DOI 10.1007/s00165-007-0056-1
BCS©2008 Formal Aspects

Formal Aspects of Computing (2008) 20: 451-479 Of Com puti ng

Capture-avoiding substitution
as a nominal algebra

Murdoch J. Gabbay' and Aad Mathijssen?

1 School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, Scotland, UK. E-mail: murdoch.gabbay@gmail.com
2 Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Substitution is fundamental to the theory of logic and computation. Is substitution something that we
define on syntax on a case-by-case basis, or can we turn the idea of substitution into a mathematical object? We give
axioms for substitution and prove them sound and complete with respect to a canonical model. As corollaries we
obtain a useful conservativity result, and prove that equality-up-to-substitution is a decidable relation on terms.
These results involve subtle use of techniques both from rewriting and algebra. A special feature of our method
is the use of nominal techniques. These give us access to a stronger assertion language, which includes so-called
‘freshness’ or ‘capture-avoidance’ conditions. This means that the sense in which we axiomatise substitution (and
prove soundness and completeness) is particularly strong, while remaining quite general.

Keywords: Substitution; Nominal techniques; Nominal algebra; Binding; Capture-avoidance;
Nominal rewriting; Omega-completeness

1. Introduction

Substitution is intuitively the operation v[a > {] meaning:
Replace the variable @ by ¢ in v.

Is there an algebra which describes exactly the properties of v[a + ¢] independently of what v and ¢ are (A-terms,
formulae of a logic, terms of some process calculus, or any mixture or variation thereof)?

Consider by way of analogy the notion of ‘a field’. This has an algebraic characterisation which tells us
what properties ‘a field’ must have, independently of which field it is, or how it may be implemented (if we are
programming). This is useful; for example the definition of ‘vector space’ is parametric over fields, and this step
requires a characterisation of what fields are [BS81].

When we begin to axiomatise substitution, unusual difficulties present themselves. Consider the following
informally expressed candidate property of substitution:

via — t][b +— u] = v[b — u]la — t[b +— u]] provided a &€ fv(u)

This is not algebraic, because of the side-condition a ¢ fv(u). Here fv(u) is ‘the free variables of «’, which is a
property of the syntax of u.

So is it the case that substitution cannot be axiomatised, and only exists as an incidental property of syntax
used to talk about ‘real’ mathematical objects? But in that case, what is the status of the intuition which makes
us agree that the property above should be satisfied by any self-respecting substitution action?

Correspondence and offprint requests to: M. J. Gabbay, E-mail: murdoch.gabbay@gmail.com

452 M. J. Gabbay, A. Mathijssen

(var—) F ala — T)| =

(#—) a#t X+ Xja—T] =X

(f—) Ff(Xy,...,X)[a—T]) = f(X1[a— T, Xpla—T))
(abs—) b#T + ([b)U)|a — T] = [b](Ula — T))
(ren—) b#X F Xla—b = (ba)-X

(n—) a#X+ [a]sub(X,a) = X

Fig. 1. Axioms of SUB

We shall argue that the properties of Fig. 1 axiomatise substitution, all of substitution, and nothing but
substitution. We express them in Nominal Algebra as a theory called SUB (given formal meaning in the rest of
this paper). Informally, the axioms express the following:

(var—): A variable a with a replaced by T, is 7.
(#+): If ais fresh for X then X with a replaced by T is X.
(f—): Substitution distributes through term-formers; f ranges over them.
(abs—): Substitution of a distributes under an abstraction [b]U, provided a capture-avoidance condition is
satisfied (b is fresh for T).
(ren—): If b is fresh for X then X with a replaced by b is identical to X" with a replaced by b and simultaneously
b replaced by a.
(n—): tla — u]is sugar for sub([a]¢, u). In (n—), X is a term not of the form [a]¢ so we cannot use that sugar.
The reader can think of (n+—) as related to n-equality from the world of the A-calculus, though X is not
a function. The reader can also think of (n—) as related to a known property of the atoms-concretion
operation of Gabbay-Pitts abstraction [GP02], though sub is not atoms-concretion. More on this in
Subsection 1.2.

Formally, Fig. 1 uses nominal terms [UPGO04] as a syntax, and nominal algebra [GM07, GM06b] as an algebraic
framework. We describe these below.
A number of questions now arise:

Is this substitution and if so, in what sense; for what model are the axioms sound?
Are the axioms complete for that model?
Do other (perhaps unexpected) models exist of the same axioms?

Can theories be built on top of this one by adding axioms for predicate logic, functional programming,
unification and logic programming, simultaneous equations, and so on?

bl ol e

1.1. Answers to questions and map of the paper

Section 2 defines nominal terms and nominal algebra, which fix the syntax and judgement forms we use for
our axiomatisation. Section 3 creates a concrete model out of syntax and defines a completely standard capture-
avoiding substitution action on the model—this is what we want to capture in axioms. Section 4 defines a relatively
weak subset of SUB which we call SIMP (for ‘simple’) which is sound for a concrete model, but not complete.
This answers question 1 above. Section 5 proves useful properties of this simple axiomatisation; here we make
heavy use of techniques from (nominal) rewriting.

Section 6 explores the stronger axioms of Fig. 1 formally as a nominal algebra theory. Decidability of these
axioms is proved in Subsect. 6.2, and completeness with respect to the concrete model from Sect. 3 is proved in
Subsect. 6.3. This answers question 2 above and completes the proof that Fig. 1 does represent substitution.

In other as-yet unpublished work the first author shows how Fraenkel-Mostowski set theory (the underlying
model of nominal techniques) [GP02] supports a substitution action. In the case of a set representing a term in
the concrete model of this paper, the substitution action coincides with capture-avoiding substitution. However,
it extends smoothly, in our opinion quite remarkably, to the entire set theoretic universe. This is an answer
for question 3 above and, in our opinion, provides independent evidence that substitution has independent
mathematical stature.

Capture-avoiding substitution as a nominal algebra 453

In other work [GMO07, GMO06¢] we have investigated how the axiomatisation of substitution can be used to
develop algebraic theories, for example of first-order logic. This is the start of an answer to question 4.
The conclusions discuss related and future work.

1.2. Relation with the conference version

A conference version of this paper has appeared [GMO06a]. In this paper the technical machinery has been revised
and considerably simplified by making more use of models.

As part of these changes we identify an intermediate axiomatisation SIMP. This captures SUB on closed
terms but is weaker than SUB on open terms, in a sense made precise in Theorem 5.24. SIMP can be identified
with the usual definition of capture-avoiding substitution.

We give a procedure for converting equalities in SUB into equivalent (in a suitable sense) equalities in SIMP
over an extended signature (see Subsect. 6.2). This is part of the proof of decidability of SUB, and it yields a
clearer and more efficient algorithm than the one in the conference version.

This paper includes a new axiom (n+>), correcting a technical error of the conference paper: (n+—) is necessary
for w-completeness (Subsect. 6.3). In fact (y—) is only necessary if we admit unknowns X of abstraction sort
[A]T (using terminology from the rest of this paper, or from [GMO06a]). Although it is not strictly necessary to
admit unknowns of abstraction sort, it allows us to talk about substitution at a more general level, resulting in a
more smooth presentation (see Subsect. 6.4).

2. Nominal algebra
2.1. The syntax of nominal terms

First, we define a syntax of nominal terms. The syntax we use here is tailored to our application of axiomatising
substitution; see elsewhere for general treatments [UPG04, FG07].

Definition 2.1 Fix a base sort T and call it the sort of terms. Define sorts 7 by the following grammar:
T = T | [A]T | [AJ[A]T.

This simple sort system is sufficient to make sure that terms are well-formed; the reader should not necessarily
view it as a ‘typing system’.

Extensions with pair sorts T x 7, or base sorts other than T (e.g. to model terms and formulae in first-order
logic [GMO06c¢]) cause no essential difficulties, aside from inflating the mathematics with extra cases.

Definition 2.2 Fix some countably infinite set of atoms «, b, ¢, ... € A. These model object-level variable symbols
(the ones we substitute for).

Fix a countably infinite collection of unknowns X, Y, Z, T, U, These represent unknown terms of sort T
or [A]T. We assume unknowns are inherently sorted and infinitely many populate each sort. X is shorthand for
X:,© € (T, [A]T}. If we write Xt and Xjajr then we have two different unknowns with confusingly similar names.
Typically we take 7" and U to have sort T.

A permutation r of atoms is a bijection on atoms with finite support meaning that for some finite set of atoms
7 (a) # a, and for all other atoms 7 (a) = a; in other words, for ‘most’ atoms 7 is the identity.

A term-former f is a formal symbol to which is associated an arity (zy, ..., 7,)t. We may write f : (71, ..., 1,)t
for f which has arity (zy, ..., 7,)t. We call a collection of term-formers a signature.

Atoms, unknowns, signatures and other distinct syntactic classes, are assumed disjoint.

Convention 2.3 We shall use a permutative convention that a, b, c, . .. range permutatively over atoms, so that for
example a and b are always distinct.

In the rare circumstances where we do not want this behaviour, we use primes and subscripts, such as o/, a,
and a,; (where X is an unknown and i is an index).

Definition 2.4 Let terms ¢, u, v be inductively defined by:
t = a | w-X | [at | H(t,..., 1)

Here a ranges over atoms, X over unknowns, 7 over permutations, and f over term-formers.

454 M. J. Gabbay, A. Mathijssen

We call 7 - X a moderated unknown, representing an unknown term on which a permutation of atoms is
performed when it is instantiated. An abstraction [a]¢ represents a term ¢ in which an atom « is abstracted.

Call a term closed when it does not mention any unknowns.

Write syntactic identity of terms 7 and u as 1 = u to distinguish it from provable equality. Note that if 7 = 7’
then 7 - X = n’ - X, since permutations are represented by themselves. Important. we do not quotient terms in
any way.

Definition 2.5 Let (valid) sorting assertions ¢ : 7, read ‘¢ has sort 7’ be inductively defined by:
r:T h:t - 1Ty

a:T T-Xe:T [a]t : [Alr f(ey,....tn) T

f:(t1,..., T)T).

Note that atom a represents a variable symbol of sort T. Also note that in the rules for = - X; and [a]¢, T is
restricted to T and [A]T.
We consider only terms that adhere to the sorting assertions from now on.

Example 2.6 (Lambda calculus) A signature for the lambda calculus consists of the following term-formers:
app: (T, T)T lam : ([A]T)T.

The sorting system is such that a well-sorted term of the form lam(#) must be of the form lam(z - X) (sot =7 - X)
or lam([a]?’) (so t = [a]?’). If lam(z) is closed then it must be of the form lam([a]?’).

It may help to show how nominal terms in this signature relate to ‘ordinary’ syntax. For convenience identify
atoms with variable symbols, then the syntax of the untyped A-calculus is inductively defined by:

e = a | e | hae.
We define a map (-)’ to nominal terms by:

@ =a (ae) =app((er)),(e2)) (hae) =lam(al(e)).
We shall see that lam([«¢]X) behaves much like the A-context A a.- where - is a ‘hole’.

Substitution is just a term-former, and this is reflected by the notion of a substitution signature.
Definition 2.7 We call a signature 7 a substitution signature when:

e 7 contains two term-formers sub, one with arity (JA]T, T)T, and one with arity ([AJ[A]T, T)[A]T;

e for any other term-former f in 7, sorting arities are of the form (zy,..., t,)T, where t; € {T, [A]T}, for
1<i<n.

A term sub(z, u) represents an explicit substitution. We write u[a > ¢] as shorthand for sub([a]u, t). We already
used this shorthand in Fig. 1.

Note that a well-sorted term of the form sub(z, u) must be of the form sub(r - X, u), or sub(sub(?’, «’), u), or
t'[a — u] (without sugar: sub([a]t, u)). If sub(z,u) is closed then it has the form #[a +— u']la — u], or
t'[d — u'a > u], or [a — ul.

We will only consider substitution signatures in the rest of this paper.

Term-formers f other than sub are intuitively ‘the language over which substitution for atoms occurs’. Note
that sorting assertions allow arguments of abstraction sort [A]T; this is useful for modelling languages with
abstractors, such as A, V, fix, €, and so on. Examples follow:

Example 2.8 (Lambda calculus with explicit substitution) A substitution signature for the lambda calculus is:
app: (T, T)T lam:(AJT)T sub:(AJT,T)T sub: ([AJJA]T, T)[A]T.

So intuitively, the two term-formers sub take care of substitution, and app and lam take care of there being a
term-language to substitute over (in the presence of some axioms, which are our object of study in this paper).

Example 2.9 (Natural numbers with fixpoints and explicit substitutions) We can express natural numbers with
fixpoints using the following substitution signature:

zero:)T succ:(T)T plus: (T, T)T fix: (AJI)T sub: ((AJT,)T sub : ([AJ[A]T, T)[A]T.

Capture-avoiding substitution as a nominal algebra 455

Remark 2.10 Unknowns of sort [A]T, and the second sub above of arity ([A]JA]T, T)[A]T, are convenient but
not necessary; see SUB’ in Subsect. 6.4.

Remark 2.11 The signature is arbitrary and may be empty (aside from sub), except that Theorem 6.29 (a strong
completeness result with respect to a single term model) requires a term-former taking at least two arguments
(for example app or plus) to avoid a degenerate case. All other results, including Theorem 6.20 (a notion of
completeness with respect to term models in extended signatures which are never degenerate) are valid even in a
signature with just sub.

2.2. Permutation, substitution and freshness

Before we can introduce an equational logic on nominal terms, we need to be able to

e permute atoms in terms,
e substitute unknowns with terms, and
e decide whether an atom is fresh for a term.

In this subsection we elaborate on these elements.

Definition 2.12 In Definition 2.2 we defined permutations as finitely supported bijection on atoms. As usual
write id for the identity permutation, 7! for the inverse of 7, and 7 o ' for the composition of 7 and 7/, i.e.
(m o ')(a) = w(x'(a)). id is also the identity of composition, i.e. id o w = 7 and 7 o id = 7. Importantly, we
shall write (a b) for the permutation that swaps a and b, i.c. the permutation that maps a to b and vice versa, and
maps all other ¢ to themselves. Also, we usually abbreviate a moderated unknown id - X to X.

Write a € m when 7 (a) # a. Write a € t (or X € t) for ‘a (or X) occurs in (the syntax of) . Occurrence is
literal, e.g. a € [ala and a € w - X when a € 7, i.e. m(a) # a. Similarly writea € 7, a ¢ t and X ¢ ¢ for ‘does not
occur in the syntax’.

Definition 2.13 A permutation action 7 - ¢ is defined inductively on ¢ by:

7w -a=mn(a) 7-(r' - X)y=(@@on)-X 7 - [a]t = [7(a)](7 - 1) a-f(,....t,)=Hx-1,...,7-1,).
Intuitively, = propagates through the structure of ¢ until it reaches an atom or a moderated unknown.
Lemma2.14 7 - (7' -t)=(ron’)-t and id -t =1t.

Proof. By an easy induction on the structure of ¢. O

Definition 2.15 Call a substitution o a finitely supported function from unknowns to terms of the same sort. Here,
finite support means that o (X) = id - X for all but finitely many unknowns X.

Write [¢,/ X}, ..., ty/X,] for the substitution o, defined by o(X;) = ¢, and o(Y)=id - Y, forall Y # X, for
1<i<n.

Definition 2.16 The substitution action 7o is inductively defined by:
ac =a (m-X)o=m-0(X) ([a])o = [d](to) f(r1, ..., t)o =1(q10, ..., 1,0).
We may call ro an instance of ¢.

Intuitively, o propagates through the structure of ¢ until it reaches an atom or a moderated unknown. o ‘evapo-
rates’ on an atom, and acts on the unknown of a moderated unknown. The moderating permutation then passes
into the term substituted in that position. We suggest a reading of 7 - X as ‘permute 7 in whatever X eventually
becomes’.

Note that meta-level substitution does not avoid capture; ([¢]X)[a/X] = [a]a. In this sense X is ‘meta’ and
really does represent an unknown term. There is an exact and deliberate analogy here with context substitution,
which is the substitution used when we write ‘let - be ¢ in A a.-’, to obtain A a.a.

The following commutation is easy to prove [UPG04, FGO07]:

Lemma 2.17 7 - to = (7 - t)o.

Proof. By straightforward induction on the structure of ¢. O

456 M. J. Gabbay, A. Mathijssen

7t (a)#X a#t a#tty -+ aftt,
—— (#a 7 T a b) ————— (#f
) ISR i) o G i) T)

Fig. 2. Freshness derivation rules for nominal terms

Definition 2.18 A freshness (assertion) is a pair a#¢ of an atom and a term. Call a freshness of the form a#X
(so t = X) primitive. Write A and V for (possibly infinite) sets of primitive freshnesses and call them freshness
contexts.

We may drop set brackets in freshness contexts, e.g. writing a# X, b#Y for {a#X, b#Y}. Also, we may write
a, b#X for a#X, b#X. Furthermore, write « € A when a occurs anywhere in A, and X € A when X occurs
anywhere in A.

Definition 2.19 Define derivability on freshnesses in natural deduction style [Hod01] by the rules in Fig. 2. Here:

a and b permutatively range over atoms, i.e. @ and b represent any two distinct atoms;
7T ranges over permutations

X ranges over unknowns;

tand 1y, ..., t, range over nominal terms;

f ranges over term-formers; there is one copy of the rule for each term-former.

We use similar conventions in the rest of this paper.

The side-condition 7w # id of the (#X) rule restricts 7 to non-empty permutations. There is no mathematical
reason for this, but there is a nice computational one: the algorithm obtained by reading rules bottom-up, must
terminate.

Definition 2.20 Write A I a#t when a derivation of a#t exists using the elements of A as assumptions. Say that
A entails a#t or a#t is derivable from A; call this a freshness judgement.

We usually write @ - a#t as - a#tt. We will also write A I S for a set of freshnesses S when A - a#t for each
a#tt € S.

For example, in the substitution signature for the lambda calculus (Example 2.8), we have b a#lam([b]b) and
a#t X + a#tapp(X, lam([«]Y)):

atth (Fab) a#lalY (#lla)
— (#[Ib) —————— (#f)
a#[blb aX a#tlam([a]Y)
———— (#f) (#f)
a#tlam([b]b) attapp(X, lam([a]Y))

The derivation rules are completely syntax-directed, so they also hold in the opposite direction:

Lemma 2.21

1. If Ak a#X then a#X € A.

2. IfAF a#rm - X then A -~ Y (a)#X.

3. If A+ a#[b]t then A F a#t.

4. If A a#f(ty, ..., t,) then A a#tt;, forl <i<n.

Proof. By an easy induction on the structure of the derivation rules in Fig. 2. O

Sometimes the freshness context A may be strengthened:
Lemma 2.22 If c#Z, A+ a#t and ¢ ¢ t then A F a#t.
Proof. We transform a derivation of ¢#Z, A I a#t into a derivation of A F a#t:

o If (#Z, A+ a#X by assumption then a#X € ¢#Z, A. Since we assumed ¢ ¢ a#X, we know ¢ # a. Then
a#X € A, and we conclude A - a#X by assumption.

Capture-avoiding substitution as a nominal algebra 457

=u t= =0
(refl) (symm) (tran)
t=1 u = =v
t=u t=u ¢
o) T T T e e
la##X] A
a#tt bkt ;
(a b).t:t(perm) t=u

(fr) (a ¢t u)

t=u

Fig. 3. Derivation rules for nominal equality

o (#X): If c#Z, A\ a#tm - X is derived using (#X) then c#Z, A - 7~ (a)#X . By assumption ¢ ¢ 7 - X, so
7(c) = c. Since also a # ¢, we know 7w ~!(a) # c. By the inductive hypothesis and the simple fact that ¢ ¢ X
we obtain A - 7~ !(a)#X. We conclude A + a#r - X using (#X).

(#ab) and (#[]Ja) carry over directly.
e (#[]b) and (#f) are straightforward using the inductive hypothesis and the following facts: if ¢ & [b]¢ then
cgt,andifc €f(ty,...,t,)thenc gt forl <i<n.
O
Lemma 2.23 If A - a#t then A + w(a)#n - ¢.

Proof. By an easy induction on freshness derivations (Fig. 2). O

Definition 2.24 Write Ao for {a#o(X) | a#X € A}
Note that Ao is not usually a freshness context unless o(X) is an unknown for each a#X € A.

Theorem 2.25 For any A, A, o, if A - a#t and A’ - Ao then A’ - a#tto.

Proof. The structure of natural deduction derivations is such that the conclusion of one derivation may be
‘plugged in’ to an assumption in another derivation, if assumption and conclusion are syntactically identical.
The structure of all the rules except for (#X) is such that if unknowns are instantiated by o nothing need change.
For the case of (#X) we use Lemma 2.23. O

The above condition A’ - Ao ensures that Ao is consistent, in the sense that a#o (X) is derivable from A’ for
each a##X € A.

2.3. Equality

Definition 2.26 An equality (assertion) is a pair 1 = u where ¢ and u are terms of the same sort. Define derivability
on equalities in natural deduction style by the rules in Fig. 3.

We may call this the core theory and refer to it as CORE. We may write A .. ¢ = u for ‘¢ = u is derivable
from assumptions A in the core theory’; call this an equality judgement. We also write J b ¢ = uast o, t = u.

In (fr) square brackets denote discharge in the sense of natural deduction (as in implication introduction);
A denotes the other assumptions of the derivation of ¢ = u. This is useful because unknowns in a derivation
intuitively represent unknown terms, but any finite collection of such terms can mention only finitely many atoms;
(fr) expresses that we can always find a fresh one. In sequent style (fr) would be

at X, A+-t=u
AFt=u

In (perm) read (a b)-t as ‘swap a and b in #’. This single rule expresses a-equivalence. To provide some intuition,
here are some examples on closed terms.

(a &t u).

458 M. J. Gabbay, A. Mathijssen

Example 2.27 t_,.. [ala = []b is derivable in any signature, and ... [a][b]lapp(a, b) = [b]lalapp(b, a) is deriv-
able in the substitution signature of the lambda calculus (Example 2.8):

—— (#ab) ——— (#[]a)
a#tb att[alapp(b, a)
—— (#[b) ——— (#[]a) ————— #[b) ——————— (#[]a)
a#{blb b#{b]b a#t[b][a]app(b, a) b#{b][alapp(b, a)
(perm) (perm)
[ala = [b]b [al[blapp(a, b) = [b][a]lapp(b, a)

Note that we use [a]a = (a b) - [b]b and [a][b]app(a, b) = (a b) - [b][a]app(b, a) in the conclusions of the deriva-
tions.

Example 2.28
o tione [ala = [b]b is derivable:
—— (#ab
7 (#ab)

a
HIbD (#[Ib) bHBID (#[la)
(perm)

[ala = [b]b

(Note here that [a]la = (a b) - [b]b.)

e In the substitution signature of the lambda calculus (Example 2.8), ... [al[blapp(a, b) = [b][a]lapp(b, a) is
derivable.
Since [a][blapp(a, b) = (a b) - [b][a]lapp(b, a) it suffices to show .. (a b) - [bllalapp(b, a) = [b][alapp(b, a).
By (perm) this follows from A F a, b#[b][a]app(b, a), which follow using (#[]a) and (#[]b).

The following is an example of @-equivalence on open terms, which shows that we can rename the atom which
is substituted for.

Lemma 2.29 b#X .. X[a+> T1=((ba)- X)[b+— T]
Proof. De-sugaring, we derive sub([a]X, T') = sub([b](b a) - X, T) from b#X using the rules in Figs. 3 and 2:
X
#
ol OB 1
(perm)
[01(b @) - X = [a]X
(symm)

[a]X = [p](ba)- X

sub([a]X, T) = sub([pl(ba)- X, T)

(congf)

2.4. Inequality of nominal terms up to CORE

It is important to be able to decide when two nominal terms are not equal in CORE because:

We need this to show that CORE is consistent (does not equate all terms; Corollary 2.33).
We need to prove that CORE captures a-equivalence (and no more than a-equivalence; see Theorem 3.9).

We promised to show that equality up to axioms for substitution is decidable. If we are unable to determine
equality and inequality of terms without any axioms then our project would be doomed from the start.

The rules in Fig. 3 are unsuited to determining inequality. The problem is that (tran) is not syntax-directed,
in the sense that u appears in the premises and not in the conclusion. This makes derivation-search, and any
proof that derivation-search must fail, hard. In this subsection we give a syntax-directed version of CORE which
is more convenient for proving that derivations cannot exist. It bears an astounding resemblance to the equality
on nominal terms introduced in nominal unification [UPGO04] (we still need nominal algebra so we can extend
CORE with axioms).

Capture-avoiding substitution as a nominal algebra 459

AFds(n, m)#X by ur - by R, Up
(Ax) (', ™ (Ds) ST S (F)
a=, a 7 X~ X f(t1y . ytn) =, flug, ... up)
tr, u ba) t~, u Al b#t
% (Absaa) (ba) 2 # (Absab)
[a]t =, [a]u la]t =, [b]u

Fig. 4. Syntax-directed rules for CORE

The following definition was introduced in [UPGO04, Fig. 2]; the proofs are modelled on a method presented
in [FGO07, p.13]:

Definition 2.30 Let 7 ~, u be an ordered tuple of a term ¢, a freshness context A, and a term u. Let the
derivable equalities of / ~, u be inductively defined by the rules in Fig. 4. Here we write ds(xr, ') for the set
{a | m(a) # 7'(a)}, the difference set of 7 and ’. We write A - ds(rr, ')#t for a set of proof-obligations A F a#t,
one for each a € ds(r, ’).

Theorem 2.31 A .. ¢t = uif and only if # ~, u is derivable in the sequent system for CORE.

Proof. The left-to-right direction is by induction on the structure of derivations of A ... ¢ = u. By the inductive
hypothesis it suffices to show:

e Syntax-directed equality ~, is an equivalence relation and a congruence. This is [FG07, Theorem 24].
If A+ a#tand A+ b#t then (a b) -t =, t. This follows by an induction on the structure of ¢.

If t~, ., uwherea¢t uthent~, u. By a straightforward induction on the structure of derivations of

t~ u. The case of (Absab) uses Lemma 2.22 to strengthen the assumption A, a#X F c#t to A F c#t.

A a#X

For the right-to-left direction we work by induction on derivations of ¢ ~, u. By the inductive hypothesis it
suffices to show:

o Al e a=a. Thisisan instance of (refl).

o If A ds(m, n")#X then A b .. - X =n’- X. By induction on the number of elements in ds(z, 7). If
this set is empty then 7 = 7’ and the result follows easily by (refl). Now suppose a € ds(rr, 7’). We construct
a partial derivation of the proof obligation:

m(a)ftn’ - X #'(a)tn’ - X
(perm)
7-X=((r(@)7'(@))on)- X ((m(@)n'(a)on) - X=n"-X
(tran)
7-X=n"-X
The remaining equality 7 - X = ((;r(a) 7’'(a)) o ') - X follows from the assumptions ds(sr, 7')#X using the
inductive hypothesis and the fact that ds(s, (7w (@) 7'(a)) o 7’) = ds(w, ') \ {a}; the remaining freshnesses
w(a)#tn’ - X and 7' (a)#x’ - X follow from the assumptions ds(m, 7/)#X using Lemma 2.23.

o IfAF eti=uforl <i<mn then At f(t1,....8) ="F(u,...,u,). Using a number of instances of
(tran) and (congf).
o IfAlF e t =uthen At [alt = [alu. This is (cong[]).

o If Al e (ba)-t=uand At b#t then A b, [a]t = [blu. Suppose that IT and IT" are derivations of
A Feore (b a) -t =uand A - b#t respectively. Then the following is a derivation of A .. [a]t = [b]u:

H/
b #[Ib - (#
et g O .
(perm) S
[b1(b a) - t = [a]t ba)-1—u
@—woa ™ Bew = o
(tran)
[a]t = [b]u

460 M. J. Gabbay, A. Mathijssen

Vo

—— (aXvrt=u)
T-to =7 -uo

Fig. 5. The axiom rule

As corollaries of Theorem 2.31 we obtain syntactic criteria for determining equality in CORE, and consistency
of CORE.

Corollary 2.32 (Syntactic criteria for CORE) A +_,.. t = u precisely when one of the following hold:

l. t=aandu=a.

2. t=m-Xandu=7n"-Xand A Fds(r, 7")#X.

3. t=[alf andu=[alu’ and A b ' =0

4. t=[a]f andu = [bJu' and A+ b#H: and A b (ba) -t =u'.

5. t=1(t,...,ty)andu="F(u,...,u,)and A ti=u; for 1 <i < n

Proof. By Theorem 2.31 it suffices to inspect the rules for ¢ &, u, which are just a rendering of the above criteria
in terms of derivation rules. O

Corollary 2.33 (Consistency of CORE) For all A there are ¢ and u such that A ¥ .. t = u.
Proof. By Corollary 2.32, A b,.c @ = b is never derivable. O

2.5. Axioms and theories

We now come to the raison d’étre of nominal algebra: axioms.

Definition 2.34 Call a triple V - ¢ = u where V is a finite freshness context, an axiom. We may write - ¢z = u when
V is empty (the empty set). Call an instance of an axiom a step in a derivation where the conclusion is obtained
from an axiom by instantiating unknowns by terms and permutatively renaming atoms such that the hypotheses
are corresponding instances of freshness conditions of the axiom.

This is formally expressed by the rule (axy-¢—y) in Fig. 5. Here 7 ranges over permutations and o ranges over
substitutions. Recall that we write Vo for {a#fo(X) | a#X € V}.

The reader might have expected that the premise of the axiom rule should be 7 - Vo instead of Vo. It turns
out that both versions are correct, because of Lemma 2.23: A+ Vo iff A+ 7 - Vo for any A.

Definition 2.35 Call a set of axioms T a theory. Write A -, ¢t = u when ¢ = u can be derived from A using only
axioms from T.

A number of properties on freshnesses also hold for equations of any theory T.

Lemma236 If A t=uthen Al . 7m-t=m-u.

Proof. By induction on the structure of the rules of Figs. 3 and 5. O
Theorem 2.37 Forany T, A", A,0,if A+, t =uand A’ + Ao then A’ -, to = uo.
Proof. Analogous to the Proof of Theorem 2.25. O

3. Substitution on ground terms

Definition 3.1 Call terms g, s and k ground terms when they do not mention unknowns or explicit substitutions.
Ground terms are inductively characterised by

g n= a |[a]g| f(gl»,gn)

where f ranges over all term-formers except for sub.

Capture-avoiding substitution as a nominal algebra 461

We now consider the meaning of explicit substitution on ground terms, in a suitable formal sense. This will
make a connection between [a¢ — ¢] and actual capture-avoiding substitution on syntax, and we will find that
connection useful later.

Definition 3.2 Define a ‘free atoms of” function fa(g) on ground terms inductively as follows:
fa@) ={a} fa(alg) = fa(@)\la} fa(f(gr.....g))=] fa(g).
1<i<n
Lemma 3.3 - a#g if and only if ¢ & fa(g).
Proof. By induction on the structure of g. O
Definition 3.4 Let the size of a ground term be inductively defined by:

lal| =1 llalg] = 1g]+1 If(g1,....g) | =lg1|+ - +lg |+ 1L

Definition 3.5 For each finite set of atoms fix some choice of ‘fresh’ atom not in that finite set. Then define a
ground substitution action g[//a] on ground terms of sort T and [A]T inductively on the size of g by:

alh/al=h blh/al=b
([alg)lh/a] = [alg ([bI)lh/a] = [bI(glh/al) (b & fa(h))
([bg)[h/a] = [c)(gle/blh/al) (b € fa(h), cfresh)
f(g1, glh/al =Hgilh/al, ... gulh/a)),
where f ranges over all term-formers excluding sub. By ‘¢ fresh® we mean that ¢ is chosen such that

¢ & {a,b}VU fa(g)U fa(h) according to our arbitrary choice. We will not mention ¢ ¢ {a, b} anymore, since this
is enforced by our permutative convention (see Convention 2.3).

Note that the ground substitution action is well-defined, since | g[c/b]| =|g| in the penultimate case of Def-
inition 3.5, as can be shown by an induction on the size of g. We will often use this fact that capture-avoiding
substitution of atoms for atoms preserves size.

Lemma 3.6 states familiar properties of ground terms. It makes the vital connection between ‘substitution as
we know it’ and the nominal technology we bring to bear on it.

Lemma 3.6 For ground terms g, A, k:

1. Identity. F o gla/al =g.

2. Swapping. IftF b#Hg then b . glb/a]l = (ba)-g.

3. Garbage collection. If - a#g then b .. g[h/a] = g.

4. Non-capturing distributivity. If - a#k then .. g[h/allk/b] = glk/blhlk/b]/a].

Proof. Part 1 follows from the stronger property that g[a/a] = g, which we can show by an easy induction on the
structure of g. The other parts all follow by an induction on the size of g. O

We will now show how equality on ground terms in theory CORE coincides with a straightforward definition
of a-equivalence on ground terms: syntactic equality extended with a rule to rename bound variables.

Definition 3.7 Define an «-equivalence relation g =, / inductively by the rules in Fig. 6. Here ‘c fresh’ means any
¢ such that ¢ & {a, b} U fa(g) U fa(h).
Lemma 3.8 If a,b ¢ fa(g)then (ab)-g =, g.

Proof. All instances of ¢ and b in g must occur in the scope of abstractors [¢] and [b]. Traverse the structure of
g bottom-up using the rules of Fig. 6 to rename abstractions by [«] and [5] to fresh atoms. Call the new term g’.
Now (a b) - g’ = g’ because a, b ¢ g’. Equality is symmetric, so we reverse the process to return to g. O

Lemma 3.8 enables us to prove the main result of this section: in the presence of the equalities of CORE,
ground terms g and / are provably equal if and only they are a-equivalent.

Theorem 3.9 ... g = hifand only if g =, A.

462 M. J. Gabbay, A. Mathijssen

g=ah 91 =a 92 92 =a 93
Jdg=ag h=49 91 =a 93
g=ah g1 =ah1 -+ gn =a hy
lalg =a [a]h f(g1s---s9n) =a f(h1,y. .o hy)
gle/a] =a hle/b] (¢ fresh)
[alg =a [b]h

Fig. 6. a-equivalence =, on ground terms

(var—) F ala — T| =

(b—) F bla—T] =1b

(f—) FfXy,....X))[a—T) =f(Xila—T],...,X,]Ja— TJ) (f # sub)
(abs—) c#T F ([dU)a — T] = [¢](Ula — T])

Fig. 7. Axioms of SIMP

Proof- We prove the left-to-right implication by induction on the structure of g, using the syntactic criteria of
Corollary 2.32. The cases of g =a and g =f(gy, ..., g,) are easy. Now suppose g = [a]g’, then there are two
possibilities:

l. h=lall/ and . g’ = /. Then g’ =, I’ by the inductive hypothesis, and we conclude [alg’ =, [a]/’ by
congruence.

2. h=[bl,-b#Hg and by (ba)-g =N .Thena,b ¢ fa([alg’) by Lemma 3.3 and some easy calculations, so
[alg’ =« [D](b a) - g’ by Lemma 3.8 and symmetry. Also [0](b a) - g’ =, [b]/ by congruence and the inductive
hypothesis. We conclude [a]g’ =, [b]/ by transitivity.

Conversely suppose that g =, A. It suffices to show that equality in CORE can simulate every derivation
rule of =,. We treat the only non-trivial case: [a]g =, [b]# is deduced using the last rule from Fig. 6. Then for
¢ chosen fresh for fa(g) U fa(h), we know g[c/a] =, h[c/b]. By the inductive hypothesis \... glc/a] = h[c/b].
Since - c#g and - c¢#h we obtain .. g[c/a] = (c a) - g and .. h[c/b] = (¢ b) - h by part 2 of Lemma 3.6.
Using (symm), (tran) and (cong[]) we obtain .. [c](c @) - g = [c](c b) - h. By (perm) .. [c](c @) - g = [alg and
Feore [€(c b) - h = [b]h, since - c#g and - c#h. Using (symm) and (tran) we conclude that .. [a]lg = [b]h. O

4. The theory SIMP; simply substitution

We introduce nominal algebra theory SIMP which is sound but not complete with respect to the ground term
model from Sect. 3. This is an important technical step towards SUB because we shall prove properties of SUB
by reducing them to properties of SIMP.

Definition 4.1 Let SIMP be the nominal algebra theory with axioms as in Fig. 7.

Here, f ranges over all term-formers except for sub. Recall that 7" and U are unknowns of T, and that the X;
are unknowns of sort T or [A]T (which one applies depends on the instance of f).
Lemma 4.2 For ground terms g and /4, if - a#g then b, gla — h] = g.
Proof. By induction on the size of g. O
Theorem 4.3 If g and / are ground terms then b, gla — h] = g[h/a] is always derivable.
Proof. By induction on the size of g. We only consider the interesting cases:

e g =|[alg’. Then ,, ([alg’)[a — t] = [a]g’ by Lemma 4.2 since F a#[alg’. Since ([a]g')[h/a] = [alg’ we are
done.

Capture-avoiding substitution as a nominal algebra 463

e g =[blg, b e fa(h). Then ([b]g")[h/a] = [c](g[c/b]lh/a]) where ¢ is a fresh atom according to our arbitrary
choice, i.e. ¢ ¢ fa(g’) U fa(h). Then by Lemma 3.3 also - c#g’ and - c#h. Now b [c](c b) - g’ = [b]g’ by
(perm) since - b#[b]g’ and c#[b]g’. By (symm), (cong[]) and (congf) we obtain

Feore ([01g"]a — h] = ([cl(c b) - g"la — h].
By axiom (abs) also
Fee ([c](c D) - g)la >] = [c)(((c b) - g)la +— h])
since b c#h. By the inductive hypothesis and (cong[])
Fawe [€1(((¢ b) - §)a = h]) = [c](((c b) - g"[h/a)).
Since b e &'[c/b] = (c b) - g’ by part 2 of Lemma 3.6, we deduce
Fawe [)(((c b) - g)[h/al) = [c1(g'[c/bllh/al)

using the rules of equality.
Using (tran) we conclude . ([blg")[a — h] = [c](g'[c/b][h/a]).

O
Definition 4.4 Define the translation _' of closed terms to ground terms inductively on closed terms by:
7 7
al=a (a) =[al") ftr,....,)" =1, ..., 1tn) (F#£sub) sub(s,u) =glut/a] (lalg = 1Y).
Note that (f[a + u])’ = t'[u’/a] follows from the sub case, since [a](t') = ([a]t)’ by the abstraction case.
Lemma 4.5 For any closed term ¢, if - a#t then - a#t'.
Proof. By induction on the structure of z. O

Note that the converse of Lemma 4.5 does not hold. Take for example ¢ = b[c + a]. Then - a#(b[c — a])* since
(b[c — a])’ = b. But ¥ a#b[c — al, since ¥ a#a.

Theorem 4.6 For any closed term ¢, b, ¢ = t'.

Proof. By induction on the structure of . We consider the only non-trivial case ¢t = sub(u, v). By definition
sub(u, v)' = g[v'/a] where [a]g = u', and by the inductive hypothesis, -, # = u’ and -, v = v'. By (congf)
and (tran), we obtain

Foue SUD(1, v) = sub(u’, vY).

SIMP

By Theorem 4.3 we know I, gla + v'] = g[v'/a]. Since [alg = u’ and g[v'/a] = sub(u, v)’, this is syntactically
equivalent to

Foue SUb(u?, vh) = sub(u, v)*.
By an application of (tran) we conclude F,,, sub(u, v) = sub(u, v)" as required. O

As a corollary of Theorem 4.6 all standard properties of capture-avoiding substitution on ground terms carry
over to closed terms.

Corollary 4.7 For closed terms ¢, u, v:

. Fgu tlar—al=1t.

2. Ifk b#tthen b, tlar—> bl=(ba)-t.

3. Ifk a#tthent,, tla—~ u] =t

4. IftF a#tv then b, tla — ullb — v] = t[b — v][a — u[b — V]].

Proof. Using Theorem 4.6 and Lemma 3.6. 0

In this section we have established that in the presence of the equalities of SIMP, ¢ and ¢' are provably equal,
for closed terms ¢. Yet many questions related to open terms remain:

464 M. J. Gabbay, A. Mathijssen

A}_comzt:ﬂ—'lo' AFCOREU:W'TU A+ Vo

A t—u

(—rew) (VHI—reR)

A t—u At t—u

IR A o) =y Y

Fig. 8. Derivation rules for nominal rewriting

1. Is SIMP conservative over CORE? That is, if two terms that do not mention sub are equated in SIMP, are
they necessarily equated in CORE?
(Answer: Yes.)

2. Isequality in SIMP decidable?
(Answer: Yes.)

3. Is SIMP sound for the ground term model? That is, if two terms are equated in SIMP, are all their closed
instances «-equivalent, if we interpret every occurrence of sub by capture-avoiding substitution?
(Answer: Yes.)

4. 1Is SIMP complete? That is, if all closed instances of two terms are a-equivalent where we interpret sub by
capture-avoiding substitution, are the terms themselves provably equal in SIMP?

(Answer: No, but a more powerful theory SUB exists which is complete, and which retains properties 1 to 3 of
this list.)

The next two sections provide answers to these questions together with detailed proofs.

5. Substitution on open terms using SIMP

In this section we recall a notion of rewriting called nominal rewriting [FGO07], which is tailored to nominal terms.
We will use nominal rewriting to prove properties on open terms of theory SIMP.

5.1. Nominal rewriting

Definition 5.1 A nominal rewrite rule V I / — r is a tuple of a freshness context V and terms / and r of the same
sort such that V and r mention only unknowns appearing in /.

A nominal rewrite system R is a set of nominal rewrite rules. It determines a set of nominal rewrites A _ ¢ — u
inductively by the rules in Fig. 8.

Write A ¥, t — u when the rewrite A -, t — u is not derivable.

In the (—f) rule of Fig. 8, f ranges over a// term-formers of the signature of R (whatever that signature is).
The (—rew) rule is closely related to the (axyy¢—,) rule from Fig. 5. We discuss the aspects of this rule in more
detail:

e The permutation 7 allows us to permutatively rename atoms. Consider for instance the substitution sig-
nature of the lambda calculus (Example 2.8) extended with a term-former const : ()T, and write const()
as const. Then the rewrite rule app(a, b) — const generates, for example, rewrites app(b, a) — const and
app(a, ¢c) — const but not app(a, a) — const because no 7 can identify a with b.

e The substitution o gives unknowns X in rules the character of ‘unknown terms’, and is subject to the freshness
conditions formulated by A - Vo. Note that we could also have used A - 7 - Vo, which is equivalent to
A F Vo by Lemma 2.23.

e The use of equality in CORE gives abstractions [a]- the character of real abstractions. For example the rule
lam([a]lam([b]b)) — const generates rewrites

lam([a]lam([a]a)) — const lam([b]lam([b]b)) — const lam([b]lam([c]c)) — const.
The following result is easy to prove from the definition of rewriting:
LemmaS.2 If A, t > uand A’ Ao, then A’ to — uo.

Capture-avoiding substitution as a nominal algebra 465

A t—u AbFet=1u AF,t—="u AF,u—"v

— (=) — O (—*refl) (—*tran)
AF,t—="u AF, t—="u AF, t—="v

Fig. 9. Derivation rules for the transitive reflexive closure of R

Proof. By induction on the derivation of A F_ ¢ — u we construct a derivation of A’ - to — uo. O

Definition 5.3 Write A -, ¢ —* u for the transitive reflexive closure of R defined inductively by the rules in Fig. 9.
Write A ¥, t —* uwhen A - t =™ u is not derivable.

If a term does not have any rewrites, the transitive reflexive closure of R is precisely CORE-equality:
Lemma 5.4 If there is no ¢ such that A - t — ¢’ then

Abgt—="u ff Al t=u

Proof. Suppose there is no ¢ such that A+, ¢t — ¢'. If A .. ¢ = u then by (—"refl) also A I, t —* u. Con-
versely if A F, ¢ —* u then this rewrite must be derived using (— *refl) by an inductive argument. 0

Definition 5.5 Call a nominal rewrite system R confluent when if A+, t —* u and A F_ # —* v then there is
some wsuch that A -, u —>*wand A, v —>* w.

Definition 5.6 Call a nominal rewrite system R strongly normalising when there is no infinite sequence 71, 1, 3, . . .
such that A+, ¢, — #;+ forall 1 <.

Lemma 5.7 If a derivation exists of A i, t — u then that derivation mentions (—rew) exactly once.
Proof. By the structure of the derivation rules from Fig. 8. O

Definition 5.8 If a rewrite A -, ¢ — u occurs, it must occur at some subterm ¢ of ¢ (the subterm ¢ where we
actually use (—rew) and prove A - Vo and A .. t' = o). We say that the rewrite occurs at ¢’ inside . If the
derivation tree has just an instance of (—rew), then we may say the rewrite occurs at top level.

Call a pair of nominal rewrites A -, t — u and A I, t — v a critical pair when at least one of the rewrites
occurs at top level. If any of the two rewrites occurs at a moderated unknown inside ¢, call the critical pair trivial.
Otherwise call it nontrivial.

Definition 5.9 Call a rewrite rule V I / — r uniform when A I g#/ and A - V imply A a#r for all A and a.
A rewrite rule V I [— r is left-linear when / does not mention the same unknown more than once. A uniform
nominal rewrite system with only left-linear rules and no non-trivial critical pairs is orthogonal.

Theorem 5.10 An orthogonal uniform nominal rewrite system is confluent.
Proof. See [FGO7, Theorem 65]. O

Remark 5.11 Nominal rewriting is the default notion of rewriting for nominal terms, like higher-order rewriting
(such as CRS’s [KvOvR93] and HRS’s [MN98]) is for higher-order terms. The major differences between the two
frameworks can be summarised as follows:

e The default notion of instantiation of meta-variables is capturing for nominal rewriting whereas it is capture-
avoiding for higher-order rewriting.

e Nominal rewriting uses unification up to @ whereas higher-order rewriting uses unification up a8(n).

Detailed comparisons are elsewhere [FG07].

5.2. SIMPr: explicit substitution rewritten

Definition 5.12 Let SIMPr be the nominal rewrite system defined in Fig 10.
A basic correctness result is this:

Lemma 5.13 If A ., t =" uthen A k. t = u is derivable.

466 M. J. Gabbay, A. Mathijssen

(Rvar) F ala—T] — T

(Rb) = ba—T] — b

(Rf) F (X, X)a—T] — f(Xila—T],...,X,Ja—T]) (f#sub)
(Rabs) c#T ([JO)]a—T] — [Ulaw T])

Fig. 10. Substitution as a rewrite system SIMPr

Proof. By induction on the structure of derivations of A b, ¢ —* u. The case of (—*—) uses the precise
correspondence between the rewrites in Fig. 10 and the axioms in Fig. 7. (— *refl) uses (refl), and (— *tran) uses
(tran).

Remark 5.14 The (Rb) rule cannot be represented by a rule in a higher-order rewrite system, since in such a system
object-variables only exist when they are bound by a meta-level abstraction. That is, the rule sub(x x.y, T) — y
does not represent (Rb) since y represents a meta-variable instead of an object-variable. It represents the more
general rule a#X F+ X[a— T] — X.

Lemma 5.15 All rewrite rules of SIMPr are uniform.

Proof. For each rule, use appropriate instances of Lemma 2.21. For example, for the (Rabs) rule, we need to
show that A - d'#([c]U)[a+ T]and A c#T imply A - a'#[c](U[a — T]) for any ¢’ and A. From the first
assumption we know, by Lemma 2.21:

o ifd =aord =cthen d#T € A;
o ifd #aandd # cthend'#T € Aand d'#U € A.

Using these assumptions it is easy to show A = a'#[c](U[a — T1]) by case distinction on a’. O
Theorem 5.16 (Confluence of SIMPr) SIMPr is confluent.

Proof. By Lemma 5.15 all rewrite rules of SIMPr are uniform. Also, SIMPr has no non-trivial critical pairs and
every rule is left-linear (each unknown is mentioned on the left at most once). Then SIMPr is orthogonal and
uniform by Definition 5.9. We conclude that it is confluent by Theorem 5.10. |

Confluence of SIMPr has a number of nice corollaries, which comprise the remainder of this subsection.

Definition 5.17 Call a term ¢ a SIMPr-normal form with respect to A when there is no u such that A + t— u.

SIMPr

Theorem 5.18 Suppose that ¢ and u are SIMPr-normal forms with respect to A. Then
Abgw t=1u if and only if Abgore T =1

Proof. The (empty) set of axioms of CORE is a subset of the axioms of SIMP so a derivation in CORE is also a
derivation in SIMP and it follows that if A F_ .. t =uthen A b, t = u.

Conversely suppose A b, ¢t =u. By Theorem 5.16 there is some term v such that A . ¢t —* v and
A Fgye 4 = v. By assumption there can be no ¢ and ' such that A . t = ¢ and A k., # = u'. Then
Abeore t =vand A ... u =vby Lemma 5.4, and we conclude A ... ¢ = u by (symm) and (tran). O

Corollary 5.19 (Conservativity of SIMP over CORE) Suppose that ¢ and u do not mention the term-former sub.
Then

Abgpt=u if and only if A+ t=u.

SIMP CORE

Proof. This is an instance of Theorem 5.18, since if 7 and u do not mention sub, then ¢ and u are SIMPr-normal
forms with respect to any A. U

Recall the notation ¢* for closed terms 7 from Definition 4.4.
Corollary 5.20 For closed terms ¢ and u,

Foaw ¢ =u ifand onlyif .. " =ul.

Proof. g t = u is equivalent to -, t' = u' by Theorem 4.6, (symm) and (tran). By Corollary 5.19 this is

equivalent to o 1 = u'. O

Capture-avoiding substitution as a nominal algebra 467

Corollary 5.21 (Consistency of SIMP) For all A there are # and u such that A ¥,
Proof. A corollary of Corollaries 5.19 and 2.33. 0

For the final theorem of this subsection we need a few definitions.

r=u.

Definition 5.22 Call a substitution o closing for an unknown X when o (X) is a closed term. Call o closing for a
term ¢ or closing for a freshness context A when o (X)) is closed for every X € tor X € A.
Say a closing substitution o for A is A-consistent when - Ao, i.e. when - a#o(X) for all a#X € A.

Theorem 5.23 (Soundness of SIMP) SIMP is sound for the ground term model. That is:
If A bgp ¢ = u then to* =, uo* for all A-consistent closing substitutions o (for A, 7 and u).

Proof. g to =uc by Theorem 2.37 and our assumption that - Ao. We obtain k. to' =uo’ by

Corollary 5.20, since to and uo are closed. We conclude to! =, uo? by Theorem 3.9, since to' and uc?' are
ground. 0

5.3. Failure of completeness for SIMP

SIMP is not a complete theory of substitution on ground terms. Unknowns in nominal algebra represent unknown
terms, and here are some examples of statements that are true for every closing o (for the unknowns in the
statements) but which are not derivable in SIMP:

Theorem 5.24 (Incompleteness of SIMP)

1. Foyw Xla—al=X.

2. bHX ¥y Xla— bl=(ba)-X.

3. attX ¥, X[a— T]=X.

4. a#tU ¥y, Xla Tlb— Ul=X[b— Ullar T[b+— U]

Proof. For part 1, we can easily check using the syntactic criteria of Corollary 2.32 that ... X[a — a] = X isnot
derivable. Now since X [a — a]and X have no SIMPr rewrites, we conclude . X[a > a] = X by Theorem 5.18.
The proofs of the other parts are similar. O

The fact that above assertions are derivable for closing substitutions follows by Corollary 4.7.

Nominal algebra has a model theory and satisfies soundness and completeness [GM06b, GM07]. So SIMP
has ‘nonstandard’ models which contain ‘pathological elements’ for which the above equalities do not hold. SIMP
defines substitution, but it does not express all of the properties which emerge from that definition. To do that
we must strengthen the theory. Before that however, it is useful to consider the computational content of SIMP.

5.4. Strong normalisation and decidability

We expect the part of a A-calculus that handles substitution to be terminating [BR95, Les94]—so is SIMP
terminating? After all our syntax contains sub as an explicit term-former, and it contains unknowns so that sub
cannot always be completely eliminated. Also, we consider single substitutions and not simultaneous substitutions,
so that the order of substitutions matters. Perhaps that all makes enough of a difference that reductions could
cycle or diverge in some way?

In fact reductions in SIMPr are extremely well-behaved. We show strong normalisation by a standard method:
define a well-founded measure | #|,, on terms and show that rewrites reduce it.

Definition 5.25 For a term ¢ let | 7|, be inductively defined by:

laln =1 |7 X|n=1 [[a]tlm = 1t]mt1
[f(t1, ... t) =1t t - Fltylmtn+ 1 (f # sub)
| sub(t, W) |m =t |m *(|tt]p +1)

For terms uf[a +—] we have

lula > 11 = [sub([alu, 1) 1 = [alulm *(|2]m+1) = (uln+1) % (1]m+1).

468 M. J. Gabbay, A. Mathijssen

Lemma 5.26 For all terms 7 and permutations 7:

1. |t]m> 0.

2. |t|m=|m-t|n Asacorollary, if A b . t =uthen |t|, = |uly.

Proof. Both partscan be proven by a simple induction on the structure of . The corollary follows by Corollary 2.32
which states that ¢ and u are renamed versions of each other by means of permutations. |

Lemma 5.27 For terms ¢, u, t1, ..., t, and term-formers f £ sub:

L. ldla t]ln > |t]nm

2. |blar t]lm > |b|m.

3. (e,t)la— tlm > f(tila— 1], ..., tyla—>)| (f # sub).
4. [([c]Wla = | > [c)(ula = 1]) |n-

Proof. By straightforward calculations using the measure on terms. The last part uses the fact | #],, > 0(Lemma 5.26
above). O

Lemma 5.28 For terms ¢, u, t1, ..., t, and term-formers f:

1. If|t], > |ul, then [[a]t], > [[alu|m.
2. If |ty > |ulpmthen |f(t, ... 8, oo t) | > 1F(t1, oo uy ooy 80) |me

Proof. Again by straightforward calculations. The last part uses the fact that |z|,, > 0 when f = sub. O
Theorem 5.29 (Strong normalisation of SIMPr) SIMPr is strongly normalising.

Proof. 1t suffices to show that if A -, ¢t — u then |¢|,, > |u|,. We proceed by induction on the rules from
Fig. 8, using the rewrite rules from Fig. 10.

Suppose A b, ¢ — u is derived using (— []) or (— f); then the result follows by Lemma 5.28 and the
inductive hypothesis.
Suppose A b, ¢ — u is derived using (— rew); then for each SIMPr rewrite rule of the form V[— r

from Fig. 10 we have, for some 7 and o,
Abgpe t=m-lo and Abqpe U=m 1o and At m-Vo.

By part 2 of Lemma 5.26, |¢|,, = |7 -lo |, = |lo |, and |ul,, = |7 - ro |, = |ro |,. So in order to show that
[t], > |u]|m, it suffices to show | /o |, > | ro |,». For each SIMPr rule this is an instance of Lemma 5.27. a

We have already given an algorithm to compute normal forms on closed terms in Definition 4.4:
Lemma 5.30 If 7 is closed then ' is a SIMPr-normal form of ¢ with respect to any A.
Proof. By an induction on the structure of . O
Theorem 5.31 (Unique normal forms for SIMPr) SIMPr-normal forms are unique up to equality in CORE.

Proof. Let A be a freshness context and ¢ be a term. By Theorem 5.29 ¢ has a normal form, say u, with respect
to A. Now suppose v is also a normal form of ¢ with respect to A. Then A ., t >* uand A .. t =% v. By
confluence (Theorem 5.16) there exists a term w such that A - u—>*wand A+ v —* w. Since u and v

SIMPr SIMPr
do not have any rewrites A .. ¥ = wand A k.. v =w by Lemma 5.4. Using (symm) and (tran) we conclude
A+ u=v.

CORE

As a corollary we obtain decidability of theory SIMP:

Theorem 5.32 (Decidability of SIMP) It is decidable whether or not A b, t = u.

Proof. Given A, t and u the following procedure decides whether A . ¢ = u is derivable:

1. Rewrite ¢ and u to SIMPr-normal forms ¢ and «' with respect to A; by Theorem 5.29 these exist and by
Theorem 5.31 they are unique up to equality in CORE.

2. Check whether A .. ¢ = u’ using the syntactic criteria of Corollary 2.32.
3. If A b e ¢ = then return ‘true’, otherwise return ‘false’. O

Capture-avoiding substitution as a nominal algebra 469

6. Substitution on open terms using SUB

In this section we focus on theory SUB from Fig. 1. We show that it is decidable and complete with respect to
the ground term model by relating it to theory SIMP.

Definition 6.1 The theory of substitution SUB is the equality relation obtained by the rules of nominal algebra
with the axioms in Fig. 1. Here f ranges over all term-formers, including sub.

As an example, we show that our standard properties of capture-avoiding substitution are all derivable in
SUB.

Lemma 6.2 The following judgements are derivable in SUB:

. Fge Xlaral=X.

2. b#X by Xla—=>bl=(ba) - X.

3. attX by, X[ar> T]=X.

4. a#tUbgy, X[la— T]b— Ul= X[+ Ula+ T[b+— U]

Proof. Parts2and 3 are direct from (ren—) and (#+). For the other two parts we give nominal algebra derivations

in the theory SUB.
Derivation for part 1:

(#[la) ull (#[Ib)
a
attlalX b#[alX
(perm)
[bl(ba)- X = [a]X [b#X]!
(symm) —— (#X)
[alX = [bl(ba)- X att(ba)- X
(congf) (aXren-)
X[lar dal=(ba) X)[b+— d] ((ha)- X)b—al=X
(tran)
Xla—al=X
—— (f0)'
Xla—adl=X

In the above derivation of X[a — a] = X, the superscript number one ! is an annotation associating the instance
of the rule (fr) with the assumption it discharges in the derivation. This is standard natural deduction notation.
For the derivation of part 4, we write s for [b — U]and we use the unsugared syntax for the other substitutions.

attU
(axabs>—>)
([a]X)s =[al(Xs)
(axf) (congf)
sub([a]lX, T)s =sub(([a]X)s, Ts) sub(([a]X)s, T's) =sub([a](Xs), Ts) (tran)
ran

sub([a]X, T)s =sub([a](Xs), T's)
We conjecture that it is not possible to derive -, X[a — a] = X without (fr).

6.1. Soundness and the relation to SIMP

SUB can do everything that SIMP can:
Lemma 6.3 If A, t =uthen A g, t =u.

suB

Proof. All the axioms of SIMP are also axioms of SUB, except for (b—). However an instance of (b—) is also
an instance of (#+). Therefore any SIMP derivation is also a SUB derivation. The result follows. O

We now show that SIMP can do everything that SUB can—provided that the terms are closed. We need a
technical lemma:

Lemma 6.4 If 7, u and v are closed, then:

470 M. J. Gabbay, A. Mathijssen

1. kg SUb(t, w)a — v] = sub(t[a — V], u[a — v]).
2. Ift a#t then b, [a]sub(z, a) = t.

Proof. We consider the parts in turn:

1. Since I, ¢ = t' by Theorem 4.6, the proof obligation is equivalent to
Foue SUD(ZY, w)[a — v] = sub(t'[a = V], u[a — v]).

Now ' is of the form [a]g or [b]g, where g is a ground term. We only consider the case of b, the case of a is
completely analogous. Take ¢ fresh such that - c#g and - ¢#v. Then .. [b]lg = [c](c D) - g using (perm),
since - b#[b]g and - c¢#[b]g. Then using the rules for equality, the proof obligation is equivalent to

Feowe SUB(EI(e b) - g, w)la = v] = sub(([cl(c b) -)l > V1, ula > V).

Since F c#v, bge ([c](c D) - g)la — v] = [c](((c b) - g)[a — v]) by axiom (abs—), so the proof obligation is
equivalent to k. sub([c](c b) - g, u)[a — v] = sub([c](((c b) - g)[a —> v]), u[a — v]). Or, using sugar:

Fow ((¢ D) - e = ulla — v] = ((c b) - g)[a — V][c — u[a — V]].

And this is just an instance of part 4 of Corollary 4.7, since b c#v.
2. Wemust show k-, [a]sub(z, @) = ¢. By Theorem 4.6 this is equivalent to I, [@]sub(¢', @) = ¢. We proceed
by case distinction on the structure of ¢':

o ' =[dlg: Then kg, [a](g[a — a]) = [a]g follows by (cong[]) and part 1 of Corollary 4.7.
e t'=[b]g: Then k-, [al(g[b + a]) = [b]g follows from

}_SIMP [a](g[b = a]) = [a](a b) -8 and |_SIMP [a](a b) ‘8= [b]g

by (tran). By (cong[]), ., [al(g[b — a]) =[a](ba)-g follows from k. g[b+— a]=(ab)-g. By
Corollary 4.7, this is when + a#g. By (perm) and the rules for freshness also . [a](b a) - g = [b]g
when F a#g. By Lemma 2.21, this is when - a#[b]g. Since [b]g = ¢', this follows from the assumption
F a#t by Lemma 4.5. O

On closed terms, SUB is equivalent to SIMP:
Lemma 6.5 For closed terms ¢, u:

Foe t =u ifandonlyif b+, 1=u.

Proof. The right-to-left part follows by Lemma 6.3.

For the left-to-right part, we must show that SIMP can simulate the axioms of SUB on closed terms. Axioms
(var—), (abs—) and (fi—), for f # sub, are also present in SIMP. Each instance of axiom (f—), where f = sub,
is an instance of part 1 of Lemma 6.4. Instances of axioms (ren—) and (#+) are instances of parts 2 and 3 of
Corollary 4.7. Finally, each instance of () is an instance of part 2 of Lemma 6.4. O

To recap, SIMP is sound for a ground term model by Theorem 4.3, equality in SIMP is decidable by Theo-
rem 5.32, but not complete by the Theorem 5.24.

We now build the tools to prove that SUB is sound, decidable—and also complete for the ground term model.
For soundness we have already done all the hard work:

Theorem 6.6 (Soundness of SUB) SUB is sound for the ground term model. That is:
If A g, t = u then to’ =, uc' for all A-consistent closing substitutions o (for A, ¢ and u).

Proof. Since A -, t = uand o is A-consistent, we obtain -, to = uo by Theorem 2.37. to and uo are closed
so by Lemma 6.5 I, to = uo. By Corollary 5.20 we obtain ., t0' = uo'. We conclude to’ =, uc' by
Theorem 3.9, since o' and uo ' are ground. O

Capture-avoiding substitution as a nominal algebra 471

6.2. Decidability

In this subsection we will establish that equality in SUB is decidable. We do this by transforming the problem
of deciding whether a derivation of A -, ¢ = u exists, into the problem of deciding whether a derivation of
Fowe ¢ = U’ exists, for some carefully-chosen closed terms ¢ and «’ in an extended signature (to be precise: in
a correspondingly extended theory with extra (f—) axioms for the extra term-formers). We can then exploit
decidability of SIMP (Theorem 5.32), and conclude that SUB is decidable. The rest of this subsection makes this
formal.

Definition 6.7 Fix some substitution signature 7, and fix A, ¢, and u where ¢ and u are terms in 7. Let 4 be the
atoms mentioned anywhere in A, ¢, or u. Let X’ be the unknowns mentioned anywhere in A, ¢, or u. For each
X € X pick the following data:

e Choose an order ay, ..., ay, on the atoms in 4 such that a#X & A.

e Choose some fresh term-former d, : (T, ..., T)T (so d, does not occur in 7') with k, arguments.

e Choose some entirely fresh atom ¢, when X : [A]T.

Write C = {¢, | X € X, X : [A]T}, write D = {d, | X € X}, and let 7' be the signature 7 U D.
Definition 6.8 Define a substitution ¢ by:

c(X) = di(an,....au,) XeX, X:T)
s(X) = [eylde(ay, ..., axn,) (X e X, X :[AIT)
s(Y) = Y (Y ¢ X)

A few words on Definition 6.8 may be useful. Substitution ¢ maps possibly open terms in 7 mentioning
unknowns in X, to closed terms in 7'. We design ¢(X) to be a closed term which mentions unabstracted those
atoms that A cannot prove are fresh for X. The term-formers from D help us to create a syntax in which to write
these terms. The atoms from C help us, where necessary, to place them in the right sort—since according to our
sorting system, and consistent with [UPGO04], only abstraction can create terms of abstraction sort. We think of
d € Dand ¢, € C as tags.

Definition 6.9 Call a closed termin 7’ CD-tagged when for each X : [A]T all occurrences of ¢, and d, are restricted
to subterms [c,]d, (71, . .., #,) where the #; are also CD-tagged.

¢ is A-consistent:
Lemma 6.10 - Ac is derivable.
Proof. For each a#X € A, we need to show F a#¢(X).

Supposea#t X € Aand X : T. Wemust provet a#d,(ay,, . .., ay,). Byconstruction a,#X & Aforl < i < ky,
soa & {ay, ..., day,}, and the result follows.
The case of X : [A]T is similar. O

Now it is not hard to show that ¢ preserves derivability:
Theorem 6.11 If A -

Proof. Suppose A F
obtain -

t=uthentg, t¢ =ug.

suB

ws ! = u in the syntax of 7. Then also A kg, = « in the syntax of 77, since 7 <€ 7. We
t¢ = ug by Theorem 2.37, using Lemma 6.10. We conclude +,,, ¢ = ug by Lemma 6.5. g

SuB SIMP

Recall that we fixed A, 7, and u. Since ¢ and ¥ mention only unknowns from X, t¢ and uc¢ are closed terms.
Then by Lemma 5.30, ¢¥ and uc’ are the SIMPr-normal forms of ¢¢ and uc.

Definition 6.12 Let A" be the set of a/l atoms mentioned anywhere in the chain of SIMPr-reductions

tc=t) >ty —>t,=t¢" and ug=u| > vh— - —> u, = ug’,

extended with a set of fresh atoms B = {b,, | X, i such that a,, € A} in bijection with A. Let A* be A enriched
with freshness assumptions a’#X for every ' € A"\ Aand every X € X.

Without loss of generality we may assume that all terms occurring in the above chains of rewrites are CD-
tagged, since the atoms from C that occur in 7¢ and u¢ are chosen completely fresh (by Definition 6.7), so when
rewriting ¢ and u¢ to normal form it is not necessary to perform «-renamings on these atoms.

472 M. J. Gabbay, A. Mathijssen

Definition 6.13 We let ¢/ and «’ range over closed CD-tagged terms in 7’ mentioning only atoms in A* \ B. The
importance of these terms is that they include all of the #; and ; in the two chains of SIMPr-reductions mentioned
above.

Define an inverse translation from closed CD-tagged terms in 7' to terms in 7, inductively as follows, where
we omit o between compositions of swappings for brevity:

d'=d (a1 =)' f(r,....o) =177 (F¢D)
de(tf, oo 1) = (B @)+ (bry @) - X)[byy > 7] [by, > 1, 7] (X :T)
dx(t/ls cees [;Cx = Sub(((bxe, @xi,) -~ - (bxi axi) - X)[byi = [/1_1] R t;ﬂ_l]s cy) (X :[A]T)

As a first result, we show that _~! really is the inverse of ¢:
Lemma 6.14 A* -, (t5)™! = ¢,and A" g, (ug)™! = u.

Proof. We prove by induction that if v is a subterm of 7 or u then A* k¢, (vg)™! = .
The only interesting case is when v = 7 - X. When X : T, we must show

A" Foe T X = ((byi ax) -+ (b, axi,) - X)[bxy = 7w(ax)]- - [bx, = 7(aw,)]
Take " = (by, 7w(ax,)) - - (by w(ax)) by, ay))- - - (by, ax,). Then the proof obligation follows from
AThem - X=n"X
by (ren—), since
A" b (@) #((by ax) - - (b, @x,) - X)bw > 7(@x)]- - [byiy = 7@y)]
for all i. We can see this as follows: it suffices to show
AYF (@b an)- - (by, aw,) - X,
since the m(ay) are pairwise disjoint and by using the rules for freshnesses. Then there are two possibilities:
o m(ay) # ay for all j: then 7 (a,)#X € A" since w(ay)#X € A.
o 1(ay) = ay for some j: then by, #X € A" by definition.
The remaining proof obligation is

AT+ X=71"X.

SuB

It is convenient to show the stronger property A* ... 7 - X = 7’ - X. By the syntactic criteria of Corollary 2.32
it suffices to show that A* I~ ds(sr, 7/)#X. That is, we must show that A* - ds(r, 7')#X for every a such that
7 (a) # n'(a). We consider every possible a (every a € w and a € n’):

e a=b,: then b,#X € A" by definition, and the result follows.
e a = ay: then w(ay) = '(ay) and there is nothing to prove.
a = 7 (ay;): then we distinguish two cases:

— ifw(ay) = ay for some j, the result follows by the case of ay;

— if w(ay) # ay, for all j, then 7 (a,)#X € A" by definition.
e aecm, buta+#ayforallj, then a#X € A" by definition.

The case of X : [A]T is similar except that we additionally need to prove that
A" Fous [ex]sUb(m - X, cy) =7 - X.

This follows by axiom (), since A* - ¢ #m - X. O

Remark 6.15 The reader might wonder why the inverse mapping of the d, renames the atoms ay; to the fresh b,;.
Consider for example (ar, ar,) - T in the empty freshness context @, so we do not know a#7T or an,#T. Then

(((ar ar) - T)g)_l =d.(an Clrl)_1 = ((bry ar)(bry ary) - T)bry = aplbr, = ar].

Capture-avoiding substitution as a nominal algebra 473

By calculations we can verify Lemma 6.14:
o Feus ((bry ap)(bry ary) - Tlbyy = apllbr, = an] = (ap an) - T,

where 0" = (b, #T, b, #T, c,#T}. Had we left out the renaming to fresh atoms then (((a,, a.,) - T)<)~' would
be T[a; + ap]ar, — ar], which is not equal to (a;, a;,) - T, since for example

|_SUB ((ar ar) - Tlayn/T] = ar, but l_sua (Tlay = apllan — anDlan/T] = ay.

We now build up towards Theorem 6.20, which is our main result. Recall from Definition 6.13 that ¢ and «’
are closed CD-tagged terms in the signature of 7’ mentioning only atoms in A* \ B.

Lemma 6.16 For any a’' € A", if - a'#¢ then A* - a'#1'7!.

Proof. By induction on the structure of /. We treat the hardest case, namely that of ¢ = [c,]dy (7}, ..., ;). We
must show

A* = d#eyJsub((rr - X)[by, > 6 ']- - [by, = 1 '] co)
where 7 = (by, ayu,)- - (by ay). We distinguish three cases:

e d = c¢y: then the result trivially follows by (#ab).
e d = by for some j: then by, #[b,)((w - X)[by, > 1’171] o [byi tj"_fl]) by (#[]a), and the result follows by
the rules of freshness using the inductive hypothesis.

o a #byforalljand a # c,:then 1~'(a) # ay, for all j, so 7~ (a')#X € A" by definition. The result follows
using the rules for freshness and the inductive hypothesis.

O
Lemma 6.17 A* - .. (7 - #)~! = 7 - #~! when 7 mentions only atoms from A" \ (BUC).
Proof. By induction on the structure of ¢'. In the case of t = [c,]d, (7, ..., t,’CX) we use the fact that 7(b) = b for
allb e Band n(c) = cforallc € C. O
Lemma 6.18 If - .. ¢ = then A" .. /' =u"".

Proof. By induction on the structure of ¢, using the syntactic criteria of Corollary 2.32. The only non-trivial case
is when

=y, u=0mWw, F#H, and i B d)V =w.
By Lemma 6.16 we obtain A* - '#v'~!, and by the inductive hypothesis A* ... (0" @) -v)™! =w'L.
We now prove that:

e d ¢gCandb' ¢C: Supposed = ¢y forsomec, € C. Now ¢'isCD-tagged so ¢ = [¢x]dy(7], . . ., 7},). We have
assumed that ¢, 7" = ' so by the syntactic criteria of Corollary 2.32 it must be that u’ = [cy]dy (4}, . .., 1})
(and o ¢ = u; for 1 < i < k). This is impossible because @’ # b'.

We deduce that " ¢ C in a similar manner.
o d ¢Bandb ¢ B: By ourassumption in Definition 6.13.

By Lemma 6.17 we obtain A™ .. (b’ d)-v) ' =@ a)- v\

By standard reasoning using the rules for freshness and equality we conclude A* .. [a’]v’_] = [b’]w/_l as
required. M
Lemma 6.19 If ., ¢ — u then A* 7' =u"".

Proof. We work by induction on the derivation of b, ¢/ — u’ to show that A* -, 7/~ = &/~ is derivable.

If the derivation concludes in (—[]) or (—f) we may use the inductive hypothesis and extend the derivation
with (cong[]) or (congf) respectively.

Suppose the derivation concludes in (—rew). Then there are various cases depending on which rewrite rule
is used:

o (Rvar). A'hg, d[d— v~11= v~ is derivable using axiom (var>).

474 M. J. Gabbay, A. Mathijssen

e (Rb). A"+, b[d — v~ ']="b is derivable using axiom (#—), since A* - a'#b'.

SuB
o (Rf),f¢gD. A"k, f(v’fl, e v,/fl)[a’ >V = f(v/lfl[a’ N v, '[d + v'~"]) is derivable us-
ing axiom (fi—).
e (Rf),feD. Incase X : T, we must show
A" b (0 X)bxi = 1+ b = v, > v
= (- X)[by v/l_][a’ [v/_]]] oo [bye, > v}cx_l[a’ = v/_l]],

where m = (by,, ay,)- - (by, ay,). Since by, ¢ v/ for all i, we know F b, #V. Then also A* F b, #v~! by
Lemma 6.16. Now we apply part 4 of Lemma 6.2, such that the left-hand-side of the proof obligation is
SUB-equal to

(m - X)[d — v by — v’lfl[a’ | by, v}cfl[a’ — v’fl]].
By the rules for equality, this is equal to the right-hand-side of the proof obligation when
A by (m-Xd VvV =7 X.
By axiom (#+) this is when A* - @'#n - X, i.e. when 7! (a)#X e A*. There are two possibilities:
— d = ay for some i: then 7~ !(a’) = by, and b, #X € A" by definition.
— d # ay foralli:then = !(a') = @, and d#X € A" by definition.

The result follows.
The case of X : [A]T is similar.

e (Rabs). Suppose - c#v'. Then A* - ety ™! by Lemma 6.16. By (axyps..), we obtain
A" e (W d = vV 1= [' [d — V']
as required.
The result follows. 0
Theorem 6.20 A

Proof. The left-to-right part is Theorem 6.11.
For the right-to-left part, suppose that F,,, /¢ = ug. We have observed that there are SIMPr rewrites

t=u ifandonlyif I+, tc=us.

tc=thh —>th— - —>ty=tc! and uc=u — uy = -+ — U, = ug’.
Then by Lemma 6.19, we know
A l="'=0"= = =@cH T and AT g, we) ' =u = = = = (ughH 7

$0 A* g, (16)7 = (tchH) ™ and A* -, (ug)™! = (ug)~! by transitivity.

We supposed that -, /¢ = ug so by Corollary 5.20 it must be that k.. t¢' = ug'. By Lemma 6.18 also
AT Fcore (ZS‘I)_I = (ugl)_l~

Then A* g, (t5)™! = (ug)~! using symmetry and transitivity. By Lemma 6.14 then also A* -, = u.
Since A* extends A with atoms not in ¢, u, we conclude A b, ¢ = u using (fr). O

As a simple corollary of Theorem 6.20, we obtain decidability of SUB.
Corollary 6.21 (Decidability of SUB) It is decidable whether A -, ¢ = u.
Proof. By Theorem 6.20, A , ¢t = u is equivalent to b, ¢ = ug. By Theorem 5.32, this is decidable. O

Combining Theorem 6.20 and Corollary 5.20, we extract the following algorithm that decides whether
Abget=u
1. Map possibly open terms ¢ and u to closed terms t¢ and uc.
2. Evaluate t¢¥and uc’.
3. Check whether ... t¢" = ug' using the syntactic criteria of Corollary 2.32.

Capture-avoiding substitution as a nominal algebra 475

We can extract a witnessing derivation in SUB of A -
done in the proofs of Lemma 6.19 and Lemma 6.14.

By a similar method to the one we used to prove Theorem 6.20 we can prove conservativity of SUB over
CORE. We use the notation and machinery of this subsection in the following proof:

s ! = u from the algorithm above: the meat of work is

Theorem 6.22 (Conservativity of SUB) Suppose that r and u do not mention term-former sub. Then

Abgegt=u if and only if Ao T =U.

Proof. A derivation in CORE is also a derivation in SUB so the right-to-left implication is immediate.

Now suppose that A ¢, t = u. We take a suitably chosen enriched signature and suitably chosen ¢, as in
the proofs above. By Theorem 6.11, . ¢ = ug. By construction ¢¢ and ug do not mention sub, therefore by
Corollary 5.19 also ko 16 = ug.

Given the derivability of ... ¢ = uc we can prove the derivability of A k... t = u by exploiting the
syntactic criteria of Corollary 2.32. The proof is by induction on # using detailed but entirely routine calculations.
We consider just one case, the hardest one:

Suppose t = 7 - X and X : [A]T. Then

t¢ = [cy]dy(m(ay), ..., mw(axy,))-
By the syntactic criteria of Corollary 2.32 if - .. t¢ = ug it must be that

ug = [bldy(m(ay,), - .., m(ax,))-

Here b is not equal to 7 (ay,) for 1 < i < k,. By the construction of u¢ and the way we chose ay, ..., ay, to be
the atoms mentioned in A, ¢, or u which are not provably fresh for X in A, it follows that u must have been equal
to ' - X for some 7’ such that A - ds(zr, 7/)#X. It follows that A - t = u as required. d

CORE

6.3. w-completeness

We consider completeness with respect to the ground term model (see Definition 6.23 below for a formal defini-
tion). This is also called w-completeness. Before we go into the proof of w-completeness, it is useful to mention
why this is an appropriate notion to consider.

Nominal algebra enjoys a general completeness result [GMO07] with respect to a standard class of semantics
in nominal sets [GP02]. SUB is a nominal algebra theory, so it is automatically sound and complete with respect
to the standard class of nominal sets semantics.

A completeness result is weaker, the larger the class of semantics that it uses. Can we strengthen this general
result to some more specific class than the nominal sets models?

Theorem 6.20 can be read as a completeness result with respect to a class of models built out of syntax
enriched with finitely but unboundedly many extra term-formers d,. We could stop there, however, we would
have an even more powerful completeness result if we could strengthen this to completeness with respect to terms
of substitution signature 7 itself.

In fact, so long as 7 contains a term-former which takes more than one argument (like app or plus), then we
can nail SUB down to the theory of capture-avoiding substitution on ground terms of 7. We now have all the
machinery we need to do this quite easily:

Definition 6.23 Call o a ground substitution for A, ¢ and « when for every unknown X in A, ¢, and u, 0(X) is a
ground term (it mentions no unknowns and does not mention sub).

Call SUB w-complete when for all A, # and u, if to’ =, uo’ for all A-consistent ground substitutions o (for
A, tand u), then A . t = u.

suB

We shall prove the contrapositive. Supposing A ¥
tution o such that to? #, uo?.

We cannot use ¢ from Definition 6.8 because ¢ maps to an extended signature 7’ with extra term-formers
d,. But we can use ¢ to construct another substitution with the right properties, as we now see.

Recall from the previous subsection the chain of rewrites

7

s | = u, we will exhibit some A-consistent ground substi-

tc=t) > ty—> - —>t,=tc" and ug=u| - uvh— - — u, =ugh.

Note that t¢' and uc? are ground.

476 M. J. Gabbay, A. Mathijssen

Definition 6.24 Let A’ be the set of all atoms mentioned in the above chains, let ' and «’ range over closed terms
in 7' mentioning only atoms from A’, and choose atoms {a, | X € X'} completely fresh from A'.

Assuming that 7 contains a binary term-former, say pair : (T, T)T), define a translation -* from closed terms
in 77 to closed terms in 7 by:

a*=d ([= a1 fiey, ..., =,t0) (F¢D)
d,(* = pair(ay.ay) dy(t})* = pair(ay. i
dy(?}, ..., 13)" = pair(ay, pair(z}, pair(zy, ..., pair(f’ _y, ")) (ke > 1)
It is not hard to verify the following properties:

Lemma 6.25

1. N =Y~

2. F ' =u ifandonlyif F
3. bguet' =t ifandonlyif +

7% 7%
r=u".
1%

CORE CORE

Ik
SIMP SIMP I =u

Proof. Part 1 is by induction on the syntax of #. For the case of ¢ = sub(i/, V'), we use the property that
g'[l/a') = g™*[lW*/a'] (where g’, I, a’ and g'[l’/a'] mention only atoms from 4’), which is easy to verify.

Part 2 is by induction on the syntax of ¢/, using the syntactic criteria from Corollary 2.32.

For part 3, by Corollary 5.20 it suffices to prove the equivalent

Foore ' =u'" ifand only if o () = (™),
which follows by parts 1 and 2. O
Definition 6.26 Define the substitution ¢* by:
g'X) = c(X)" (X ed),
'(Y) =Y (Y ¢ X).

It is a fact of the construction that ¢* maps every X appearingin A, ¢, or u, to a ground term in T . This is morally
‘the same’ as ¢(X'), but we map each extra term-former d, to a collection of instances of pair.

Lemma 6.27 If v is a subterm of ¢ or vis a subterm of u, v(¢*) = (v¢)*.

Proof. By an easy induction on the structure of v. O
Corollary 6.28 +,,. tc =ug ifandonlyif . #(¢*) =u(s").

Proof. By Lemma 6.27 and part 3 of Lemma 6.25. O
Theorem 6.29 SUB is w-complete.

Proof. We show that if A ¥, ¢ = u then there exists a A-consistent ground substitution o (for A, ¢ and u) such
that to? %, uo’.

Suppose A ¥, t = u. Then also ¥,,, ¢ = ug by Theorem 6.20. Now }*,. #(¢*) = u(s*) by Corollary 6.28.
Then we obtain (1¢*)" #, (uc*)? by Theorem 3.9 and Corollary 5.20.

Now take o = ¢*. Since ¢* maps to ground terms in 7, the result follows. O

6.4. Restricting the sort system

We now turn to our discussion in Subsect. 2.1 on unknowns of abstraction sort [A]T and term-formers
sub : (JAJJA]T, T)[A]T (Remark 2.10). We mentioned that they are convenient, but not strictly necessary.

To see what precisely we mean by this, we consider a typical signature for languages with binding, namely
that of the lambda calculus (see Examples 2.6 and 2.8).

Definition 6.30 Consider the following signature:

app: (T, T)T lam : ([A]T)T sub : (JA]T, T)T.

Capture-avoiding substitution as a nominal algebra 477

Let theory SUB’ over this signature have axioms

(var—") F ala— T
(#') a#U + Ula— T
(app—") Fapp(U, V)la— T

1=
] =
] = app(U[a — T, Via— T))
(lam—") b#T + lam([b]U)[a — T]
]
]

lam([6)(U[a — T1))
=Vlar T|b+ Ula+ T]]
=(ba) T.

(subs’) BET - Vb s Ullars T] = V
(ren—") bHT + Tla— b

Theorem 6.31 Suppose SUB is the theory of substitution over the signature of the lambda calculus from
Example 2.8. Then for any A, ¢ and u (in this signature) not mentioning unknowns of sort [A]T or terms of
sort [AJ[A]T:

A+

t=u ifandonlyif Ar _ t=u

SuB sus’

Proof. For the right-to-left part it suffices to show that each axiom of SUB’ can be derived in SUB. Both axiom
(lam—") and (sub—") follow by an instance of (f) and (#+>), the other axioms of SUB’ follow directly from
their corresponding axioms in SUB.

For the left-to-right part, suppose A k¢, t = u. Then also +,,, ¢ = uc by Theorem 6.11. We observe that
there are SIMPr rewrites

tc=th—>th— - —>ty=tc! and uc=u — uy = --- — U, = ug’,

such that whenever a term of sort [AJ[A]T is introduced by a rewrite, it is removed in the next step. More precisely,
only an application of rewrite rule (Rf), where f = lam, can introduce such a term, but we can always apply the
(Rabs) rule to get rid of it.

We can use properties similar to Lemma 6.19 on these chains of rewrites to obtain derivations of

A" by (1) = (tsH™ and AT kg, (ug) ™ = (s

That is, we need one such property for direct rewrites and another one for two-step rewrites. The inverse translation
never introduces unknowns of sort [A]T or terms of sort [A]JA]T.

We also have A" ... (161! = (ug?)~! by Corollary 5.20, Lemma 6.18 and our assumption k. t¢ = ug.
Then A" kg, (16)7" = (ug)™! using (symm) and (tran). Using a property similar to Lemma 6.14 we obtain
AT by ¢ =u. Weconclude A - ¢ = u using (fr). O

The presentation of theory SUB’ is somewhat more specific and longer than SUB, since we cannot use a
meta-variable f to range over term-formers. For this reason we preferred SUB in this paper.

7. Related work and conclusions

Substitution underlies the quantifiers in predicate logics and the A-binder of the A-calculus ...and lots more
besides. Quantification and binding are central features of these systems. This paper discusses their common
denominator, substitution.

Future work using nominal techniques seems likely to require an axiomatisation of substitution within the
nominal style. This paper provides that, and proves a precise sense in which that axiomatisation can be considered
the right one, namely soundness and completeness with respect to a canonical term model (Theorem 6.29). It also
provides a precise sense in which that axiomatisation can be considered tractable, namely decidability of equality
up to the axioms for substitution.

Crabbé [Cra04b, Cra04a] axiomatises substitution much like us and shares (in our terminology) atoms and
freshness conditions. However, his axiomatisation is not capture-avoiding from the simple fact that he does not
treat binding: ‘... we are not concerned with the notion of bound variable’ [Cra04a, p. 2].

Feldman [Fel82] gives an algebraic axiomatisation inspired by a concrete model of functions/evaluations. His
axioms are closer in spirit to Cylindric Algebras [BS81] and Lambda Abstraction Algebras [LS04, Sal00]. The
three approaches share an infinity of term-formers which are ‘morally’ precisely A[a], -[¢ — -], and J[a]. We see

478 M. J. Gabbay, A. Mathijssen

the advantage of our treatment as systematising and formalising precisely what role the atoms really have. In any
case the approaches above cannot directly express (ren—), (#—), and (abs—), even though instantiations are
derivable for closed terms by calculations parametric over their specific structure.

Combinatory Algebra (CA) [Bar84] and related systems implement substitution by ‘pipes’ (e.g. the translation
of A-terms into CA [Bar84]). There is no native notion of binder, nor of capture-avoidance. General truths such as
(#) are not provable as equalities between combinators, though they remain true and can be proved informally
by calculations parametric over specific structure.

Lescanne’s classic survey [Les94] and the thesis of Bloo [Blo97] chart a vast literature on A-calculi with explicit
substitutions. These decompose S-reduction as a rule to introduce explicit substitution ((A a.u)t — u[a — t]),
and explicit rules for that substitution’s subsequent behaviour (which is to substitute, of course). These calculi are
designed to measure the cost of a 8-reduction (in an implementation, which may be based on de Bruijn indexes
[dB72] or on named variable symbols). They do not axiomatise substitution, they implement it. For example,
‘confluence’ is a typical correctness criterion for a calculus, and ‘w-completeness’ is not.

Sun has investigated Binding Algebras [Sun99]. As far as we understand, binding algebras implement binding
in the style of higher-order or first-order logic—using variables and binders — but without committing to a
functional semantics or to higher orders. Put another way, binding algebra enriches the language of algebra
with binding, substitution, and «-conversion—but leaves out A-abstraction and S-conversion. (This has much in
common with Binding Logic [DHKO02], which does something very similar to first-order logic; neither thread of
research cites the other so they appear to have developed independently.)

Nominal algebra is in this spirit. In fact it does not commit to substitution, but by design SUB does and SUB
is the topic of this paper. We note that in Sun’s work that every variable must be explicitly accounted for in some
binder or some evaluation, some where. That is, variables have no independent denotational existence analogous
to that of the atoms in nominal sets. Our best guess is that binding algebras correspond, in our world, to elements
with empty support of models of SUB. We do not intend to investigate a connection with binding algebra but
we do plan to consider binding logic.

There is a close connection between nominal sets [GP02] and categories of presheaves used in another thread
of work [FTO1, FPT99, TPOS5]. This uses ideas from categorical algebra [LS86] and applies presheaves to give just
enough extra structure to model names and name-binding. Nominal sets, the canonical semantics for nominal
terms, are the Schanuel topos; they can be viewed as a category of pullback-preserving presheaves. Being pullback-
preserving (to be more precise, preserving pullbacks of pairs of monos) does not correspond to having finite
support—it corresponds, in the terminology of nominal techniques, to assuming a unigue least supporting set.
This is not a vital assumption, but without a unique least supporting set, the freshness judgement a#X of nominal
terms is meaningless in its current form. It is not clear how [FT01, FPT99, TP05] would give a direct semantics
to nominal terms. Thus an easy and direct connection cannot be made at the moment.

A direct connection could be made by relating the general class of models of substitution determined by SUB
(which we do not consider in this paper) with the classes of models in presheaves—or alternatively, if the work
based on presheaves could include a completeness result for some canonical model (which to our knowledge has
not yet been done); this could then be conveniently compared to the ground term model of SUB. Since our models
would be in nominal sets and would have unique least supporting sets, and the presheaf models do not, our best
guess is that a canonical model for the presheaf work, if it exists, would be a ‘ground term model enriched with
non-unique least supporting sets’. It remains to make that formal, and non-syntactic models of SUB remain to
be investigated.

There is much possible and interesting future work:

Decidability of unification up to SUB, the axioms for substitution, remains an open problem. Nominal
unification [UPGO04] (in our terminology, unification of nominal terms up to CORE) is decidable. Nominal
unification is to be compared with higher-order patterns [Mil91]. We suggest that unification up to SUB is to
be compared with higher-order unification [Hue02], and the technique of Huet’s algorithm could perhaps be
imported.

There is no obstacle to taking SUB over itself —that is, to taking what we write in this paper as, say,
(X[a — Y)[t/X] and expressing it in a stronger axiom system as (X[a — Y])[X — 7] where 7 is a ‘stronger’
meta-variable. This relates directly to the Lambda-Context Calculus [GL07] and Hierarchical Nominal Rewriting
[Gab07] both of which feature hierarchies of ‘increasingly meta-’variables plus operational notions of semantics
for substituting those variables.

Finally, SUB is just an axiom system and it has interesting non-syntactic models. Exploring them is current
research, and we hope it will be possible to exploit those models to design interesting new classes of logics and
lambda-calculi.

Capture-avoiding substitution as a nominal algebra 479

References

[Bar84] Barendregt HP (1984) The lambda calculus: its syntax and semantics (revised edn). North-Holland, Amsterdam

[Blo97] Bloo R (1997) Preservation of termination for explicit substitution. PhD Thesis, Eindhoven University of Technology,
Eindhoven

[BRI5] Bloo R, Rose KH (1995) Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage
collection. In: CSN-95: computing science in the Netherlands, Amsterdam. Stichting Mathematisch Centrum, pp 62-72

[BSS81] Burris S, Sankappanavar H (1981) A course in universal algebra. Springer, Berlin

[Cra04a] Crabbé M (2004) On the notion of substitution. Logic J IGPL 12(2):111-124

[Cra04b] Crabbé M (2004) Une axiomatisation de la substitution. Comptes Rendus I’Académie Sci Paris Série I 338:433-436

[dB72] de Bruijn NG (1972) Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with
application to the Church—Rosser theorem. Indagationes Math 5(34):381-392

[DHKO02] Dowek G, Hardin T, Kirchner C (2002) Binding logic: proofs and models. In: LPAR’02: 9th international conference on logic
for programming, artificial intelligence, and reasoning. Vol 2514 of LNCS. Springer, Berlin, pp 130-144

[Fel82] Feldman N (1982) Axiomatization of polynomial substitution algebras. J Symbol Logic 47(3):481-492

[FGO07] Fernandez M, Gabbay MJ (2007) Nominal rewriting. Inf Comput 205:917-965

[FPT99] Fiore M, Plotkin G, Turi D (1999) Abstract syntax and variable binding. In: 14th Annual symposium on logic in computer
science, Brussels. IEEE Computer Society Press, New York, pp 193-202

[FTO1] Fiore M, Turi D (2001) Semantics of name and value passing. In: 16th annual symposium on logic in computer science, Los
Alamitos. IEEE Computer Society Press, New York, pp 93-104

[Gab07] Gabbay MJ (2007) Hierarchical nominal terms and their theory of rewriting. ENTCS 174(5):37-52

[GLO07] Gabbay MJ, Lengrand S (2007) The lambda-context calculus. In: LFMTP’07: international workshop on logical frameworks
and meta-languages, to be published in ENTCS

[GMO06a] Gabbay MJ, Mathijssen A (2006) Capture-avoiding substitution as a nominal algebra. In: Theoretical aspects of computing:
ICTAC 2006. Vol 4281 of LNCS. Springer, Berlin, pp 198-212

[GMO6b] Gabbay MJ, Mathijssen A (2006) Nominal algebra. Technical Report HW-MACS-TR-0045, Heriot-Watt

[GMO06¢] Gabbay MJ, Mathijssen A (2006) One-and-a-halfth-order logic. In: PPDP’06: Proc. of the 8th ACM SIGPLAN symposium
on principles and practice of declarative programming. ACM Press, New York, pp 189-200

[GMO07] Gabbay MJ, Mathijssen A (2007) A formal calculus for informal equality with binding. In: WoLLIC’07: 14th workshop on
logic, language, information and computation. Vol 4576 of LNCS. Springer, Berlin, pp 162-176

[GP02] Gabbay MJ, Pitts AM (2002) A new approach to abstract syntax with variable binding. Form Aspects Comput 13(3-5):341-363

[Hod01] Hodges W (2001) Elementary predicate logic. In: Gabbay DM, Guenthner F (eds) Handbook of philosophical logic, 2nd edn,
Vol 1. Kluwer, Dordrecht, pp 1-131

[Hue02] Huet G (2002) Higher order unification 30 years later. In: TPHOLSs 2002: theorem proving in higher order logics, number 2410
in LNCS. Springer, Berlin, pp 241-258

[KvOVR93] Klop JW, van Oostrom V, van Raamsdonk F (1993) Combinatory reduction systems, introduction and survey. Theor Comput
Sci 121:279-308

[Les94] Lescanne P (1994) From Ao to Av a journey through calculi of explicit substitutions. In: POPL’94: Proceedings of 21st ACM
SIGPLAN-SIGACT symposium on principles of programming languages. ACM Press, New York, pp 60—69

[LS86] Lambek J, Scott PJ (1986) Introduction to higher order categorical logic. Cambridge University Press, Cambridge

[LS04] Lusin S, Salibra A (2004) The lattice of lambda theories. J Logic Comput 14(3):373-394

[Mil91] Miller D (1991) A logic programming language with lambda-abstraction, function variables, and simple unification. Extensions
Logic Program 475:253-281

[MNO9S] Mayr R, Nipkow T (1998) Higher-order rewrite systems and their confluence. Theor Comput Sci 192:3-29

[Sal00] Salibra A (2000) On the algebraic models of lambda calculus. Theor Comput Sci 249(1):197-240

[Sun99] Sun Y (1999) An algebraic generalization of Frege structures—binding algebras. Theor Comput Sci 211:189-232

[TPOS5] Tanaka M, Power J (2005) A unified category-theoretic formulation of typed binding signatures. In: MERLIN’05: Proceedings
of the ACM SIGPLAN workshop on mechanized reasoning about languages with variable binding. ACM Press, New York,
pp 13-24

[UPGO04] Urban C, Pitts AM, Gabbay MJ (2004) Nominal unification. Theor Comput Sci 323(1-3):473-497

Received 2 May 2007
Accepted in revised form 1 November 2007 by K. Barkaoui, M. Broy, A. Cavalcanti and A. Cerone
Published online 15 January 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

