ψ) if x 6∈ fv(ψ)

• π-calculus: (νx .P) | Q = νx .(P | Q) if x 6∈ fv(Q)

• µCRL/mCRL2:
∑

x
.p = p if x 6∈ fv(p)

And for any binder ξ ∈ {λ,∀, ν,
∑
}:

• (ξx .t)[y 7→ u] = ξx .(t[y 7→ u]) if x 6∈ fv(u)

• α-equivalence: ξx .t = ξy .(t[x 7→ y]) if y 6∈ fv(t)

Here:

I φ, ψ,P,Q, p, t, u are meta-variables ranging over terms.

I Freshness occurs in the presence of meta-variables.

Motivation
Formalisation

Question: Can we formalise binding and freshness
in the presence of meta-variables?

Answer: Yes, using Nominal Terms (Urban, Pitts & Gabbay, 2003)

Question: Can we formalise equality with binding
in the presence of meta-variables?

Answer: Yes, using Nominal Algebra. . .

Motivation
Formalisation

Question: Can we formalise binding and freshness
in the presence of meta-variables?

Answer: Yes, using Nominal Terms (Urban, Pitts & Gabbay, 2003)

Question: Can we formalise equality with binding
in the presence of meta-variables?

Answer: Yes, using Nominal Algebra. . .

Motivation
Formalisation

Question: Can we formalise binding and freshness
in the presence of meta-variables?

Answer: Yes, using Nominal Terms (Urban, Pitts & Gabbay, 2003)

Question: Can we formalise equality with binding
in the presence of meta-variables?

Answer: Yes, using Nominal Algebra. . .

Motivation
Formalisation

Question: Can we formalise binding and freshness
in the presence of meta-variables?

Answer: Yes, using Nominal Terms (Urban, Pitts & Gabbay, 2003)

Question: Can we formalise equality with binding
in the presence of meta-variables?

Answer: Yes, using Nominal Algebra. . .

Overview

Overview:

I Nominal terms

I Nominal algebra:
I De�nitions
I Examples

I α-conversion

I Derivability of equality

I A semantics in nominal sets

I Related work

I Conclusions and future work

Nominal Terms
De�nition

Nominal terms are inductively de�ned by:

t ::= a | X | [a]t | f(t1, . . . , tn)

Here we �x:

I atoms a, b, c, . . . (for x , y)

I unknowns X ,Y ,Z , . . . (for t, u, φ, ψ, P , Q, p)

I term-formers f, g, h, . . . (for λ, __, ∀, ∧, ν, |,
∑

, _[_ 7→ _])

We call [a]t an abstraction (for the x ._).

We can impose a sorting system on nominal terms . . .
but we don't do that here.

Nominal Terms
De�nition

Nominal terms are inductively de�ned by:

t ::= a | X | [a]t | f(t1, . . . , tn)

Here we �x:

I atoms a, b, c, . . . (for x , y)

I unknowns X ,Y ,Z , . . . (for t, u, φ, ψ, P , Q, p)

I term-formers f, g, h, . . . (for λ, __, ∀, ∧, ν, |,
∑

, _[_ 7→ _])

We call [a]t an abstraction (for the x ._).

We can impose a sorting system on nominal terms . . .
but we don't do that here.

Nominal Terms
Examples

Representation of mathematical syntax in nominal terms:

nominal terms
mathematics

unsugared sugared

λx .t λ([a]X) λ[a]X

λx .(tx) λ([a]app(X , a)) λ[a](Xa)

(∀x .φ) ∧ ψ ∧(∀([a]X),Y) (∀[a]X) ∧ Y

(νx .P) | Q | (ν([a]X),Y) (ν[a]X) | Y∑
x
.p

∑
([a]X)

∑
[a]X

t[x 7→ u] sub([a]X ,Y) X [a 7→ Y]

Nominal Terms
Freshness

De�nition:

I Call a#X a primitive freshness (for `x 6∈ fv(t)').

I A freshness context ∆ is a �nite set of primitive freshnesses.

Generalise freshness on unknowns X to terms t:

I Call a#t a freshness, where t is a nominal term.

I Write ∆ ` a#t when a#t is derivable from ∆ using

(#ab)
a#b

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Examples: ` a#b ` a#λ[a]X a#X ` a#λ[b]X
6` a#a 6` a#λ[b]X a#X 6` a#Y

Nominal Terms
Freshness

De�nition:

I Call a#X a primitive freshness (for `x 6∈ fv(t)').

I A freshness context ∆ is a �nite set of primitive freshnesses.

Generalise freshness on unknowns X to terms t:

I Call a#t a freshness, where t is a nominal term.

I Write ∆ ` a#t when a#t is derivable from ∆ using

(#ab)
a#b

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Examples: ` a#b ` a#λ[a]X a#X ` a#λ[b]X
6` a#a 6` a#λ[b]X a#X 6` a#Y

Nominal Algebra
De�nition

Nominal algebra is a theory of equality between nominal terms:

I t = u is an equality where t and u are nominal terms.

I ∆ ` t = u is an equality-in-context
(for `t ′ = u′ if x1 6∈ fv(v1), . . . , xn 6∈ fv(vn)').

Nominal Algebra
Example equalities-in-context

Meta-level properties as equalities-in-context in nominal algebra:

• λ-calculus: a#X ` λ[a](Xa) = X

• First-order logic: a#Y ` (∀[a]X) ∧ Y = ∀[a](X ∧ Y)

• π-calculus: a#Y ` (ν[a]X) | Y = ν[a](X | Y)

• µCRL/mCRL2: a#X `
∑

[a]X = X

And for any binder ξ ∈ {λ,∀, ν,
∑
}:

• a#Y ` (ξ[a]X)[b 7→ Y] = ξ[a](X [b 7→ Y])

• α-equivalence: b#X ` ξ[a]X = ξ[b](X [a 7→ b])

Nominal algebra
Theories

A theory in nominal algebra consists of:

I a set of term-formers

I a set of axioms: equalities-in-context ∆ ` t = u

Nominal Algebra
LAM: the λ-calculus

A theory LAM for the λ-calculus with meta-variables:

I term-formers λ, app and sub
(recall that t[a 7→ u] is just sugar for sub([a]t, u))

I axioms:

(α) b#X ` λ[a]X = λ[b](X [a 7→ b])
(β) ` (λ[a]Y)X = Y [a 7→ X]
(η) a#X ` λ[a](Xa) = X

Nominal Algebra
FOL: �rst-order logic

A theory FOL for �rst-order logic with meta-variables,
also called one-and-a-halfth-order logic:

I term-formers:
I ⊥, ⊃, ∀, ≈ and sub for the basic operators

(>, ¬, ∧, ∨, ⇔, ∃ are sugar)
I p1, . . . , pm and f1, . . . , fn for object-level predicates and terms

I axioms: . . .

Nominal Algebra
Axioms of FOL

Axioms of one-and-a-halfth-order logic:

(MP) ` > ⊃ P = P

(M) ` ((((P ⊃ Q) ⊃ (¬R ⊃ ¬S)) ⊃ R) ⊃ T)

⊃ ((T ⊃ P) ⊃ (S ⊃ P)) = >

(Q1) ` ∀[a]P ⊃ P[a 7→ T] = >
(Q2) ` ∀[a](P ∧ Q) = ∀[a]P ∧ ∀[a]Q
(Q3) a#P ` ∀[a](P ⊃ Q) = P ⊃ ∀[a]Q

(E1) ` T ≈ T = >
(E2) ` U ≈ T ∧ P[a 7→ T] ⊃ P[a 7→ U] = >

Nominal Algebra
SUB: a theory of capture-avoiding substitution

A theory SUB for capture-avoiding substitution with meta-variables:

(var 7→) ` a[a 7→ T] = T

(# 7→) a#X ` X [a 7→ T] = X

(f 7→) ` f(X1, . . . ,Xn)[a 7→ T] = f(X1[a 7→ T], . . . ,Xn[a 7→ T])

(abs7→) b#T ` ([b]X)[a 7→ T] = [b](X [a 7→ T])

α-conversion
Problem

Formalising binding implies formalising α-conversion.

Idea: use theory SUB:

b#X ` [a]X = [b](X [a 7→ b])

This destroys the proof theory:

I When proving properties by induction on the size of terms,
you often want to freshen up a term using α-conversion.

I Freshening using the above α-conversion increases term size.

Not all systems need substitution of terms for atoms, e.g. the
π-calculus.

α-conversion
Problem

Formalising binding implies formalising α-conversion.

Idea: use theory SUB:

b#X ` [a]X = [b](X [a 7→ b])

This destroys the proof theory:

I When proving properties by induction on the size of terms,
you often want to freshen up a term using α-conversion.

I Freshening using the above α-conversion increases term size.

Not all systems need substitution of terms for atoms, e.g. the
π-calculus.

α-conversion
Problem

Formalising binding implies formalising α-conversion.

Idea: use theory SUB:

b#X ` [a]X = [b](X [a 7→ b])

This destroys the proof theory:

I When proving properties by induction on the size of terms,
you often want to freshen up a term using α-conversion.

I Freshening using the above α-conversion increases term size.

Not all systems need substitution of terms for atoms, e.g. the
π-calculus.

α-conversion
Solution

Solution: use permutations of atoms:

b#X ` [a]X = [b]((a b) · X)

Rede�ne nominal terms:

t ::= a | π · X | f(t1, . . . , tn) | [a]t

Here:

I we call π · X a moderated unknown

I write X when π is the trivial permutation Id

I instantiation of X to t in π · X gives us π · t:

π · a ≡ π(a) π · (π′·X) ≡ (π ◦ π′) · X π · [a]t ≡ [π(a)](π · t)
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

α-conversion
Solution

Solution: use permutations of atoms:

b#X ` [a]X = [b]((a b) · X)

Rede�ne nominal terms:

t ::= a | π · X | f(t1, . . . , tn) | [a]t

Here:

I we call π · X a moderated unknown

I write X when π is the trivial permutation Id

I instantiation of X to t in π · X gives us π · t:

π · a ≡ π(a) π · (π′·X) ≡ (π ◦ π′) · X π · [a]t ≡ [π(a)](π · t)
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

α-conversion
Consequence

Add freshness derivation rule:

π-1(a)#X
(#X) (π 6= Id)

a#π · X

Rede�ne theory SUB for capture-avoiding substitution:

(var 7→) ` a[a 7→ T] = T

(# 7→) a#X ` X [a 7→ T] = X

(f 7→) ` f(X1, . . . ,Xn)[a 7→ T] = f(X1[a 7→ T], . . . ,Xn[a 7→ T])

(abs7→) b#T ` ([b]X)[a 7→ T] = [b](X [a 7→ T])

(ren 7→) b#X ` X [a 7→ b] = (b a) · X

Derivability of equalities
De�nition

Write ∆ `
T
t = u when t = u is derivable from the rules below, s.t.

I each axiom used in (ax∇ ` t
′ = u

′) is from theory T only

I only assumptions from ∆ are used in freshness derivations

(re�)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

a#t b#t
(perm)

(a b) · t = t

t = u
(cong[])

[a]t = [a]u

t = u
(congf)

f(t1, . . . , t, . . . , tn) = f(t1, . . . , u, . . . , tn)

π · ∇σ
(ax∇ ` t = u)

π · tσ = π · uσ

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr) (a 6∈ t, u,∆)

t = u

Derivability of equalities
Instantiation of (β) in LAM

(β) ` (λ[a]Y)X = Y [a 7→ X]

Instantiation of the (β) axiom:

σ π Result

[] Id ` (λ[a]Y)X = Y [a 7→ X]

[b/Y , c/X] Id ` (λ[a]b)c = b[a 7→ c]

[a/Y , c/X] Id ` (λ[a]a)c = a[a 7→ c]

[a/Y , c/X] (a b) ` (λ[b]b)c = b[b 7→ c]

[(λ[b]Z)Y /Y] Id ` (λ[a](λ[b]Z)Y)X = ((λ[b]Z)Y)[a 7→ X]

Derivability of equalities
Instantiation of (η) in LAM

(η) a#X ` λ[a](Xa) = X

Instantiation of the (η) axiom:

σ π Resulting equality-in-context

[a/X] Id none, since 6` a#a

[b/X] Id `λ[a](ba) = b

[YZ/X] Id a#Y , a#Z `λ[a]((YZ)a) = YZ

[λ[a]Y /X] Id `λ[a]((λ[a]Y)a) = λ[a]Y

[λ[b]Y /X] Id a#Y `λ[a]((λ[b]Y)a) = λ[b]Y

Derivability of equalities
Example derivation: representing a calculation

λx .(((λx .y)x)x) =β λx .(yx) =η y

Formal derivation:

(axβ)
(λ[a]b)a = b[a 7→ a]

(#ab)
a#b

(ax# 7→)
b[a 7→ a] = b

(tran)
(λ[a]b)a = b

(congf)
((λ[a]b)a)a = ba

(cong[])
[a](((λ[a]b)a)a) = [a](ba)

(congf)
λ[a](((λ[a]b)a)a) = λ[a](ba)

(#ab)
a#b

(axη)
λ[a](ba) = b

(tran)
λ[a](((λ[a]b)a)a) = b

Derivability of equalities
Example derivation: the substitution lemma

a#U `
SUB

X [a 7→ T][b 7→ U] = X [b 7→ U][a 7→ T [b 7→ U]]

Writing s for [b 7→ U] and using the unsugared syntax for the other
substitutions:

(axf 7→)
sub([a]X ,T)s = sub(([a]X)s,Ts)

a#U

(axabs 7→)
([a]X)s = [a](Xs)

(congf)
sub(([a]X)s,Ts)= sub([a](Xs),Ts)

(tran)
sub([a]X ,T)s = sub([a](Xs),Ts)

Derivability of equalities
Example derivation: introducing a fresh atom

`
SUB

X [a 7→ a] = X

Formal derivation:

(#[]a)
a#[a]X

[b#X]1

(#[]b)
b#[a]X

(perm)
[b](b a) · X = [a]X

(symm)
[a]X = [b](b a) · X

(congf)
X [a 7→ a] = ((b a) · X)[b 7→ a]

[b#X]1

(#X)
a#(b a) · X

(axren 7→)
((b a) · X)[b 7→ a] = X

(tran)
X [a 7→ a] = X

(fr)1

X [a 7→ a] = X

Derivability of equalities
Results for speci�c theories

Results on the CORE theory with no axioms:

I Syntactic criteria for deciding equality between terms

I Equivalent to α-equality in Nominal Uni�cation and Rewriting

Results on theory SUB (other work):

I It is decidable whether ∆ `
SUB

t = u

I Omega-complete: sound and complete w.r.t. the term model

Results on theory FOL (other work):

I has an equivalent sequent calculus:
I representing schemas of derivations in �rst-order logic
I satis�es cut-elimination

I equivalent to �rst-order logic for terms without unknowns

A semantics in nominal sets

Nominal sets (Gabbay & Pitts, 1999):

I A set-based model for names and binding

I Atoms are built-in

I Support for binding and freshness

I Inspired the development of nominal terms

Nominal algebra theories have a semantics in nominal sets:

I Derivability of equality is sound and complete

I Derivability of freshness is sound but incomplete

I Semantic freshness can be expressed using equalities

Related work
Nominal Equational Logic

Closely related to Nominal Algebra:

I Nominal Equational Logic (NEL) by Pitts and Clouston

Derivability of freshness is semantic and not syntactic:

I In NEL freshness derivability is complete

I Potentially undecidable

I Expressing syntactic freshness is impossible:

x 6∈ fv(t) does not correspond to ` a //≈ t ′

Related work
Non-nominal approaches

Other related work:

I Higher-Order Algebra (HOA)

I Cylindric Algebra and Lambda-Abstraction Algebra (CA/LAA)

These do not mirror informal equality like nominal algebra does:

I Binding and freshness are encoded:

I by higher-order functions in HOA

I by replacing t by ci t to ensure xi 6∈ fv(t) in CA/LAA

I Reasoning about binding becomes di�erent.

I Capturing substitution cannot be de�ned HOA.
Default notion of (meta-level) substitution in nominal algebra.

Conclusions

Nominal algebra:

I is a theory of algebraic equality on nominal terms

I allows us to reason about systems with binding

I closely mirrors informal mathematical usage:

I existing axiom schemata can be expressed directly

I equational proofs carry over directly

I natural notion of instantiation of meta-variables:

informal notation: instantiating t to x in λx .t yields λx .x

nominal terms: instantiating X to a in λ[a]X yields λ[a]a

I α-equivalence in the presence of meta-variables

I introduce fresh atoms inside a derivation

Future work

Future work on nominal algebra:

I further develop theory on:

I the λ-calculus
I choice quanti�cation in µCRL/mCRL2
I π-calculus and its variants
I reversibility

I formalise meta-level reasoning, meta-meta-level reasoning,. . .
a hierarchy of variables.

I develop a theorem prover

Further reading

Murdoch J. Gabbay, Aad Mathijssen:
Capture-Avoiding Substitution as a Nominal Algebra.
ICTAC'06.

Murdoch J. Gabbay, Aad Mathijssen:
One-and-a-halfth-order Logic.
PPDP'06.

Papers and slides of talks can be found on my web page:
http://www.win.tue.nl/∼amathijs

