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Logic
Logic studies reasoning.

Example
“If I obtain my degree I will give a talk at the symposium.”

Expressed in logic by the following formula:

obtain degree = give talk

“If all human beings are mortal then Socrates is mortal.”
Expressed in logic by the following formula:

Y veHumans mortal(x) = mortal(Socrates)
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Reasoning about logics

In many cases we reason about logics:
o = )

¢ and Y are meta-variables ranging over arbitrary formulas.

We have a schema of formulas, one for each instantiation of ¢ and .

Example
Take obtain degree for ¢ and give_talk for y:

obtain degree = (give talk = obtain degree)
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Reasoning about logics with binders
In many cases we reason about logics with binders, such as V:

¢ = Vx.¢ if x does not occur free in ¢

Vx.¢p = ¢[t/x]

¢ is a meta-variable ranging over formulas.
t is a meta-variable ranging over terms.

We need to define the following concepts:
e freshness conditions: if x does not occur free in ¢
e substitution ¢[t/x]



Observation

If logic teaches us to study reasoning,
we should also study reasoning about logics.
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Vx.¢p = ¢[t/x]

Model the difference between object- and meta-variables
using a hierarchy of types:

P = VY(x.P)
V(Ax.F(x)) = F(T)

Drawbacks:
e substitution of terms for object-variables is capture-avoiding

e representation of meta-variables depends on their context

e need unification up to substitution (and extensionality)
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Formalise reasoning about logics with binders
How can we formalise assertions like:

¢ = Vx.¢ if x does not occur free in ¢

Vx.¢p = ¢[t/x]

Embrace meta-variables and reject object-variables
by adding term-formers and axioms:

RSV (C(R)), C is a constant such that c(P)(x) = P
Y(d(F)) = F(T), dis a constant such that d(F)(x) = F(x)

Drawbacks:
e cannot explicitly manipulate bound object-variables

e freshness information is encoded in the term structure
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Formalise reasoning about logics with binders
How can we formalise assertions like:

¢ = Vx.¢ if x does not occur free in ¢

Vx.¢p = ¢[t/x]

Embrace the difference between object- and meta-variables
using nominal terms (Urban, Pitts & Gabbay, 2004):

attP+ P = VY[a]P
FVY[a]P = Plar T]

Drawback:

e relative new technique: logical frameworks were not available



Our contribution

Developed two logics to reason about logics with binders
based on nominal terms:

Equational logic with binders and meta-variables:

e natural deduction calculus

e axiomatisation of the lambda calculus

e axiomatisation of capture-avoiding substitution
e semantics in nominal sets

First-order logic with binders and meta-variables:

e sequent calculus
e axiomatisation of the sequent calculus



Nominal terms
Definition:
it =g e o BN I - oo o 0p)

Here we fix:
e atoms a,b,c, ... (to represent object-variables x,y)
e unknowns X, Y, Z, ... (to represent meta-variables ¢, ¥, t)

e term-formers f,g,h, ... (for obtain _degree, mortal, =, V¥, [ +— ])

We call [a]t an abstraction (for the x. ).

7 represents a permutation of atoms:
e needed for a-conversion

e we write id - X as X where id is the identity permutation
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Freshness on nominal terms

Representation of ‘x does not occur free in ¢
e primitive freshnesses a#X

e freshness contexts A: finite set of primitive freshnesses.

Decidability of freshness:
e freshness a#t, where t is a nominal term.

e natural deduction rules for freshness:

rla)#x
—— (#ab) (a #b) #X) (r+#id)
atb a#tm - X
attt attty - - - attt,
(#(]a) Gl @ =) —= i)
a#lalt a#[b]t atf(ty, ... t,)

Examples: F at#b F a#dlalX a#tX r a#A[b]X
¥ atta ¥ a#A[b]lX a#X ¥ a#tY
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Equational logic on nominal terms

Natural deduction rules for equality between nominal terms.

Equivalence and congruence:

t=u =4V
—==(refl) (symm) ——(tran)
=7 u=t t=v

t=u =1
(cong[]) (congf)
[alt = [a]u f(t1, . S ) =Sl (e LU 2, T )




Equational logic on nominal terms

Natural deduction rules for equality between nominal terms.

a-conversion:

a#tt bt
—— (perm) (a #b)
(a:b)ls =21
Examples:
% (#ab) a#tX
(#[1b) (#[la)
@Hb) o G #[b]X b#[b]1X
a#(blb bhble e i e
perm) [a]l(b a) - X = [b]X

[ala = [b]b



Equational logic on nominal terms

Natural deduction rules for equality between nominal terms.
Instantiation of axioms:

- Ao
(axar¢=u)
T o LT =T O

Instantiation o of unknowns is capturing,
but we need to verify the capture-avoiding constraints.

Examples:

— (#ab)

chtb Gie

————————— (aXa#x[alapp(X,2)=X)
——————————— (aXa#X [alapp(X,a)=X) =
[clapp(b,c) = b gk [c](app(c.c) = ¢

The left derivation is valid but the right one is not, since ¥ c#c.



Equational logic on nominal terms

Natural deduction rules for equality between nominal terms.

Introduce fresh atoms:

[a#X], ..., a#X,] A

t¥u

(Fr)adta &1 1, X)
t=u
Example:
[a#Y]!
: (aXa#xX=a)

[a#X] Y=a

(aXa#xiX=a) (symm)
Xe='a A=

(tran)

Hoeer
(fr)!




Axiomatising the lambda calculus

Term-formers:
e binary application term-former app

e constant term-formers C1,...,Cp

Five axioms:

(var—) - app([a]a,X) = X

#—) a#tZ r app([alZ,X) = Z
(app—) F app(lal(app(Z’, Z), X) = app(app([alZ’, X), app([a]Z, X))
(abs>) b#X app([al[b]Z, X) = [blapp([alZ, X)

(id—) = app([alZ,a) = Z



Axiomatising the lambda calculus

Term-formers:
e binary application term-former app

e constant term-formers C1,...,Cp

Five axioms:

(var—) (= app([ala,X) = X
#) a#tZ + app([alZ,X) = Z
(app—) +app([al(app(Z’, 2), X) = app(app([a]Z’, X), app([a]Z, X))
(abs>) b#X app([al[b]lZ,X) = [blapp([a]Z, X)
(id—) F app([alZ,a) = Z

Derivability using these axioms is sound and complete
with respect to a model constructed out of
lambda-terms quotiented by af3-equivalence.



A semantics in nominal sets

Nominal sets (Gabbay & Pitts, 1999):
e A set-based model with built-in atoms
e Support for binding and freshness

e Inspired the development of nominal terms

Axiomatisations in the equational logic
have a semantics in nominal sets:

e Derivability of equality is sound and complete

e Derivability of freshness is sound but incomplete
attapp([alb, a) is not derivable: independent of axioms
a#tapp([alb, a) is valid: app([a]b, a) = b is derivable
Semantic freshness can be expressed using equalities

e The semantics satisfies a variant of Birkhoff’s theorem:
HSPA, where A stands for atoms-abstraction



First-order logic with meta-variables

Terms:

i o= e o TE T AEN= (| W e

Formulas:

¢ == m-P| L | ¢=>¢ | Valp | glar 1]
(=R | (58 N

Sequents: triples @ +, ¥ of finite sets of formulas ®©,¥
and a freshness context A
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Sequent calculus for first-order logic with meta-variables.



First-order logic with meta-variables

Sequent calculus for first-order logic with meta-variables.

Basic rules:

oy (A
¢, @, ¥, ¢

(ORI SRR VAN 4

o=y, 0 ¥
pla—t], dH, ¥
s (VL)
Vialg, ®, ¥

plam- 1], @, ¥

! ~t plat], P, ¥

(=L)

~ ey A b
AL @D [, 10

L o JURNE (g (A i)
D+, W, Valy

a—(RY)
(ORI AN



First-order logic with meta-variables

Sequent calculus for first-order logic with meta-variables.

Special rules:

¢, P, ¥
—— (StructL) (A kg, ¢ =9)
o, Or, ¥
ORI ST/
——(StructR) (A kg, ¥ = W)
(N /2

O+ Y, ¢ ¢, P, ¥

(Cut) (Arg, ¢ =9
(ONTR 4

D+

Aa#X],...a#Xn

(0NN 4

Fr) (n=1, a¢g ®,¥,A)



First-order logic with meta-variables

Sequent calculus for first-order logic with meta-variables.

Example
Meta-level sequent:

¢, ¥ F V¥x.¢, if x does not occur free in ¢

Formal derivation:

(AX)

(VR) (a#P,b#P, b#Q F b#P, Q)

(StructR) (a#P,b#P,b#Q g, Y[b]P = V[a]P)
(Fr) (b ¢ P, Q, Y[a]P, a#P)

PO r o L
LA i NI DD
Pk 5o 1] P

P,Qt,,, Y[alP




First-order logic with meta-variables

Proof-theoretical results:
e In derivations we may permute atoms and instantiate unknowns
e The sequent calculus satisfies cut-elimination, and is consistent

o Without unknowns or explicit substitutions, the sequent calculus is
equivalent to Gentzen’s sequent calculus for first-order logic



An axiomatisation of first-order logic

Consider the following axioms:
e Substitution axioms: similar to those for the lambda calculus
e Propositional axioms, e.g. axioms of boolean algebra
e Quantifier axioms:
(Qinst) - &P = Pla= Tl = T
(Qdist) F V[al(PAQ) e VY[al]PAVY[alQ=T
(Qextr) a#P VialP=> Q)& P=>ValQ=T

e Equality axioms:
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An axiomatisation of first-order logic

Consider the following axioms:
e Substitution axioms: similar to those for the lambda calculus
e Propositional axioms, e.g. axioms of boolean algebra
e Quantifier axioms:
(Qinst) - &P = Pla= Tl = T
(Qdist) F V[al(PAQ) e Y[alPAY[alQ=T
(Qextr) a#P VialP=> Q)& P=>ValQ=T
e Equality axioms:
(Esubst) EU = TN Rla = =0 Rllaiss e ==
(Erefl) F i el =L R
This is a sound and complete axiomatisation of the
sequent calculus for first-order logic with meta-variables.
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Using nominal terms we can formalise the meta-level of logics
with binding in a way that is close to informal practice:

e Developed calculi for equational logic and first-order logic
with binders and meta-variables.

e Established proof-theoretical and algebraic results.



Conclusions

Using nominal terms we can formalise the meta-level of logics
with binding in a way that is close to informal practice:

e Developed calculi for equational logic and first-order logic
with binders and meta-variables.

e Established proof-theoretical and algebraic results.

We're not there yet:
e Usability: extend the logics with more features to support reasoning
e Implementation: develop a theorem prover

e Methodology: apply the technique to other systems with binding
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