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Motivation
The λ-calculus

The λ-calculus:

t ::= x | tt | λx .t

| X

Axioms:

(α) λx .t = λy .(t[x 7→ y ]) if y 6∈ fv(t)
(β) (λx .t)u = t[x 7→ u]
(η) λx .(tx) = t if x 6∈ fv(t)

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}
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Motivation
The λ-calculus

The λ-calculus with meta-variables:

t ::= x | tt | λx .t | X

Axioms:

(α) λx .X = λy .(X [x 7→ y ]) if y 6∈ fv(X )
(β) (λx .X )Y = X [x 7→ Y ]
(η) λx .(Xx) = X if x 6∈ fv(X )

Free variables function fv :

fv(x) = {x} fv(tu) = fv(t) ∪ fv(u) fv(λx .t) = fv(t)\{x}

Freshness occurs in the presence of meta-variables:
We only know if x 6∈ fv(X ) when X is instantiated.



Motivation
Other examples

In informal mathematical usage, we see equalities like:

• First-order logic: (∀x .φ) ∧ ψ = ∀x .(φ ∧ ψ) if x 6∈ fv(ψ)

• π-calculus: (νx .P) | Q = νx .(P | Q) if x 6∈ fv(Q)

• µCRL/mCRL2:
∑

x
.p = p if x 6∈ fv(p)

And for any binder ξ ∈ {λ,∀, ν,
∑
}:

• (ξx .t)[y 7→ u] = ξx .(t[y 7→ u]) if x 6∈ fv(u)

• α-equivalence: ξx .t = ξy .(t[x 7→ y ]) if y 6∈ fv(t)

Here:

I φ, ψ,P,Q, p, t, u are meta-variables ranging over terms.

I Freshness occurs in the presence of meta-variables.
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Motivation
Formalisation

Question: Can we formalise binding and freshness
in the presence of meta-variables?

Answer: Yes, using Nominal Terms (Urban, Pitts & Gabbay, 2003)

Question: Can we formalise equality with binding
in the presence of meta-variables?

Answer: Yes, using Nominal Algebra. . .
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I Nominal terms

I Nominal algebra:
I De�nitions
I Examples

I α-conversion

I Derivability of equality

I A semantics in nominal sets

I Related work

I Conclusions and future work



Nominal Terms
De�nition

Nominal terms are inductively de�ned by:

t ::= a | X | [a]t | f(t1, . . . , tn)

Here we �x:

I atoms a, b, c, . . . (for x , y)

I unknowns X ,Y ,Z , . . . (for t, u, φ, ψ, P , Q, p)

I term-formers f, g, h, . . . (for λ, __, ∀, ∧, ν, |,
∑

, _[_ 7→ _])

We call [a]t an abstraction (for the x ._).

We can impose a sorting system on nominal terms . . .
but we don't do that here.
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Nominal Terms
Examples

Representation of mathematical syntax in nominal terms:

nominal terms
mathematics

unsugared sugared

λx .t λ([a]X ) λ[a]X

λx .(tx) λ([a]app(X , a)) λ[a](Xa)

(∀x .φ) ∧ ψ ∧(∀([a]X ),Y ) (∀[a]X ) ∧ Y

(νx .P) | Q | (ν([a]X ),Y ) (ν[a]X ) | Y∑
x
.p

∑
([a]X )

∑
[a]X

t[x 7→ u] sub([a]X ,Y ) X [a 7→ Y ]



Nominal Terms
Freshness

De�nition:

I Call a#X a primitive freshness (for `x 6∈ fv(t)').

I A freshness context ∆ is a �nite set of primitive freshnesses.

Generalise freshness on unknowns X to terms t:

I Call a#t a freshness, where t is a nominal term.

I Write ∆ ` a#t when a#t is derivable from ∆ using

(#ab)
a#b

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Examples: ` a#b ` a#λ[a]X a#X ` a#λ[b]X
6` a#a 6` a#λ[b]X a#X 6` a#Y
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Nominal Algebra
De�nition

Nominal algebra is a theory of equality between nominal terms:

I t = u is an equality where t and u are nominal terms.

I ∆ ` t = u is an equality-in-context
(for `t ′ = u′ if x1 6∈ fv(v1), . . . , xn 6∈ fv(vn)').



Nominal Algebra
Example equalities-in-context

Meta-level properties as equalities-in-context in nominal algebra:

• λ-calculus: a#X ` λ[a](Xa) = X

• First-order logic: a#Y ` (∀[a]X ) ∧ Y = ∀[a](X ∧ Y )

• π-calculus: a#Y ` (ν[a]X ) | Y = ν[a](X | Y )

• µCRL/mCRL2: a#X `
∑

[a]X = X

And for any binder ξ ∈ {λ,∀, ν,
∑
}:

• a#Y ` (ξ[a]X )[b 7→ Y ] = ξ[a](X [b 7→ Y ])

• α-equivalence: b#X ` ξ[a]X = ξ[b](X [a 7→ b])



Nominal algebra
Theories

A theory in nominal algebra consists of:

I a set of term-formers

I a set of axioms: equalities-in-context ∆ ` t = u



Nominal Algebra
LAM: the λ-calculus

A theory LAM for the λ-calculus with meta-variables:

I term-formers λ, app and sub
(recall that t[a 7→ u] is just sugar for sub([a]t, u))

I axioms:

(α) b#X ` λ[a]X = λ[b](X [a 7→ b])
(β) ` (λ[a]Y )X = Y [a 7→ X ]
(η) a#X ` λ[a](Xa) = X



Nominal Algebra
FOL: �rst-order logic

A theory FOL for �rst-order logic with meta-variables,
also called one-and-a-halfth-order logic:

I term-formers:
I ⊥, ⊃, ∀, ≈ and sub for the basic operators

(>, ¬, ∧, ∨, ⇔, ∃ are sugar)
I p1, . . . , pm and f1, . . . , fn for object-level predicates and terms

I axioms: . . .



Nominal Algebra
Axioms of FOL

Axioms of one-and-a-halfth-order logic:

(MP) ` > ⊃ P = P

(M) ` ((((P ⊃ Q) ⊃ (¬R ⊃ ¬S)) ⊃ R) ⊃ T )

⊃ ((T ⊃ P) ⊃ (S ⊃ P)) = >

(Q1) ` ∀[a]P ⊃ P[a 7→ T ] = >
(Q2) ` ∀[a](P ∧ Q) = ∀[a]P ∧ ∀[a]Q
(Q3) a#P ` ∀[a](P ⊃ Q) = P ⊃ ∀[a]Q

(E1) ` T ≈ T = >
(E2) ` U ≈ T ∧ P[a 7→ T ] ⊃ P[a 7→ U] = >



Nominal Algebra
SUB: a theory of capture-avoiding substitution

A theory SUB for capture-avoiding substitution with meta-variables:

(var 7→) ` a[a 7→ T ] = T

(# 7→) a#X ` X [a 7→ T ] = X

(f 7→) ` f(X1, . . . ,Xn)[a 7→ T ] = f(X1[a 7→ T ], . . . ,Xn[a 7→ T ])

(abs7→) b#T ` ([b]X )[a 7→ T ] = [b](X [a 7→ T ])



α-conversion
Problem

Formalising binding implies formalising α-conversion.

Idea: use theory SUB:

b#X ` [a]X = [b](X [a 7→ b])

This destroys the proof theory:

I When proving properties by induction on the size of terms,
you often want to freshen up a term using α-conversion.

I Freshening using the above α-conversion increases term size.

Not all systems need substitution of terms for atoms, e.g. the
π-calculus.
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α-conversion
Solution

Solution: use permutations of atoms:

b#X ` [a]X = [b]((a b) · X )

Rede�ne nominal terms:

t ::= a | π · X | f(t1, . . . , tn) | [a]t

Here:

I we call π · X a moderated unknown

I write X when π is the trivial permutation Id

I instantiation of X to t in π · X gives us π · t:

π · a ≡ π(a) π · (π′·X ) ≡ (π ◦ π′) · X π · [a]t ≡ [π(a)](π · t)
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)
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α-conversion
Consequence

Add freshness derivation rule:

π-1(a)#X
(#X) (π 6= Id)

a#π · X

Rede�ne theory SUB for capture-avoiding substitution:

(var 7→) ` a[a 7→ T ] = T

(# 7→) a#X ` X [a 7→ T ] = X

(f 7→) ` f(X1, . . . ,Xn)[a 7→ T ] = f(X1[a 7→ T ], . . . ,Xn[a 7→ T ])

(abs7→) b#T ` ([b]X )[a 7→ T ] = [b](X [a 7→ T ])

(ren 7→) b#X ` X [a 7→ b] = (b a) · X



Derivability of equalities
De�nition

Write ∆ `
T
t = u when t = u is derivable from the rules below, s.t.

I each axiom used in (ax∇ ` t
′ = u

′) is from theory T only

I only assumptions from ∆ are used in freshness derivations

(re�)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

a#t b#t
(perm)

(a b) · t = t

t = u
(cong[])

[a]t = [a]u

t = u
(congf)

f(t1, . . . , t, . . . , tn) = f(t1, . . . , u, . . . , tn)

π · ∇σ
(ax∇ ` t = u)

π · tσ = π · uσ

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr) (a 6∈ t, u,∆)

t = u



Derivability of equalities
Instantiation of (β) in LAM

(β) ` (λ[a]Y )X = Y [a 7→ X ]

Instantiation of the (β) axiom:

σ π Result

[] Id ` (λ[a]Y )X = Y [a 7→ X ]

[b/Y , c/X ] Id ` (λ[a]b)c = b[a 7→ c]

[a/Y , c/X ] Id ` (λ[a]a)c = a[a 7→ c]

[a/Y , c/X ] (a b) ` (λ[b]b)c = b[b 7→ c]

[(λ[b]Z )Y /Y ] Id ` (λ[a](λ[b]Z )Y )X = ((λ[b]Z )Y )[a 7→ X ]



Derivability of equalities
Instantiation of (η) in LAM

(η) a#X ` λ[a](Xa) = X

Instantiation of the (η) axiom:

σ π Resulting equality-in-context

[a/X ] Id none, since 6` a#a

[b/X ] Id `λ[a](ba) = b

[YZ/X ] Id a#Y , a#Z `λ[a]((YZ )a) = YZ

[λ[a]Y /X ] Id `λ[a]((λ[a]Y )a) = λ[a]Y

[λ[b]Y /X ] Id a#Y `λ[a]((λ[b]Y )a) = λ[b]Y



Derivability of equalities
Example derivation: representing a calculation

λx .(((λx .y)x)x) =β λx .(yx) =η y

Formal derivation:

(axβ)
(λ[a]b)a = b[a 7→ a]

(#ab)
a#b

(ax# 7→)
b[a 7→ a] = b

(tran)
(λ[a]b)a = b

(congf)
((λ[a]b)a)a = ba

(cong[])
[a](((λ[a]b)a)a) = [a](ba)

(congf)
λ[a](((λ[a]b)a)a) = λ[a](ba)

(#ab)
a#b

(axη)
λ[a](ba) = b

(tran)
λ[a](((λ[a]b)a)a) = b



Derivability of equalities
Example derivation: the substitution lemma

a#U `
SUB

X [a 7→ T ][b 7→ U] = X [b 7→ U][a 7→ T [b 7→ U]]

Writing s for [b 7→ U] and using the unsugared syntax for the other
substitutions:

(axf 7→)
sub([a]X ,T )s = sub(([a]X )s,Ts)

a#U

(axabs 7→)
([a]X )s = [a](Xs)

(congf)
sub(([a]X )s,Ts)= sub([a](Xs),Ts)

(tran)
sub([a]X ,T )s = sub([a](Xs),Ts)



Derivability of equalities
Example derivation: introducing a fresh atom

`
SUB

X [a 7→ a] = X

Formal derivation:

(#[]a)
a#[a]X

[b#X ]1

(#[]b)
b#[a]X

(perm)
[b](b a) · X = [a]X

(symm)
[a]X = [b](b a) · X

(congf)
X [a 7→ a] = ((b a) · X )[b 7→ a]

[b#X ]1

(#X)
a#(b a) · X

(axren 7→)
((b a) · X )[b 7→ a] = X

(tran)
X [a 7→ a] = X

(fr)1

X [a 7→ a] = X



Derivability of equalities
Results for speci�c theories

Results on the CORE theory with no axioms:

I Syntactic criteria for deciding equality between terms

I Equivalent to α-equality in Nominal Uni�cation and Rewriting

Results on theory SUB (other work):

I It is decidable whether ∆ `
SUB

t = u

I Omega-complete: sound and complete w.r.t. the term model

Results on theory FOL (other work):

I has an equivalent sequent calculus:
I representing schemas of derivations in �rst-order logic
I satis�es cut-elimination

I equivalent to �rst-order logic for terms without unknowns



A semantics in nominal sets

Nominal sets (Gabbay & Pitts, 1999):

I A set-based model for names and binding

I Atoms are built-in

I Support for binding and freshness

I Inspired the development of nominal terms

Nominal algebra theories have a semantics in nominal sets:

I Derivability of equality is sound and complete

I Derivability of freshness is sound but incomplete

I Semantic freshness can be expressed using equalities



Related work
Nominal Equational Logic

Closely related to Nominal Algebra:

I Nominal Equational Logic (NEL) by Pitts and Clouston

Derivability of freshness is semantic and not syntactic:

I In NEL freshness derivability is complete

I Potentially undecidable

I Expressing syntactic freshness is impossible:

x 6∈ fv(t) does not correspond to ` a //≈ t ′



Related work
Non-nominal approaches

Other related work:

I Higher-Order Algebra (HOA)

I Cylindric Algebra and Lambda-Abstraction Algebra (CA/LAA)

These do not mirror informal equality like nominal algebra does:

I Binding and freshness are encoded:

I by higher-order functions in HOA

I by replacing t by ci t to ensure xi 6∈ fv(t) in CA/LAA

I Reasoning about binding becomes di�erent.

I Capturing substitution cannot be de�ned HOA.
Default notion of (meta-level) substitution in nominal algebra.



Conclusions

Nominal algebra:

I is a theory of algebraic equality on nominal terms

I allows us to reason about systems with binding

I closely mirrors informal mathematical usage:

I existing axiom schemata can be expressed directly

I equational proofs carry over directly

I natural notion of instantiation of meta-variables:

informal notation: instantiating t to x in λx .t yields λx .x

nominal terms: instantiating X to a in λ[a]X yields λ[a]a

I α-equivalence in the presence of meta-variables

I introduce fresh atoms inside a derivation



Future work

Future work on nominal algebra:

I further develop theory on:

I the λ-calculus
I choice quanti�cation in µCRL/mCRL2
I π-calculus and its variants
I reversibility

I formalise meta-level reasoning, meta-meta-level reasoning,. . .
a hierarchy of variables.

I develop a theorem prover
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