
TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathmatics and Computing Science

MASTER’S THESIS

Formal derivations of binary arithmetic

by

A.H.J. Mathijssen

Supervisor: dr. ir. R.R. Hoogerwoord

Eindhoven, June 2003

Contents

1 Introduction 1

1.1 Subject . 1
1.2 Method . 1
1.3 Structure . 2

2 Number representations 3

2.1 Natural numbers . 3
2.2 Integers . 4
2.3 Alternative integer representations . 7

3 Simple arithmetic operations 11

3.1 Complement . 11
3.2 Increment . 12
3.3 Decrement . 13

3.4 Negation . 14
3.5 Doubling and halving . 15

4 Addition and subtraction 17

4.1 Integer addition . 17
4.2 Binary addition . 20
4.3 Carry-save addition . 22
4.4 Subtraction . 25

5 Multiplication 27

5.1 Integer multiplication . 27
5.2 Binary multiplication . 29
5.3 Multiplication with carry-save addition 31

5.4 Booth multiplication . 33

6 Division 37

6.1 Integer division . 37

6.2 Binary division . 39

7 Hardware implementations 45

7.1 A formalism . 45

7.2 Arithmetic operations . 51

8 Conclusions and recommendations 63

iii

Bibliography 65

iv

Chapter 1

Introduction

1.1 Subject

Over the past decades, increasingly more calculations are performed by programs,
in both software and hardware. This is especially the case for the basic arithmetic
operations, i.e. addition, subtraction, multiplication and division. Although much can
be found in the literature concerning implementations of these operations, there are
few efforts to give correctness proofs.

In this thesis we construct implementations for the integer variants of the basic
arithmetic operations, provided with correctness proofs. Our main aim is the con-
struction of combinatorial circuits. The method and the results can be used for other
purposes, however, such as sequential circuits or software programs.

1.2 Method

In the construction of the implementations we distinguish three different levels of
reasoning. The top level is the arithmetic level in which we investigate the structure
of the basic arithmetic operations. The results from this level are then transformed to
representations in the representation level. The results from this level are finally used
in the implementation level to obtain combinatorial circuits for the operations. We
will only use the arithmetic level if this simplifies the representation level.

We use a functional programming language and a calculational style of program-
ming, i.e. programs are derived from their specifications by means of formula manipu-
lation. In this way the programs are correct by construction. This method is developed
by Hoogerwoord in [Hoo 1] and [Hoo 2].

We now briefly discuss some concepts used in [Hoo 2]. A declaration is a definition
(that is admissible) in the functional language. In particular, such definitions may be
recursive. For the derivation of declarations from their specifications, we will often use
the following strategy. Suppose we need to solve an equation of the shape x : f ·x = E.
We can try to rewrite expression E into an equivalent expression of the shape f ·F .
This transforms the equation into the equivalent equation x : f ·x = f ·F , of which
x = F is a solution, because of Leibniz’ rule.

For any type B, the datatype L∗(B) is the type of all finite lists with elements
of type B. For list s, #s denotes the length of s and s ·i, with 0 ≤ i < #s, denotes
element i of s. The empty list is [], pronounced as “empty”. The binary operators .

1

2 CHAPTER 1. INTRODUCTION

and / are pronounced as “cons” and “snoc”, respectively. For b ∈ B and s ∈ L∗(B),
the list b . s has b as its head and s as its tail. / is the complementary operation of
.. Hence, we have (b . s)·0 = b and (s / b)·(#s) = b. For c ∈ B, all lists s of length 2
have the shape b . c . [], b . [] / c and [] / b / c, which may be abbreviated to [b, c].
In current implementations of functional programming languages, b . s is evaluated in
O(1) steps, but usually s / b is evaluated in O(#s) steps. In this thesis, we assume
that both expressions are evaluated in O(1) steps. For our purpose of implementations
as combinatorial circuits this doesn’t matter.

1.3 Structure

This thesis consists of three parts. The first part, which is chapter 2, deals with the
representation of natural numbers and integers.

In the second part, which consists of chapters 3 through 6, we derive declarations
for the basic arithmetic operations at the arithmetic and the representation level. In
chapter 3 we derive declarations for simple arithmetic functions that we will need in
the rest of the second part. In chapters 4 through 6, we derive declarations for addition
and subtraction, multiplication and division, respectively.

In the third part, which is chapter 7, we provide for a formalism that gives hardware
implementations for a subset of the functional programming language. After that we
give hardware implementations for the functions derived in the second part.

Chapter 2

Number representations

In this chapter we define how numbers are represented in the binary number system.
We do this with finite lists of bits. These are lists of type L∗({ 0, 1 }), or L2 for short.
In the first two sections we define how we represent natural numbers and integers by
these lists. In the last section we define a number of representations of integers by lists
that are not of type L2 .

2.1 Natural numbers

We introduce abstraction function v2, of type L2 → N, which interprets a finite list of
bits as a natural number. Function v2 has the following definition, for list s of length
n:

v2 ·s = (
∑

i : 0 ≤ i < n : s·i ∗ 2n−1−i) (1)

This is the usual definition for representing natural numbers in the binary number
system. The first bit in the list is the most significant bit and the last bit is the least
significant bit. Note that the representation of a number is not unique, e.g. the number
3 can be represented by the lists [1, 1] and [0, 1, 1], because v2 ·[1, 1] and v2 ·[0, 1, 1]
are both equal to 3. However, we have the following non-redundancy property for
function v2, which we give without proof:

(∀t ∈ L2 : s 6= t ∧ #s = #t : v2 ·s 6= v2 ·t) (2)

If s contains only 0’s, we have v2 ·s = 0. If s contains only 1’s, we have v2 ·s = 2n − 1.
These values are the minimum and maximum values of v2 ·s, respectively. Hence v2 ·s
is in the range [0, 2n − 1].

Definition (1) is not practical for derivations of binary arithmetic functions. As
we will see, many of these functions have recursive definitions. Therefore we would
rather have a recursive definition for v2 as well. We give such a definition without its
derivation.

Definition 2.1 For b ∈ { 0, 1 } and s ∈ L2 :

v2 ·[] = 0
v2 ·(s / b) = 2 ∗ v2 ·s + b

�

3

4 CHAPTER 2. NUMBER REPRESENTATIONS

In the inductive case, we have used the parameter pattern s / b. For the parameter
pattern b . s, we have:

v2 ·(b . s) = b ∗ 2n + v2 ·s (3)

This property lends itself less to formula manipulation of arithmetic operations than
the inductive case of definition 2.1, because of the exponent n.

From property (3), we have v2 ·(0 . s) = v2 ·s. With this we can reduce or expand

the representation of a number, e.g. the number 3 can be represented by [0, 1, 1], but
also by [1, 1] and [0, 0, 1, 1]. Note that we can not always reduce a representation. In
this case, we have a minimal representation, which is always equal to [] or of the form
1 . s. The above method is the only way to generate different representations for the
same number. This can be easily proved with the aid of non-redundancy property (2).

2.2 Integers

There are various ways to represent integers by finite lists of bits. The three standard
representations are sign-and-magnitude, one’s complement and two’s complement. Of
these three, two’s complement is most used in practice, because of the ease with which
the basic arithmetic operations can be implemented [Omo]. Therefore we use the two’s
complement representation.

We introduce abstraction function vn2, of type L2 → Z, which interprets a finite
list of bits as an integer. Function vn2 has the following definition, for non-empty list
s of length n:

vn2 ·s = −s·0 ∗ 2n−1 + (
∑

i : 1 ≤ i < n : s·i ∗ 2n−1−i) (4)

We call integers represented this way binary integers. As in definition (1) of v2, the
first bit in the list is the most significant bit and the last bit is the least significant bit.
Also, the first bit is called the sign bit, because it determines the sign of the value.
This follows from the properties vn2 ·s < 0 ≡ s ·0 = 1 and 0 ≤ vn2 ·s ≡ s ·0 = 0. The
representation of an integer is not unique, but, analogous to property (2) of function
v2, we have the following non-redundancy property for function vn2 :

(∀t ∈ L2 : s 6= t ∧ #s = #t : vn2 ·s 6= vn2 ·t) (5)

If s·0 = 1 and s·i = 0, for 1 ≤ i < n, we have vn2 ·s = −2n−1. If s·0 = 0 and s·i = 1,
for 1 ≤ i < n, we have vn2 ·s = 2n−1 − 1. These values are the minimum and maximum
values of vn2 ·s, respectively. We now have the following corollary.

Corollary 2.2 For s ∈ L2 , with s 6= [] and n = #s, we have that vn2 ·s is in the
range [−2n−1, 2n−1 − 1]. �

From definition (1) of v2 and definition (4) of vn2, it can be seen that functions v2

and vn2 are strongly related. This is expressed by the following property:

vn2 ·s = −s·0 ∗ 2n + v2 ·s (6)

We prove this property by the following derivation:

2.2. INTEGERS 5

vn2 ·s

= { definition (4) of vn2 }

−s·0 ∗ 2n−1 + (
∑

i : 1 ≤ i < n : s·i ∗ 2n−1−i)

= { algebra }

−s·0 ∗ 2n + s·0 ∗ 2n−1 + (
∑

i : 1 ≤ i < n : s·i ∗ 2n−1−i)

= { join i = 0 }

−s·0 ∗ 2n + (
∑

i : 0 ≤ i < n : s·i ∗ 2n−1−i)

= { definition (1) of v2 }

−s·0 ∗ 2n + v2 ·s

We use property (6) to derive a recursive definition for vn2. We do this by case
distinction on n. If n = 1, then there exists a b ∈ { 0, 1 }, such that s = [b]. Then we
derive:

vn2 ·[b]

= { property (6) }

−[b]·0 ∗ 21 + v2 ·[b]

= { [b]·0 = b, algebra }

−2 ∗ b + v2 ·[b]

= { definition (1) of v2 }

−2 ∗ b + b

= { algebra }

−b

For the list s / b, with b ∈ { 0, 1 }, we have #(s / b) = n + 1. We now derive as follows:

vn2 ·(s / b)

= { property (6) }

−(s / b)·0 ∗ 2n+1 + v2 ·(s / b)

= { definition (1) of v2 }

−(s / b)·0 ∗ 2n+1 + 2 ∗ v2 ·s + b

= { property of / , from 0 < #s, algebra }

2 ∗ (−s·0 ∗ 2n + v2 ·s) + b

= { property (6) }

2 ∗ vn2 ·s + b

Thus, we have obtained the following recursive definition for vn2.

Definition 2.3 For b ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

vn2 ·[b] = −b

vn2 ·(s / b) = 2 ∗ vn2 ·s + b

�

In the above derivation, we have used the parameter pattern s / b. For the parameter
pattern b . s we derive as follows:

6 CHAPTER 2. NUMBER REPRESENTATIONS

vn2 ·(b . s)

= { property (6) }

−(b . s)·0 ∗ 2n+1 + v2 ·(b . s)

= { definition of ., property (3) of v2 }

−b ∗ 2n+1 + b ∗ 2n + v2 ·s

= { algebra }

−b ∗ 2n + v2 ·s

Hence, we have obtained the following property:

vn2 ·(b . s) = −b ∗ 2n + v2 ·s (7)

2.2.1 List reduction and expansion

Inspired by properties (3) and (7), we have the following useful property:

vn2 ·(b . b . s) = vn2 ·(b . s) (8)

We prove this property as follows, for s of length n:

vn2 ·(b . b . s)

= { property (7) of vn2 }

−b ∗ 2n+1 + v2 ·(b . s)

= { property (3) of v2 }

−b ∗ 2n+1 + b ∗ 2n + v2 ·s

= { algebra }

−b ∗ 2n + v2 ·s

= { property (7) of vn2 }

vn2 ·(b . s)

With property (8) the representation of an integer can be reduced or expanded. Also
this is the only way to generate different representations for the same number. This
can be easily proved with the aid of property (5). Note that if a representation can-
not be reduced, it is minimal. We can also use property (8) to reduce or expand a
representation until it has a desired length, if possible. We call this normalization.
For this purpose we introduce function norm, of type N → L2 → L2 , which performs
normalization. Function norm has the following specification.

Specification 2.4 For m ∈ N and s ∈ L2 , with s 6= []:

vn2 ·(norm ·m·s) = vn2 ·s ∧
#(norm ·m·s) = (min t ∈ L2 : vn2 ·t = vn2 ·s ∧ #t ≥ m : #t)

�

Because #t ≥ 0 for every list t, norm ·0 minimizes arbitrary representations. We choose
the following declaration for function norm.

2.3. ALTERNATIVE INTEGER REPRESENTATIONS 7

Declaration 2.5 For m ∈ N and s ∈ L2 , with s 6= [] and n = #s:

norm ·m·s = if n ≤ m → expand ·(m − n)·s
[] n ≥ m → reduce ·(n − m)·s
fi

�

In this declaration, functions expand and reduce, both of type N → L2 → L2 , expand
and reduce a representation with a specified number of elements, if possible, respec-
tively. Functions expand and reduce have the following specifications.

Specification 2.6 For m ∈ N and s ∈ L2 , with s 6= [] and n = #s:

expand ·m·s = norm ·(n + m)·s
reduce ·m·s = norm ·(n − m)·s ∧ m ≤ n

�

We give the following declarations for functions expand and reduce without derivation.

Declaration 2.7 For m ∈ N, b, c ∈ { 0, 1 } and s ∈ L2 :

expand ·0·(b . s) = b . s

expand ·(m + 1)·(b . s) = expand ·m·(b . b . s)
reduce ·m·[b] = [b]
reduce ·0·(b . c . s) = b . c . s

reduce ·(m + 1)·(b . c . s) = if b = c → reduce ·m·(c . s)
[] b 6= c → b . c . s

fi

�

Because a representation cannot always be reduced, the length of norm ·m·s may be
greater than m. In this case, we say normalization causes overflow. More precisely,
norm ·m·s causes overflow if and only if vn2 ·s is not in the interval [−2m−1, 2m−1 − 1].

In most hardware implementations of integer arithmetic operations, all binary in-
teger representations occurring in the operators have the same length, say n. Also it is
required that all binary integer representations occurring in the result of the operation
have length n as well. We can satisfy this requirement by applying norm ·n to these
representations and compare the results to n. If one of the results is larger than n,
then overflow has occurred.

2.3 Alternative integer representations

In this section we introduce a number of representations of integers by lists of another
type than L2 . These representations will be used in several implementations of the
basic arithmetic functions. We deal with lists of trits, binary pairs, signed bits and
signed 1’s. We will treat these list according to the binary representations introduced
in the previous sections.

8 CHAPTER 2. NUMBER REPRESENTATIONS

2.3.1 Trits

Lists of trits are of type L∗({ 0..2 }), or L3 for short. We introduce function vn23, of
type L3 → Z, which interprets a finite list of trits as an integer. Function vn23 has
the following definition, for non-empty list s of length n:

vn23 ·s = −s·0 ∗ 2n−1 + (
∑

i : 1 ≤ i < n : s·i ∗ 2n−1−i) (9)

We call integers represented this way ternary integers. Apart from the type of the
parameter, this definition is the same as definition (4) of function vn2. Unlike function
vn2, the representation of an integer is redundant, e.g. the lists [1, 0] and [0, 2] have
the same length and vn23 ·[1, 0] and vn23 ·[0, 2] are both equal to 2. If s·0 = 2
and s·i = 0, for 1 ≤ i < n, we have vn23 ·s = −2 ∗ 2n−1 and this is −2n. If s·0 = 0
and s·i = 2, for 1 ≤ i < n, we have vn23 ·s = (

∑
i : 1 ≤ i < n : 2 ∗ 2n−1−i) and this is

2n − 2, by distributivity of ∗ over +. These values are the minimum and maximum
values of vn23 ·s, respectively. We now have the following corollary.

Corollary 2.8 For s ∈ L3 , with s 6= [] and n = #s, we have that vn23 ·s is in the
range [−2n, 2n − 2]. �

Analogous to the derivation of the recursive definition of function vn2, we can derive
the following recursive definition for function vn23.

Definition 2.9 For b ∈ { 0..2 } and s ∈ L3 , with s 6= []:

vn23 ·[b] = −b

vn23 ·(s / b) = 2 ∗ vn23 ·s + b

�

2.3.2 Binary pairs

From corollaries 2.2 and 2.8 it can be seen that integers, that are represented by finite
lists of trits of length n, can not always be represented by finite lists of bits of length
n. However, these integers can be represented by finite lists of pairs of bits of length
n, because every trit can be represented by a pair of bits.

Lists of pairs of bits are of type L∗(〈 { 0, 1 } , { 0, 1 } 〉), or L2p for short. We intro-
duce abstraction function c2pto3, of type L2p → L3 , which interprets a list of binary
pairs as a list of trits. Function c2pto3 has the following definition.

Definition 2.10 For b, c ∈ { 0, 1 } and s ∈ L2p , with s 6= []:

c2pto3 ·s = h•s whr h ·〈 b, c 〉 = b + c end

�

Each trit is now uniquely represented by a pair of bits. Note that the trit 1 can be
represented by the two pairs 〈 0 , 1 〉 and 〈 1 , 0 〉.

We introduce function vn2p, of type L2p → Z, which interprets an integer from a
finite lists of binary pairs. Function vn2p has the following specification:

vn2p = vn23 ◦c2pto3 (10)

We call integers represented this way binary paired integers. From the definition of ◦ ,
we have vn2p ·s = vn23 ·(h•s), with h ·〈 b, c 〉 = b + c. By induction on the length of s,
we obtain the following recursive declaration for function vn2p, using the definition of
• and definition 2.9 of vn23.

2.3. ALTERNATIVE INTEGER REPRESENTATIONS 9

Declaration 2.11 For b, c ∈ { 0, 1 } and s ∈ L2p , with s 6= []:

vn2p ·[〈 b, c 〉] = −(b + c)
vn2p ·(s / 〈 b, c 〉) = 2 ∗ vn2p ·s + b + c

�

2.3.3 Signed bits

Lists of signed bits are of type L∗({−1, 0, 1 }), or Ls2 for short. Function v2s2, of type
Ls2 → Z, interprets a finite list of signed bits as an integer according to the following
definition, for list s of length n:

v2s2 ·s = (
∑

i : 0 ≤ i < n : s·i ∗ 2n−1−i) (11)

We call integers represented this way signed binary integers. Apart from the type
of the parameter, this definition is the same as definition (1) of function v2. Un-
like v2, the representation of an integer is redundant. If s contains only −1’s, we
have v2s2 ·s = (

∑
i : 0 ≤ i < n : −2n−1−i) and this is 1 − 2n. If s contains only 1’s,

we have v2s2 ·s = (
∑

i : 0 ≤ i < n : 2n−1−i) and this is 2n − 1. These values are the
minimum and maximum values of v2s2 ·s, respectively. Hence v2s2 ·s is in the range
[1 − 2n, 2n − 1]. Analogous to the derivation of the recursive definition of function v2,
we can derive the following recursive definition of v2s2.

Definition 2.12 For b ∈ {−1, 0, 1 } and s ∈ Ls2 :

v2s2 ·[] = 0
v2s2 ·(s / b) = 2 ∗ v2s2 ·s + b

�

2.3.4 Signed 1’s

The signed 1’s representation is a restricted form of the signed bits representation. The
restriction is that we only allow lists of type L∗({−1, 1 }), or Ls1 for short. Integers
represented this way can only be 0 or odd.

Because a signed 1 can only have 2 different values, we can represent a signed 1
by a bit. We choose to represent −1 by 0 and 1 by 1. We introduce abstraction
function c2tos1, of type L2 → Ls1 , which interprets a list of bits as a list of signed
1’s. Function c2tos1 has the following definition, for b ∈ { 0, 1 } and s ∈ L2 :

c2tos1 ·s = h•s whr h ·b = 2 ∗ b − 1 end

We introduce function v2s1, of type L2 → Z, with the following specification:

v2s1 = vn2s2 ◦c2tos1 (12)

We call integers represented this way signed unary integers. From the definition of ◦ ,
we have v2s1 ·s = vn2s2 ·(h•s), with h ·b = 2 ∗ b − 1. By induction on the length of s,
we obtain the following recursive declaration for function v2s1, using the definition of
• and definition 11 of v2s2.

Definition 2.13 For b ∈ { 0, 1 } and s ∈ L2 :

v2s1 ·[] = 0
v2s1 ·(s / b) = 2 ∗ (v2s1 ·s + b) − 1

�

10 CHAPTER 2. NUMBER REPRESENTATIONS

Chapter 3

Simple arithmetic operations

This chapter demonstrates the technique we use to derive declarations of arithmetic
functions. The simple arithmetic functions we introduce are specified in terms binary
integers. These functions will also be used in subsequent chapters, when we derive
declarations for the basic arithmetic operations.

3.1 Complement

Before we introduce functions that perform simple arithmetic operations, we introduce
function cmpl, of type L2 → L2 , which inverts every element of a list. This function
has the following recursive definition.

Definition 3.1 For b ∈ { 0, 1 } and s ∈ L2 :

cmpl ·[] = []
cmpl ·(s / b) = cmpl ·s / (1 − b)

�

Evaluation of this definition takes O(#s) steps. In chapter 7 we show how we can
implement this definition in hardware with O(1) propagation delay.

Function cmpl has the following useful property.

Property 3.2 For s ∈ L2 , with s 6= []:

vn2 ·(cmpl ·s) + 1 = −vn2 ·s

�

We prove this property by induction on the length of s. For the base case s = [b],
with b ∈ { 0, 1 }, we calculate:

vn2 ·(cmpl ·[b]) + 1

= { definition 3.1 of cmpl (twice) }

vn2 ·[1− b] + 1

= { definition 2.3 of vn2 }

11

12 CHAPTER 3. SIMPLE ARITHMETIC OPERATIONS

−(1 − b) + 1

= { algebra }

−(−b)

= { definition 2.3 of vn2 }

−vn2 ·[b]

For the list s / b, we derive:

vn2 ·(cmpl ·(s / b)) + 1

= { definition 3.1 of cmpl, definition 2.3 of vn2 }

2 ∗ vn2 ·(cmpl ·s) + (1 − b) + 1

= { algebra }

2 ∗ (vn2 ·(cmpl ·s) + 1) − b

= { property 3.2, from induction hypothesis }

2 ∗ (−vn2 ·s) − b

= { algebra }

−(2 ∗ vn2 ·s + b)

= { definition 2.3 of vn2 }

−vn2 ·(s / b)

Hence, we have proved the property.

3.2 Increment

Function inc, of type { 0, 1 } → L2 → L2 , which increments a binary integer by a bit,
has the following specification.

Specification 3.3 For c ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

vn2 ·(inc ·c·s) = vn2 ·s + c

�

We construct a declaration for this function by induction on the length of s. For the
base case s = [b], with b ∈ { 0, 1 }, we derive as follows:

vn2 ·(inc ·c·[b])

= { specification 3.3 of inc, definition 2.3 of vn2 }

−b + c

= { algebra, with h = b + c }

h − 2 ∗ b

= { definition of div and mod, algebra }

2 ∗ −(b − h div 2) + h mod 2

= { definition 2.3 of vn2 (twice), from b − h div 2, h mod 2 ∈ { 0, 1 } }

vn2 ·[b− h div 2, h mod 2]

3.3. DECREMENT 13

Then we may choose the following declaration for the base case of function inc:

inc ·c·[b] = [b − h div 2, h mod 2] whr h = b + c end

We have used the expressions h div 2 and h mod 2, with h = b + c, in the above
derivation, because they can be easily implemented in hardware and because they pop
up in the next derivation.

For the list s / b, we derive as follows:

vn2 ·(inc ·c·(s / b))

= { specification 3.3 of inc, definition 2.3 of vn2 }

2 ∗ vn2 ·s + b + c

= { h = b + c, definition of div and mod }

2 ∗ (vn2 ·s + h div 2) + h mod 2

= { specification 3.3 of inc, from induction hypothesis and h div 2 ∈ { 0, 1 } }

2 ∗ vn2 ·(inc ·(h div 2)·s) + h mod 2

= { definition 2.3 of vn2, from h mod 2 ∈ { 0, 1 } }

vn2 ·(inc ·(h div 2)·s / h mod 2)

Hence, we may choose the following declaration for function inc.

Declaration 3.4 For b, c ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

inc ·c·[b] = [b − h div 2, h mod 2] whr h = b + c end

inc ·c·(s / b) = inc ·(h div 2)·s / h mod 2 whr h = b + c end

�

We could have derived a more efficient declaration for certain cases of s. Instead of
declaration 3.4, hardware implementations of this more efficient declaration usually
have different execution times for different s of a specific length.

3.3 Decrement

The counterpart of function inc is function dec, of type { 0, 1 } → L2 → L2 , which
decrements a binary integer by a bit. Function dec has the following specification.

Specification 3.5 For c ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

vn2 ·(dec ·c·s) = vn2 ·s − c

�

The construction of a declaration for this function is analogous to the construction of
a declaration for function inc. Therefore we give the declaration right away.

Declaration 3.6 For b, c ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

dec ·c·[b] = [h div 2 + h mod 2, h mod 2] whr h = b + c end

dec ·c·(s / b) = dec ·(c − h div 2)·s / h mod 2 whr h = b + c end

�

14 CHAPTER 3. SIMPLE ARITHMETIC OPERATIONS

We can also use property 3.2 to derive an alternative declaration for function dec:

vn2 ·(dec ·c·s)

= { specification 3.5 of dec }

vn2 ·s − c

= { algebra }

−(−vn2 ·s + c)

= { property 3.2 of cmpl, algebra }

−(vn2 ·(cmpl ·s) + c) − 1

= { specification 3.3 of inc }

−vn2 ·(inc ·c·(cmpl ·s)) − 1

= { property 3.2 of cmpl }

vn2 ·(cmpl ·(inc ·c·(cmpl ·s)))

Then we may choose the following alternative declaration for function dec.

Declaration 3.7 For c ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

dec ·c·s = cmpl ·(inc ·c·(cmpl ·s))

�

3.4 Negation

Function neg, of type L2 → L2 , which negates a binary integer, has the following
specification.

Specification 3.8 For s ∈ L2 , with s 6= []:

vn2 ·(neg ·s) = −vn2 ·s

�

To construct a declaration for this function, we derive as follows:

vn2 ·(neg ·s)

= { specification 3.8 of neg }

−vn2 ·s

= { property 3.2 of cmpl }

vn2 ·(cmpl ·s) + 1

= { specification 3.3 of inc }

vn2 ·(inc ·1·(cmpl ·s))

Hence, we may choose the following declaration for function neg.

Declaration 3.9 For s ∈ L2 , with s 6= []:

neg ·s = inc ·1·(cmpl ·s)

�

We can make this declaration more efficient when we derive by induction on the length
of s, using declaration 3.3 of inc and definition 3.1 of cmpl. We do not show this.

3.5. DOUBLING AND HALVING 15

3.5 Doubling and halving

For non-empty binary list s, we have 2 ∗ vn2 ·s = vn2 ·(s / 0), from definition 2.3 of
vn2. Hence we can double a binary integer by adding a 0 at the end of its representa-
tion.

Halving of a binary integer is somewhat more complex. We introduce functions
hlvq and hlvr that return the quotient and the remainder after halving, respectively.

3.5.1 Quotient

Function hlvq, of type L2 → L2 , has the following specification.

Specification 3.10 For s ∈ L2 , with s 6= []:

vn2 ·(hlvq ·s) = vn2 ·s div 2

�

To construct a declaration for this function, we derive by case distinction on s. For
the case s = [b], with b ∈ { 0, 1 }, we derive:

vn2 ·(hlvq ·[b])

= { specification 3.10 of hlvq, definition 2.3 of vn2 }

−b div 2

= { definition of div, using b ∈ { 0, 1 } }

−b

= { definition 2.3 of vn2 }

vn2 ·[b]

For the list s / b, we derive:

vn2 ·(hlvq ·(s / b))

= { specification 3.10 of hlvq, definition 2.3 of vn2 }

(2 ∗ vn2 ·s + b) div 2

= { property of div }

vn2 ·s + b div 2

= { definition of div, using b ∈ { 0, 1 } }

vn2 ·s

Then we may choose the following declaration for function hlvq.

Declaration 3.11 For b ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

hlvq ·[b] = [b]
hlvq ·(s / b) = s

�

16 CHAPTER 3. SIMPLE ARITHMETIC OPERATIONS

3.5.2 Remainder

Function hlvr, of type L2 → { 0, 1 }, has the following specification.

Specification 3.12 For s ∈ L2 , with s 6= []:

hlvr ·s = vn2 ·s mod 2

�

To construct a declaration for this function, we derive by case distinction on s. For
the base case s = [b], with b ∈ { 0, 1 }, we derive:

hlvr ·[b]

= { specification 3.12 of hlvr, definition 2.3 of vn2 }

(−b) mod 2

= { property of mod, using b ∈ { 0, 1 } }

b mod 2

= { definition of mod, using b ∈ { 0, 1 } }

b

For the list s / b, we derive:

hlvr ·(s / b)

= { specification 3.12 of hlvr, definition 2.3 of vn2 }

(2 ∗ vn2 ·s + b) mod 2

= { property of mod }

b mod 2

= { definition of mod, using b ∈ { 0, 1 } }

b

Combining the results of the above derivations, we obtain the following declaration for
function hlvr.

Declaration 3.13 For b ∈ { 0, 1 } and s ∈ L2 :

hlvr ·(s / b) = b

�

Chapter 4

Addition and subtraction

In this chapter we introduce the two basic arithmetic operations addition and sub-
traction. First, we investigate the recursive structure of the addition operation. Then
we derive declarations for functions that add a binary integer to a binary integer, a
ternary integer and a binary paired integer, respectively. Finally, we use the declara-
tions derived in this chapter to implement subtraction.

4.1 Integer addition

Function add, of type Z → Z → Z, adds two integers, with the following specification.

Specification 4.1 For x, y ∈ Z:

add ·x·y = x + y

�

We derive a declaration for this function. Inspired by corollary 2.2 concerning the range
of integers that can be represented by lists of a certain length, we assume x, y ∈ Z and
n ∈ N, with −2n ≤ x, y < 2n. For all x and y, such an n exists. We derive by induction
on n. For the base case n = 0, there exist b, c ∈ { 0, 1 }, such that x = −b and y = −c.
Then we derive as follows:

add ·(−b)·(−c)

= { specification 4.1 of add, algebra }

−(b + c)

= { h = b + c, definition of div and mod }

−(2 ∗ h div 2 + h mod 2)

= { algebra, using h mod 2 = 2 ∗ (h mod 2) − h mod 2 }

2 ∗ −(h div 2 + h mod 2) + h mod 2

For integers 2 ∗ x + b and 2 ∗ y + c, we have −2n+1 ≤ 2 ∗ x + b, 2 ∗ y + c < 2n+1. Then
we may assume add ·x·y = x + y as an induction hypothesis. We derive as follows:

add ·(2 ∗ x + b)·(2 ∗ y + c)

= { specification 4.1 of add, algebra }

17

18 CHAPTER 4. ADDITION AND SUBTRACTION

2 ∗ (x + y) + b + c

= { specification 4.1 of add, from induction hypothesis }

2 ∗ add ·x·y + b + c

= { h = b + c, definition of div and mod, algebra }

2 ∗ (add ·x·y + h div 2) + h mod 2

Hence, we have obtained the following declaration for function add.

Declaration 4.2 For b, c ∈ { 0, 1 } and x, y ∈ Z:

add ·(−b)·(−c) = 2 ∗ −(h div 2 + h mod 2) + h mod 2
whr h = b + c end

add ·(2 ∗ x + b)·(2 ∗ y + c) = 2 ∗ (add ·x·y + h div 2) + h mod 2
whr h = b + c end

�

This declaration can be used for a function that adds two binary integers, because of
the structure of the recursion and the range of the terms.

We can get rid of the expression h div 2 in the recursive case of this declaration
by generalizing function add to function adc, of type { 0, 1 } → Z → Z → Z, that has
the following specification.

Specification 4.3 For d ∈ { 0, 1 } and x, y ∈ Z:

adc ·d·x·y = x + y + d

�

Then we may choose the following alternative declaration for function add.

Declaration 4.4 For x, y ∈ Z:

add ·x·y = adc ·0·x·y

�

We derive a declaration for function adc by induction on n. For the base case, we
derive:

adc ·d·(−b)·(−c)

= { specification 4.3 of adc }

−b − c + d

= { algebra, with h = b + c + d }

h − 2 ∗ (b + c)

= { definition of div and mod, algebra }

2 ∗ −(b + c − h div 2) + h mod 2

Analogous to the base case of declaration 3.4 of inc, we have used the expressions
h div 2 and h mod 2, with h = b + c + d, in the above derivation, because they can
be easily implemented in hardware and because they pop up in the next derivation.

For the inductive case, we derive as follows:

4.1. INTEGER ADDITION 19

adc ·d·(2 ∗ x + b)·(2 ∗ y + c)

= { specification 4.3 of adc, algebra }

2 ∗ (x + y) + b + c + d

= { h = b + c + d, definition of div and mod }

2 ∗ (x + y + h div 2) + h mod 2

= { specification 4.3 of adc, from induction hypothesis and h div 2 ∈ { 0, 1 } }

2 ∗ adc ·(h div 2)·x·y + h mod 2

Hence, we have obtained the following declaration for function adc.

Declaration 4.5 For b, c, d ∈ { 0, 1 } and x, y ∈ Z:

adc ·d·(−b)·(−c) = 2 ∗ −(b + c − h div 2) + h mod 2
whr h = b + c + d end

adc ·d·(2 ∗ x + b)·(2 ∗ y + c) = 2 ∗ adc ·(h div 2)·x·y + h mod 2
whr h = b + c + d end

�

The recursive case of this declaration has one inconvenient property, namely that of
carry propagation. The parameter d and the expression h div 2 are often called the
incoming and outgoing carry, respectively. Now the incoming carry is needed for the
calculation of the outgoing carry, i.e. the incoming carry is propagated. In hardware
implementations, this is usually the bottle-neck for the performance.

To get rid of this carry propagation, we can remove the value of d from h and add
it to h mod 2. We then obtain as an alternative declaration for the inductive case of
adc:

adc ·d·(2 ∗ x + b)·(2 ∗ y + c) = 2 ∗ adc ·(h div 2)·x·y + h mod 2 + d

whr h = b + c end

The value of h mod 2 + d can not be represented by a single bit anymore, but it can
be represented by a trit. To be able to use the result of function adc as a parameter
of the same function, we can represent x by a finite list of trits. Inspired by corol-
lary 2.8 concerning the range of integers that can be represented by finite lists of trits
of a certain length, we assume −2n+1 ≤ x < 2n+1 − 1. For all x such an n exists. We
now construct a more general declaration for function adc by induction on n. Note
that we still assume −2n ≤ y < 2n. For the base case n = 0, there exist b ∈ { 0..2 }
and c ∈ { 0, 1 }, such that x = −b and y = −c. Then we obtain adc ·d·(−b)·(−c) =
2 ∗ −(h div 2 + h mod 2) + h mod 2 + d, with h = b + c. For the inductive case,
we investigate integers 2 ∗ x + b and 2 ∗ y + c, with b ∈ { 0..2 } and c ∈ { 0, 1 }, for
which we have −2n+2 ≤ 2 ∗ x + b < 2n+2 − 1 and −2n+1 ≤ 2 ∗ y + c < 2n+1. Then
we may assume adc ·d·x·y = x + y + d as an induction hypothesis. We now obtain
adc ·d·(2 ∗ x + b)·(2 ∗ y + c) = 2 ∗ adc ·(h div 2)·x·y + h mod 2 + d, with h = b + c,
because h div 2 ∈ { 0, 1 }. Then we have the following alternative declaration for func-
tion adc.

Declaration 4.6 For b ∈ { 0..2 }, c, d ∈ { 0, 1 } and x, y ∈ Z:

adc ·d·(−b)·(−c) = 2 ∗ −(h div 2 + h mod 2) + h mod 2 + d

whr h = b + c end

adc ·d·(2 ∗ x + b)·(2 ∗ y + c) = 2 ∗ adc ·(h div 2)·x·y + h mod 2 + d

whr h = b + c end

20 CHAPTER 4. ADDITION AND SUBTRACTION

�

To distinguish this declaration from declaration 4.5 of adc, which suffers from carry-
propagation, this declaration is often called carry-save addition.

4.2 Binary addition

Functions add2, of type L2 → L2 → L2 , and adc2, of type { 0, 1 } → L2 → L2 → L2 ,
have the following specification.

Specification 4.7 For d ∈ { 0, 1 } and s, t ∈ L2 , with s 6= [] and t 6= []:

vn2 ·(add2 ·s·t) = add ·(vn2 ·s)·(vn2 ·t)
vn2 ·(adc2 ·d·s·t) = adc ·d·(vn2 ·s)·(vn2 ·t)

�

We construct declarations for these functions using declarations 4.2 and 4.4 of add and
declaration 4.5 of adc. For this purpose, we assume that s and t have equal length.

4.2.1 Declarations for add2

We derive a declaration for function add2 by induction on the length of s. For the
base case s = [b] and t = [c], with b, c ∈ { 0, 1 }, we derive:

vn2 ·(add2 ·[b]·[c])

= { specification 4.7 of add2, definition 2.3 of vn2 (twice) }

add ·(−b)·(−c)

= { declaration 4.2 of add, with h = b + c }

2 ∗ −(h div 2 + h mod 2) + h mod 2

= { definition 2.3 of vn2 (twice), from h div 2 + h mod 2, h mod 2 ∈ { 0, 1 } }

vn2 ·[h div 2 + h mod 2, h mod 2]

For lists s / b and t / c, we derive as follows:

vn2 ·(add2 ·(s / b)·(t / c))

= { specification 4.7 of add2, definition 2.3 of vn2 (twice) }

add ·(2 ∗ vn2 ·s + b)·(2 ∗ vn2 ·t + c)

= { declaration 4.2 of add, with h = b + c }

2 ∗ (add ·(vn2 ·s)·(vn2 ·t) + h div 2) + h mod 2

= { specification 4.7 of add2, from induction hypothesis }

2 ∗ (vn2 ·(add2 ·s·t) + h div 2) + h mod 2

= { specification 3.3 of inc, from h div 2 ∈ { 0, 1 } }

2 ∗ vn2 ·(inc ·(h div 2)·(add2 ·s·t)) + h mod 2

= { definition 2.3 of vn2, from h mod 2 ∈ { 0, 1 } }

vn2 ·(inc ·(h div 2)·(add2 ·s·t) / h mod 2)

Hence, we may choose the following partial declaration for function add2.

4.2. BINARY ADDITION 21

Declaration 4.8 For b, c ∈ { 0, 1 } and s, t ∈ L2 , with s 6= [], t 6= [] and #s = #t:

add2 ·[b]·[c] = [h div 2 + h mod 2, h mod 2]
whr h = b + c end

add2 ·(s / b)·(t / c) = inc ·(h div 2)·(add2 ·s·t) / h mod 2
whr h = b + c end

�

Using declaration 3.4 of inc, evaluation of this declaration takes O((#s)2) steps. How-
ever, using a more efficient declaration of inc, the declaration of add2 can be imple-
mented such that its evaluation only takes O(#s) steps1.

From declaration 4.4 of add, we may also choose the following alternative declara-
tion for function add2.

Declaration 4.9 For s, t ∈ L2 , with s 6= [] and t 6= []:

add2 ·s·t = adc2 ·0·s·t

�

4.2.2 Declarations for adc2

Analogous to the construction of declaration 4.8 of add2, we can construct the following
partial declaration for function adc2, using declaration 4.5 of adc.

Declaration 4.10 For b, c, d ∈ { 0, 1 } and s, t ∈ L2 , with s 6= [], t 6= [] and #s = #t:

adc2 ·d·[b]·[c] = [b + c − h div 2, h mod 2]
whr h = b + c + d end

adc2 ·d·(s / b)·(t / c) = adc2 ·(h div 2)·s·t / h mod 2
whr h = b + c + d end

�

Evaluation of this declaration takes O(#s) steps.
The above declaration is partial, because of the restriction to #s = #t. In hard-

ware implementations this restriction is usually not a problem. Nevertheless we make
the above declaration complete. For this purpose we drop the above restriction and
consider the two cases s = [b] and t = [c]. For the first case, we derive as follows:

vn2 ·(adc2 ·d·[b]·t)

= { specification 4.7 of adc2, definition 2.3 of vn2 }

adc ·d·(−b)·(vn2 ·t)

= { specification 4.5 of adc }

vn2 ·t + d − b

= { • specification 4.11 of incdec }

vn2 ·(incdec ·d·b·t)

Function incdec, of type { 0, 1 } → { 0, 1 } → L2 → L2 , has the following specification.

1In [Zan] an implementation of such a declaration is given as rewrite rules for µCRL, for which it
is proved that its evaluation takes O(#s) steps.

22 CHAPTER 4. ADDITION AND SUBTRACTION

Specification 4.11 For b, c ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

vn2 ·(incdec ·b·c·s) = vn2 ·s + b − c

�

Using functions inc and dec, we may choose the following declaration for function
incdec:

Declaration 4.12 For c ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

incdec ·0·c·s = dec ·c·s
incdec ·1·c·s = inc ·(1 − c)·s

�

Now we may choose the following declaration for the case s = [b] of adc2, and analo-
gous for the case t = [c]:

adc2 ·d·[b]·t = incdec ·d·b·t
adc2 ·d·s·[c] = incdec ·d·c·s

These declarations for function adc2 make the base case of declaration 4.13 obsolete.
Hence, we have obtained the following declaration for function adc2.

Declaration 4.13 For b, c, d ∈ { 0, 1 } and s, t ∈ L2 , with s 6= [] and t 6= []:

adc2 ·d·[b]·t = incdec ·d·b·t
adc2 ·d·s·[c] = incdec ·d·c·s
adc2 ·d·(s / b)·(t / c) = adc2 ·(h div 2)·s·t / h mod 2

whr k = b + c + d end

�

4.3 Carry-save addition

We construct declarations for functions that perform carry-save addition on lists of
trits and lists of binary pairs.

4.3.1 Ternary addition

Functions add23, of type L3 → L2 → L3 , and adc23, of type { 0, 1 } → L3 → L2 →
L3 , have the following specification.

Specification 4.14 For d ∈ { 0, 1 }, s ∈ L3 and t ∈ L2 , with s 6= [] and t 6= []:

vn23 ·(add23 ·s·t) = add ·(vn23 ·s)·(vn2 ·t)
vn23 ·(adc23 ·d·s·t) = adc ·d·(vn23 ·s)·(vn2 ·t)

�

From declaration 4.4 of add, we may choose the following declaration for function
add23.

4.3. CARRY-SAVE ADDITION 23

Declaration 4.15 For s ∈ L3 and t ∈ L2 , with s 6= [] and t 6= []:

add23 ·s·t = adc23 ·0·s·t

�

Analogous to the construction of declaration 4.8 of add2, we can construct the following
partial declaration for function adc23, using declaration 4.6 of adc.

Declaration 4.16 For b ∈ { 0..2 }, c, d ∈ { 0, 1 }, s ∈ L3 and t ∈ L2 , with s 6= [], t 6=
[] and #s = #t:

adc23 ·d·[b]·[c] = [h div 2 + h mod 2, h mod 2 + d]
whr h = b + c end

adc23 ·d·(s / b)·(t / c) = adc23 ·(h div 2)·s·t / h mod 2 + d

whr h = b + c end

�

To be able to convert the result of this declaration to a binary integer, we introduce
function c23to2, of type { 0, 1 } → L3 → L2 , with the following specification.

Specification 4.17 For c ∈ { 0, 1 } and s ∈ L3 , with s 6= []:

vn2 ·(c23to2 ·c·s) = vn23 ·s + c

�

Analogous to the construction of declaration 3.4 of inc, we can construct the following
declaration for function c23to2.

Declaration 4.18 For b ∈ { 0..2 }, c ∈ { 0, 1 } and s ∈ L3 , with s 6= []:

c23to2 ·c·[b] = [c − h div 2, h mod 2] whr h = b + c end

c23to2 ·c·(s / b) = c23to2 ·(h div 2)·s / h mod 2 whr h = b + c end

�

4.3.2 Binary paired addition

In subsection 2.3.2 we have shown how we can represent trits by pairs of bits. We now
use function c2pto3 of that section, together with functions add23 to adc23 to imple-
ment addition of a binary integer to a binary paired integer. We introduce functions
add2p, of type L2p → L2 → L2p, and adc2p, of type { 0, 1 } → L2p → L2 → L2p,
with the following specification.

Specification 4.19 For e ∈ { 0, 1 }, s ∈ L2p and t ∈ L2 , with s 6= [] and t 6= []:

vn2p ·(add2p ·s·t) = vn23 ·(add23 ·(c2pto3 ·s)·t)
vn2p ·(adc2p ·e·s·t) = vn23 ·(adc23 ·e·(c2pto3 ·s)·t)

�

From declaration 4.15 of add23, we may choose the following declaration for function
add2p.

24 CHAPTER 4. ADDITION AND SUBTRACTION

Declaration 4.20 For s ∈ L2p and t ∈ L2 , with s 6= [] and t 6= []:

add2p ·s·t = adc2p ·0·s·t

�

For the construction of a declaration for function adc2p, we assume #s = #t. We
derive a declaration by induction on the length of s and t. For the base case s = 〈 b, c 〉
and t = [d], with b, c, d ∈ { 0, 1 }, we derive as follows:

vn2p ·(adc2p ·e·[〈 b, c 〉]·[d])

= { specification 4.19 of adc2p, definition 2.10 of c2pto3 }

vn23 ·(adc23 ·e·[b + c]·[d])

= { definition 4.16 of adc23, with h = b + c + d }

vn23 ·[h div 2 + h mod 2, h mod 2 + e]

= { definition 2.9 of vn23 (twice) }

2 ∗ −(h div 2 + h mod 2) + h mod 2 + e

= { declaration 2.11 of vn2p (twice), from h div 2, h mod 2, e ∈ { 0, 1 } }

vn2p ·[〈h div 2 , h mod 2 〉, 〈h mod 2 , e 〉]

For the lists s / 〈 b, c 〉 and t / d, we derive:

vn2p ·(adc2p ·e·(s / 〈 b, c 〉)·(t / d))

= { specification 4.19 of adc2p, definition 2.10 of c2pto3 }

vn23 ·(adc23 ·e·(c2pto3 ·s / b + c)·(t / d))

= { definition 4.16 of adc23, with h = b + c + d }

vn23 ·(adc23 ·(h div 2)·(c2pto3 ·s)·t / h mod 2 + e)

= { definition 2.9 of vn23 }

2 ∗ vn23 ·(adc23 ·(h div 2)·(c2pto3 ·s)·t) + h mod 2 + e

= { specification 4.19 of adc2p, from induction hypothesis }

2 ∗ vn2p ·(adc2p ·(h div 2)·s·t) + h mod 2 + e

= { declaration 2.11 of vn2p, from h mod 2, e ∈ { 0, 1 } }

vn2p ·(adc2p ·(h div 2)·s·t / 〈h mod 2 , e 〉)

Hence, we may choose the following partial declaration for function adc2p.

Declaration 4.21 For b, c, d, e ∈ { 0, 1 }, s ∈ L2p and t ∈ L2 , with s 6= [], t 6= [] and
#s = #t:

adc2p ·e·[〈 b, c 〉]·[d] = [〈h div 2 , h mod 2 〉, 〈h mod 2 , e 〉]
whr h = b + c + d end

adc2p ·e·(s / 〈 b, c 〉)·(t / d) = adc2p ·(h div 2)·s·t / 〈h mod 2 , e 〉
whr h = b + c + d end

�

Evaluation of this declaration takes O(#s) steps, but we can implement it in hardware
with O(1) propagation delay. We will do this in chapter 7.

To be able to convert the result of this declaration to a binary integer, we introduce
function c2pto2, of type { 0, 1 } → L2p → L2 , with the following specification.

4.4. SUBTRACTION 25

Specification 4.22 For d ∈ { 0, 1 } and s ∈ L2p , with s 6= []:

vn2 ·(c2pto2 ·d·s) = vn2p ·s + d

�

Analogous to the construction of declaration 3.4 of inc, we can construct the following
declaration for function c2pto2.

Declaration 4.23 For b, c, d ∈ { 0, 1 } and s ∈ L2p , with s 6= []:

c2pto2 ·d·[〈 b, c 〉] = [b + c − h div 2, h mod 2]
whr h = b + c + d end

c2pto2 ·d·(s / 〈 b, c 〉) = c2pto2 ·(h div 2)·s / h mod 2
whr h = b + c + d end

�

4.4 Subtraction

In this section we introduce functions that subtract a binary integer from a binary
integer, a ternary integer and a binary paired integer, respectively. To construct
declarations for these functions, we greatly benefit from the already derived functions
in this chapter.

4.4.1 Binary subtraction

Function subt2, of type L2 → L2 → L2 , which subtracts a binary integer from a
binary integer, has the following specification.

Specification 4.24 For s, t ∈ L2 , with s 6= [] and t 6= []:

vn2 ·(subt2 ·s·t) = vn2 ·s − vn2 ·t

�

To construct a declaration for subt2, we derive as follows, for non-empty binary lists
s, t:

vn2 ·(subt2 ·s·t)

= { specification 4.24 of subt2 }

vn2 ·s − vn2 ·t

= { property 3.2 of cmpl }

vn2 ·s + vn2 ·(cmpl ·t) + 1

= { specification 4.7 of adc2 }

vn2 ·(adc2 ·1·s·(cmpl ·t))

Hence, we may choose the following declaration for function subt2.

Declaration 4.25 For s, t ∈ L2 , with s 6= [] and t 6= []:

subt2 ·s·t = adc2 ·1·s·(cmpl ·t)

�

26 CHAPTER 4. ADDITION AND SUBTRACTION

4.4.2 Carry-save subtraction

Function subt23, of type L3 → L2 → L3 , which subtracts a binary integer from a
ternary integer, has the following specification.

Specification 4.26 For s ∈ L3 and t ∈ L2 , with s 6= [] and t 6= []:

vn23 ·(subt23 ·s·t) = vn23 ·s − vn2 ·t

�

Analogous to the previous derivation, we may choose the following declaration for
function subt23.

Declaration 4.27 For s ∈ L3 and t ∈ L2 , with s 6= [] and t 6= []:

subt23 ·s·t = adc23 ·1·s·(cmpl ·t)

�

Function subt2p, of type L2p → L2 → L2p, which subtracts a binary integer from a
binary paired integer, has the following specification.

Specification 4.28 For s ∈ L2p and t ∈ L2 , with s 6= [] and t 6= []:

vn2p ·(subt2p ·s·t) = vn2p ·s − vn2 ·t

�

Analogous to the derivation at the beginning of this section, we may choose the fol-
lowing declaration for function subt2p.

Declaration 4.29 For s ∈ L2p and t ∈ L2 , with s 6= [] and t 6= []:

subt2p ·s·t = adc2p ·1·s·(cmpl ·t)

�

Chapter 5

Multiplication

In this chapter we treat multiplication. In the first section we investigate the recursive
structure of the multiplication operation. Then we derive declarations for a function
that performs multiplication of two binary integers. After that we try to make the
operation more efficient by means of carry-save addition and Booth recoding.

5.1 Integer multiplication

Function mul, of type Z → Z → Z, performs multiplication of two integers. This func-
tion has the following specification.

Specification 5.1 For x, y ∈ Z:

mul ·x·y = x ∗ y

�

For the construction of a declaration of this function, we assume x, y ∈ Z, b ∈ { 0, 1 }
and n ∈ N, with −2n ≤ y < 2n. We derive by induction on n. For the base case n = 0,
we have mul ·x·(−b) = x ∗ (−b), and this is −(b ∗ x). For the inductive case n + 1, we
have mul ·x·(2 ∗ y + b) = x ∗ (2 ∗ y + b), and this is 2 ∗ x ∗ y + b ∗ x. This expression
can be interpreted as (2 ∗ x) ∗ y + b ∗ x and also as 2 ∗ (x ∗ y) + b ∗ x. In both cases,
we may apply specification 5.1 of mul, from induction hypothesis. For the first case,
we then obtain the following declaration.

Declaration 5.2 For b ∈ { 0, 1 } and x, y ∈ Z:

mul ·x·(−b) = −(b ∗ x)
mul ·x·(2 ∗ y + b) = mul ·(2 ∗ x)·y + b ∗ x

�

For the second case, we obtain the following declaration.

Declaration 5.3 For b ∈ { 0, 1 } and x, y ∈ Z:

mul ·x·(−b) = −(b ∗ x)
mul ·x·(2 ∗ y + b) = 2 ∗ mul ·x·y + b ∗ x

�

27

28 CHAPTER 5. MULTIPLICATION

In both declarations, parameters x and y are called the multiplicand and the multiplier,
respectively.

In the inductive case of the above declarations, b ∗ x is added to 2 ∗ x ∗ y after

2 ∗ x ∗ y is evaluated. This means that all additions are postponed until function mul

is completely unfolded. For large numbers, this requires a considerable amount of
space. Therefore, we derive an alternative declaration for function mul, in which the
addition can be performed immediately. For this purpose, we generalize function mul

to gmul, of type Z → Z → Z → Z, that has the following specification.

Specification 5.4 For x, y, z ∈ Z:

gmul ·z ·x·y = x ∗ y + z

�

Then we may choose the following declaration for function mul.

Declaration 5.5 For x, y ∈ Z:

mul ·x·y = gmul ·0·x·y

�

We derive a declaration for gmul by induction on n. We assume z ∈ Z. For the
base case n = 0, we have gmul ·z ·x·(−b) = z + x ∗ (−b), and this is z − b ∗ x. For the
inductive case n + 1, we have gmul ·z ·x·(2 ∗ y + b) = x ∗ (2 ∗ y + b) + z, and this is
2 ∗ x ∗ y + z + b ∗ x. Like the previous derivation, this expression can be interpreted
as (2 ∗ x) ∗ y + z + b ∗ x and as 2 ∗ (x ∗ y) + z + b ∗ x. In the first case, we may apply
specification 5.4 of gmul, from induction hypothesis. We then obtain the following
declaration for function gmul.

Declaration 5.6 For x, y, z ∈ Z and b ∈ { 0, 1 }:

gmul ·z ·x·(−b) = z − b ∗ x

gmul ·z ·x·(2 ∗ y + b) = gmul ·(z + b ∗ x)·(2 ∗ x)·y

�

For the second case, we derive as follows:

2 ∗ (x ∗ y) + z + b ∗ x

= { • h, k: 2 ∗ h + k = z + b ∗ x }

2 ∗ (x ∗ y) + 2 ∗ h + k

= { algebra }

2 ∗ (x ∗ y + h) + k

= { specification 5.4 of gmul, from induction hypothesis }

2 ∗ gmul ·h·x·y + k

One possible choice for h and k is h = l div 2 and k = l mod 2, with l = z + b ∗ x,
because 2 ∗ h + k = 2 ∗ (l div 2) + l mod 2. There are also other possibilities, as we
will see in the next sections. Now we may choose the following alternative declaration
for function gmul.

5.2. BINARY MULTIPLICATION 29

Declaration 5.7 For b ∈ { 0, 1 } and x, y, z ∈ Z:

gmul ·z ·x·(−b) = z − b ∗ x

gmul ·z ·x·(2 ∗ y + b) = 2 ∗ gmul ·h·x·y + k

whr 2 ∗ h + k = z + b ∗ x end

�

In the above declarations of gmul, parameters x, y and z are called the multiplicand,
the multiplier and the partial product, respectively.

5.1.1 On efficiency

We have derived 4 different declarations that perform multiplication of two integers.
The first one is declaration 5.2 of mul, the second is declaration 5.3 of mul, the third
and fourth are declaration 5.5 of mul, together with declaration 5.6 of gmul and decla-
ration 5.7 of gmul, respectively. Now which of the 4 alternatives is the most efficient?

We already know that the third and the fourth alternative can be more space

efficient than the first two alternatives. We try to find out which of the 4 alternatives
is the most time efficient. For our purpose of hardware implementations, the most
time expensive operations that are used in the alternatives are addition, subtraction
and negation, where one of the arguments is the multiplicand. Evaluation of mul ·x·y
requires the same total amount of such operations for each of the 4 alternatives. The
cost of the operations can be expressed in terms of the absolute values of its arguments.
Therefore, the alternative that keeps the absolute values of these arguments smaller
than the other alternatives, is the most time efficient. From the declarations of the 4
alternatives, it can easily be seen that the fourth alternative is the one we are looking
for. Hence, we may say that the fourth alternative — declaration 5.5 of mul and 5.7
of gmul — is the most efficient alternative.

5.2 Binary multiplication

We introduce function mul2, of type L2 → L2 → L2 , and function gmul2, of type
L2 → L2 → L2 → L2 , with the following specification.

Specification 5.8 For s, t, u ∈ L2 , with s 6= [], t 6= [] and u 6= []:

vn2 ·(mul2 ·s·t) = mul ·(vn2 ·s)·(vn2 ·t)
vn2 ·(gmul2 ·u·s·t) = gmul ·(vn2 ·u)·(vn2 ·s)·(vn2 ·t)

�

We use declaration 5.5 of mul and declaration 5.7 of gmul to construct declarations
for these functions. Hence, we may choose the following declaration for function mul2.

Declaration 5.9 For s, t ∈ L2 , with s 6= [] and t 6= []:

mul2 ·s·t = gmul2 ·[0]·s·t

�

For the construction of a declaration for gmul2, we need functions addbmul2 and
subtbmul2, both of type L2 → { 0, 1 } → L2 → L2 , with the following specification.

30 CHAPTER 5. MULTIPLICATION

Specification 5.10 For b ∈ { 0, 1 } and s, t ∈ L2 , with s 6= [] and t 6= []:

vn2 ·(addbmul2 ·s·b·t) = vn2 ·s + b ∗ vn2 ·t
vn2 ·(subtbmul2 ·s·b·t) = vn2 ·s − b ∗ vn2 ·t

�

Using specifications 4.1, 4.7 and 4.24 of functions add, add2 and subt2, respectively,
we may choose the following declaration for these functions.

Declaration 5.11 For s, t ∈ L2 , with s 6= [] and t 6= []:

addbmul2 ·s·0·t = s

addbmul2 ·s·1·t = add2 ·s·t
subtbmul2 ·s·0·t = s

subtbmul2 ·s·1·t = subt2 ·s·t

�

We derive a declaration for gmul2 by induction on the length of t. For the base case
t = [b], with b ∈ { 0, 1 }, we derive:

vn2 ·(gmul2 ·u·s·[b])

= { specification 5.8 of gmul2, definition 2.3 of vn2 }

gmul ·(vn2 ·u)·(vn2 ·s)·(−b)

= { declaration 5.7 of gmul }

vn2 ·u− b ∗ vn2 ·s

= { specification 5.10 of subtbmul2 }

vn2 ·(subtbmul2 ·u·b·s)

For the list t / b, we derive:

vn2 ·(gmul2 ·u·s·(t / b))

= { specification 5.8 of gmul2, definition 2.3 of vn2 }

gmul ·(vn2 ·u)·(vn2 ·s)·(2 ∗ vn2 ·t + b)

= { declaration 5.7 of gmul, with 2 ∗ h + k = vn2 ·u + b ∗ vn2 ·s }

2 ∗ gmul ·h·(vn2 ·s)·(vn2 ·t) + k

= { • v, c: h = vn2 ·v and k = c, with c ∈ { 0, 1 }, v ∈ L2 and v 6= [] }

2 ∗ gmul ·(vn2 ·v)·(vn2 ·s)·(vn2 ·t) + c

= { specification 5.8 of gmul2, from induction hypothesis }

2 ∗ vn2 ·(gmul2 ·v ·s·t) + c

= { definition 2.3 of vn2, from c ∈ { 0, 1 } }

vn2 ·(gmul2 ·v ·s·t / c)

We have to find c ∈ { 0, 1 } and v ∈ L2 , with v 6= [], that satisfy 2 ∗ vn2 ·v + c =
vn2 ·u + b ∗ vn2 ·s. From definition 2.3 of vn2 and specification 5.10 of addbmul2,
we may rewrite this equation to vn2 ·(v / c) = vn2 ·(addbmul2 ·u·b·s). Then we may
choose v / c = addbmul2 ·u·b·s, if #(addbmul2 ·u·b·s) > 1. To satisfy this require-
ment, we introduce function f2, of type L2 → L2 , with the following specification.

5.3. MULTIPLICATION WITH CARRY-SAVE ADDITION 31

Specification 5.12 For s ∈ L2 , with s 6= []:

vn2 ·(f2 ·s) = vn2 ·s ∧ #(f2 ·s) > 1

�

From property 8 of vn2, we may choose the following declaration for function f2.

Declaration 5.13 For b ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

f2 ·[b] = [b, b]
f2 ·(s / b) = s / b

�

Then we may choose v / c = f2 ·(addbmul2 ·u·b·s).
Hence, we may now choose the following declaration for function gmul2.

Declaration 5.14 For b ∈ { 0, 1 } and s, t, u ∈ L2 , with s 6= [], t 6= [] and u 6= []:

gmul2 ·u·s·[b] = subtbmul2 ·u·b·s
gmul2 ·u·s·(t / b) = gmul2 ·v ·s·t / c

whr v / c = f2 ·(addbmul2 ·u·b·s) end

�

Using declarations 5.11 and 5.13 of addbmul2, subtbmul2 and f2, evaluation of this
declaration takes O(#t) ∗ O(#s) steps.

The construction of alternative declarations for mul2 and gmul2 using declara-
tions 5.2 and 5.3 of mul and 5.6 of gmul is not considered here, because this is anal-
ogous to the above derivation and because it amounts to less efficient declarations
for binary multiplication. Also, there are ways to make the derived declaration for
binary multiplication even more efficient. One way is to speed up the additions and
subtractions by means of carry-save addition. Another way is to reduce the number of
additions and subtractions. These optimizations are the topic of the next two sections.

Remark 5.15 There are various other ways to find c ∈ { 0, 1 } and v ∈ L2 , with
v 6= [], in the recursive case of declaration 5.14 of gmul2, such that 2 ∗ vn2 ·v + c =
vn2 ·u + b ∗ vn2 ·s. We may for instance choose v = hlvq ·w and c = hlvr ·w, with
w = addbmul2 ·u·b·s, from 2 ∗ vn2 ·v + c = 2 ∗ vn2 ·w div 2 + vn2 ·w mod 2 and spe-
cifications 3.10 and 3.12 of hlvq and hlvr. �

5.3 Multiplication with carry-save addition

In this section we try to speed up the multiplication operation by replacing the ad-
ditions and subtractions by their carry-save equivalents. For this purpose, we replace
functions add2 and subt2 by functions add2p and subt2p. Then it is necessary to
replace functions addbmul2 and subtbmul2 by functions addbmul2p and subtbmul2p,
both of type L2p → { 0, 1 } → L2 → L2p , with the following specification.

Specification 5.16 For b ∈ { 0, 1 }, s ∈ L2p and t ∈ L2 , with s 6= [] and t 6= []:

vn2p ·(addbmul2p ·s·b·t) = vn2p ·s + b ∗ vn2 ·t
vn2p ·(subtbmul2p ·s·b·t) = vn2p ·s − b ∗ vn2 ·t

�

32 CHAPTER 5. MULTIPLICATION

From specifications 4.1, 4.19 and 4.28 of functions add, add2p and subt2p, respectively,
we may choose the following declarations for functions addbmul2p and subtbmul2p.

Declaration 5.17 For s ∈ L2p and t ∈ L2 , with s 6= [] and t 6= []:

addbmul2p ·s·0·t = s

addbmul2p ·s·1·t = add2p ·s·t
subtbmul2p ·s·0·t = s

subtbmul2p ·s·1·t = subt2p ·s·t

�

We now replace function gmul2 by function gmul2p, of type L2p → L2 → L2 → L2p ,
that uses functions addbmul2p and subtbmul2p. Function gmul2p has the following
specification.

Specification 5.18 For s, t ∈ L2 and u ∈ L2p , with s 6= [], t 6= [] and u 6= []:

vn2p ·(gmul2p ·u·s·t) = gmul ·(vn2p ·u)·(vn2 ·s)·(vn2 ·t)

�

From specification 4.22 of c2pto2, we may choose the following alternative declaration
for function mul2.

Declaration 5.19 For s, t ∈ L2 , with s 6= [] and t 6= []:

mul2 ·s·t = c2pto2 ·(gmul2p ·[〈 0 , 0 〉]·s·t)

�

The construction of a declaration for function gmul2p is analogous to the construction
of declaration 5.14 of function gmul2. Hence, we give its declaration immediately.

Declaration 5.20 For b ∈ { 0, 1 }, s, t ∈ L2 and u ∈ L2p, with s 6= [], t 6= [] and u 6=
[]:

gmul2p ·u·s·[b] = subtbmul2p ·u·b·s
gmul2p ·u·s·(t / b) = gmul2p ·v ·s·t / c

whr v / c = f2p ·(addbmul2p ·u·b·s) end

�

Here, function f2p, of type L2p → L2p, has the following specification.

Specification 5.21 For s ∈ L2p , with s 6= []:

vn2p ·(f2p ·s) = vn2p ·s ∧ #(f2p ·s) > 1

�

Analogous to declaration 5.13 of f2, we may choose the following declaration for func-
tion f2p.

Declaration 5.22 For b, c ∈ { 0, 1 } and s ∈ L2p, with s 6= []:

f2p ·[〈 b, c 〉] = [〈 b, c 〉, 〈 b, c 〉]
f2p ·(s / 〈 b, c 〉) = s / 〈 b, c 〉

�

Like declaration 5.14 of gmul2, evaluation of this declaration takes O(#t) ∗ O(#s)
steps. In chapter 7 we implement this declaration in hardware, with O(#t) + O(#s)
propagation delay, however.

5.4. BOOTH MULTIPLICATION 33

5.4 Booth multiplication

In this section we try to make the multiplication operation more efficient by reducing
the number of additions and subtractions. We do this by means of so-called Booth
recoding, which we explain first.

5.4.1 Booth recoding

For successive bits b and c in binary list s, b − c and c − b are more often equal to 0
than not, when b = c occurs more often than b 6= c. We also have vn2 ·(s / b / c) =
2 ∗ vn2 ·(s / b) + b + (c − b). We use these observations to implement a function that
converts a binary list to a signed binary list. For this purpose, we introduce function
br, of type { 0, 1 } → L2 → Ls2 , with the following specification.

Specification 5.23 For c ∈ { 0, 1 } and s ∈ L2 , with s 6= [] and n = #s:

v2s2 ·(br ·c·s) = vn2 ·s + c ∧ (∀i : 0 ≤ i < n − 1 : (br ·c ·s)·i = s ·(i + 1) − s ·i)

�

We derive a declaration for function br by induction on n. For the base case n = 1, we
have for the first conjunct v2s2 ·(br ·c·[b]) = vn2 ·[b] + c, and this is v2s2 ·[c − b], from
definitions 2.3 and 2.12 of vn2 and v2s2, respectively. Because the second conjuct holds
trivially, we may choose br ·c·[b] = [c − b]. For the inductive case n + 1, we derive for
the first conjunct:

v2s2 ·(br ·c·(s / b))

= { specification 5.23 of br, definition 2.3 of vn2 }

2 ∗ vn2 ·s + b + c

= { algebra, to introduce c − b }

2 ∗ (vn2 ·s + b) + (c − b)

= { specification 5.23 of br, from induction hypothesis }

2 ∗ v2s2 ·(br ·b·s) + (c − b)

= { definition 2.12 of v2s2, from c − b ∈ {−1, 0, 1 } }

v2s2 ·(br ·b·s / (c − b))

Hence, we choose br ·c·(s / b) = br ·b·s / (c − b). We have to verify this choice for the
second conjunct. For this purpose, we derive as follows:

(∀i : 0 ≤ i < n : (br ·c ·(s / b))·i = (s / b)·(i + 1) − (s / b)·i)

≡ { declaration of br }

(∀i : 0 ≤ i < n : (br ·b ·s / (c − b))·i = (s / b)·(i + 1) − (s / b)·i)

≡ { property of / (twice), from i < n and #(br ·b·s) = n }

(∀i : 0 ≤ i < n : (br ·b ·s)·i = (s / b)·(i + 1) − s ·i)

≡ { split off i = n − 1, property of / (twice) }

(∀i : 0 ≤ i < n − 1 : (br ·b ·s)·i = s ·(i + 1) − s ·i) ∧

(br ·b ·s)·(n − 1) = b − s ·(n − 1)

≡ { induction hypothesis }

(br ·b ·s)·(n − 1) = b − s ·(n − 1)

34 CHAPTER 5. MULTIPLICATION

From the declaration of br, it can easily be seen that this holds. Hence, the following
declaration for function br is correct.

Declaration 5.24 For b, c ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

br ·c·[b] = [c − b]
br ·c·(s / b) = br ·b·s / (c − b)

�

From this declaration and its specification, it can be seen that br ·0·s has exactly
m = (#i : 0 ≤ i < n − 1 : s ·i = s ·(i + 1)) + 1 − s ·(n − 1) occurrences of 0. If m is
greater than the number of occurrences of 0 in s, we can use function br to obtain a
list that has more occurrences of 0 than s. We will use this to reduce the number of
additions and subtractions in the multiplication operation. This has been applied for
the first time by Andrew D. Booth ([Boo]), hence the name Booth recoding.

5.4.2 Binary multiplication with Booth recoding

We introduce function gmulbr2, of type L2 → L2 → { 0, 1 } → L2 → L2 , with the
following specification.

Specification 5.25 For c ∈ { 0, 1 } and s, t, u ∈ L2 , with s 6= [], t 6= [] and u 6= []:

vn2 ·(gmulbr2 ·u·s·c·t) = gmul ·(vn2 ·u)·(vn2 ·s)·(v2s2 ·(br ·c·t))

�

Because vn2 ·t = v2s2 ·(br ·0·t), we may choose the following alternative declaration
for function gmul2.

Declaration 5.26 For s, t, u ∈ L2 , with s 6= [], t 6= [] and u 6= []:

gmul2 ·u·s·t = gmulbr2 ·u·s·0·t

�

We construct a declaration for function gmulbr2 by induction on the length of t. For
the base case, we derive:

vn2 ·(gmulbr2 ·u·s·c·[b])

= { specification 5.25 of gmulbr2 }

gmul ·(vn2 ·u)·(vn2 ·s)·(v2s2 ·(br ·c·[b]))

= { declaration 5.24 of br, definition 2.12 of v2s2 }

gmul ·(vn2 ·u)·(vn2 ·s)·(c − b)

= { specification 5.4 of gmul, algebra }

vn2 ·u + (c − b) ∗ vn2 ·s

= { • specification 5.27 of asbmul2 }

vn2 ·(asbmul2 ·u·c·b·s)

Here, function asbmul2, of type L2 → { 0, 1 } → { 0, 1 } → L2 → L2 , has the following
specification.

5.4. BOOTH MULTIPLICATION 35

Specification 5.27 For b, c ∈ { 0, 1 } and s, t ∈ L2 , with s 6= [] and t 6= []:

vn2 ·(asbmul2 ·s·b·c·t) = vn2 ·s + (b − c) ∗ vn2 ·t

�

From specification 5.10 of addbmul2 and subtbmul2, we may choose the following dec-
laration for this function.

Declaration 5.28 For c ∈ { 0, 1 } and s, t ∈ L2 , with s 6= [] and t 6= []:

asbmul2 ·s·0·c·t = subtbmul2 ·s·c·t
asbmul2 ·s·1·c·t = addbmul2 ·s·(1− c)·t

�

For the inductive case of function gmulbr2, we now derive:

vn2 ·(gmulbr2 ·u·s·c·(t / b))

= { specification 5.25 of gmulbr2 }

gmul ·(vn2 ·u)·(vn2 ·s)·(v2s2 ·(br ·c·(t / b)))

= { declaration 5.24 of br, definition 2.12 of v2s2 }

gmul ·(vn2 ·u)·(vn2 ·s)·(2 ∗ v2s2 ·(br ·b·t) + (c − b))

= { • declaration 5.7 of gmul, with 2 ∗ h + k = vn2 ·u + (c − b) ∗ vn2 ·s }

2 ∗ gmul ·h·(vn2 ·s)·(v2s2 ·(br ·b·t)) + k

= { • v, d: h = vn2 ·v and k = d, with d ∈ { 0, 1 }, v ∈ L2 and v 6= [] }

2 ∗ gmul ·(vn2 ·v)·(vn2 ·s)·(v2s2 ·(br ·b·t)) + d

= { specification 5.25 of gmulbr2, from induction hypothesis }

2 ∗ vn2 ·(gmulbr2 ·v ·s·b·t) + d

= { definition 2.3 of vn2, from d ∈ { 0, 1 } }

vn2 ·(gmulbr2 ·v ·s·b·t / d)

Because we have only used that b is an integer in the derivation of gmul ·z ·x·(2 ∗ y + b),
we were allowed to apply declaration 5.7 of gmul, although c − b may not be in { 0, 1 }.
We also have to find d ∈ { 0, 1 } and v ∈ L2 , with v 6= [], that satisfy 2 ∗ vn2 ·v + d =
vn2 ·u + (c − b) ∗ vn2 ·s. Analogous to the construction of declaration 5.14 of gmul2,
we may choose v / d = f2 ·(asbmul2 ·u·c·b·s). Then we may choose the following dec-
laration for function gmulbr2.

Declaration 5.29 For b, c ∈ { 0, 1 } and s, t, u ∈ L2 , with s 6= [], t 6= [] and u 6= []:

gmulbr2 ·u·s·c·[b] = asbmul2 ·u·c·b·s
gmulbr2 ·u·s·c·(t / b) = gmulbr2 ·v ·s·b·t / d

whr v / d = f2 ·(asbmul2 ·u·c·b·s) end

�

From this declaration, it can be seen that parameter b is treated in the same way in
the base case and the inductive case. This was the reason for Booth to use this kind of
multiplication. It can also be seen that declaration 5.26 of function gmul2 requires less
additions and subtractions than declaration 5.14 of gmul2, if br ·0·t contains more 0’s
than t. The determination if this is the case requires O(#t) steps, however. Without
this determination, it is not clear which declaration of gmul2 is the most efficient.

36 CHAPTER 5. MULTIPLICATION

Remark 5.30 Analogous to remark 5.15, we may also choose v = hlvq ·w and c =
hlvr ·w, with w = asbmul2 ·u·c·b·s for v and c in the inductive case of declaration 5.29
of gmulbr2. Table 5.1 lists the value of v for all values of b and c using declarations 5.28
and 5.11 of asbmul2, addbmul2 and subtbmul2. Note that v is the new partial product
of the recursive call.

b c v

0 0 hlvq ·u
0 1 hlvq ·(add2 ·u·s)
1 0 hlvq ·(subt2 ·u·s)
1 1 hlvq ·u

Table 5.1: Value of v in the inductive case of function gmulbr2

Table 5.1 is analogous to table 3.13 of [Omo]. According to [Omo], this is analogous
to table 3.16(a) of [Omo], and hence to rule (1) to (4) of page 238 of [Boo]. �

Chapter 6

Division

In this chapter we treat the last and most complex of the four basic arithmetic oper-
ations, namely division. We first investigate the recursive structure of this operation.
After that, we derive declarations for a function that performs division on binary
integers.

6.1 Integer division

In this section, we treat the division of an integer by a positive number. We use a
positive denominator, because division with a negative denominator is hardly used in
practice and its meaning is ambiguous. For constant B ∈ N

+, function dm, of type
Z → 〈Z , N 〉, has the following specification.

Specification 6.1 For x ∈ Z:

dm ·x = 〈 q , r 〉 whr q, r: x = q ∗ B + r ∧ 0 ≤ r < B end

�

To find a declaration for this function, we have to find 〈 q , r 〉, with:

x = q ∗ B + r ∧ 0 ≤ r < B (1)

We derive a solution for this equation by induction on n ∈ N, with −2n ≤ x < 2n. For
the base case n = 0, a bit b exists, such that x = −b. If b = 0, then 〈 q , r 〉 = 〈 0 , 0 〉 is a
solution of (1). If b = 1, then 〈 q , r 〉 = 〈−1 , B − 1 〉 is a solution of (1). For the integer
2 ∗ x + b, we have −2n+1 ≤ 2 ∗ x + b < 2n+1. Then we may assume as an induction
hypothesis that we have 〈h, k 〉 = dm ·x, with x = h ∗ B + k ∧ 0 ≤ k < B. We now
derive as follows:

2 ∗ x + b

= { x = h ∗ B + k, from induction hypothesis }

2 ∗ (h ∗ B + k) + b

= { algebra }

(2 ∗ h) ∗ B + (2 ∗ k + b)

= { l = 2 ∗ k + b }

37

38 CHAPTER 6. DIVISION

(2 ∗ h) ∗ B + l

= { case distinction, algebra }
(2 ∗ h) ∗ B + l , if l < B

(2 ∗ h + 1) ∗ B + (l − B) , if B ≤ l

From induction hypothesis, we have 0 ≤ k < B, and hence 0 ≤ l < 2 ∗ B. If l < B,
then 〈 q , r 〉 = 〈 2 ∗ h, l 〉 is a solution of (1). If B ≤ l, then 〈 q , r 〉 = 〈 2 ∗ h + 1 , l − B 〉
is a solution of (1).

Hardware implementations of these solutions have a disadvantage, i.e. the compar-
ison of two binary integers in general takes O(p) steps, where p is the maximum of the
length of the lists. The comparison of a binary integer with 0 only takes O(1) steps,
however. Therefore, using m = l − B, we replace l < B, B ≤ l and l − B by m < 0,
0 ≤ m and m, respectively. Then we obtain the following declaration for function dm.

Declaration 6.2 For b ∈ { 0, 1 } and x ∈ Z:

dm ·0 = 〈 0 , 0 〉
dm ·(−1) = 〈−1 , B − 1 〉
dm ·(2 ∗ x + b) = if m < 0 → 〈 2 ∗ h, l 〉

[] 0 ≤ m → 〈 2 ∗ h + 1 , m 〉
fi whr 〈h, k 〉 = dm ·x & l = 2 ∗ k + b & m = l − B end

�

This declaration is called restoring division. This name is inspired by a possible
implementation of the declaration as a sequential circuit. In each cycle of this imple-
mentation, an integer representation is subtracted from another integer representation
and the result is stored in a register that represents the remainder. When the value of
this remainder is negative, the old value of the register is restored.

As another possibility, we weaken function dm to gdm, of type Z → 〈Z , Z 〉, with
the following specification.

Specification 6.3 For x ∈ Z:

gdm ·x = 〈 q , r 〉 whr q, r: x = q ∗ B + r ∧ −B ≤ r < B end

�

Thus we obtain the following alternative declaration for function dm.

Declaration 6.4 For x ∈ Z:

dm ·x = if r < 0 → 〈 q − 1 , r + B 〉
[] 0 ≤ r → 〈 q , r 〉
fi whr 〈 q , r 〉 = gdm ·x end

�

For the construction of a declaration for function gdm, we have to find 〈 q , r 〉, with:

x = q ∗ B + r ∧ −B ≤ r < B (2)

We derive a solution for this equation by induction on n. For the base n = 0, 〈 q , r 〉 =
〈 0 ,−b 〉 is a solution of (2). For the inductive case n + 1, we assume as an induction
hypothesis that we have 〈h, k 〉 = gdm ·x, with x = h ∗B + k ∧ −B ≤ k < B. Then
we derive:

6.2. BINARY DIVISION 39

2 ∗ x + b

= { x = h ∗ B + k, from induction hypothesis }

2 ∗ (h ∗ B + k) + b

= { algebra }

(2 ∗ h) ∗ B + (2 ∗ k + b)

= { l = 2 ∗ k + b }

(2 ∗ h) ∗ B + l

= { case distinction, algebra }
(2 ∗ h − 1) ∗B + (l + B) , if l < 0
(2 ∗ h + 1) ∗B + (l − B) , if 0 ≤ l

From induction hypothesis, we have −B ≤ k < B, and hence 2 ∗ (−B) ≤ l < 2 ∗ B. If
l < 0, then 〈 q , r 〉 = 〈 2 ∗ h − 1 , l + B 〉 is a solution of (2). If 0 ≤ l, then 〈 q , r 〉 =
〈 2 ∗ h + 1 , l − B 〉 is a solution of (2). Hence, we obtain the following declaration for
function gdm.

Declaration 6.5 For b ∈ { 0, 1 } and x ∈ Z:

gdm ·(−b) = 〈 0 ,−b 〉
gdm ·(2 ∗ x + b) = if l < 0 → 〈 2 ∗ h − 1 , l + B 〉

[] 0 ≤ l → 〈 2 ∗ h + 1 , l − B 〉
fi whr 〈h, k 〉 = gdm ·x & l = 2 ∗ k + b end

�

From this declaration it can be seen that the quotient is always 0 or odd. The declara-
tion is called non-restoring division, because in implementations of this declaration as
a sequential circuit the register representing the remainder never needs to be restored.

6.2 Binary division

For constant B2 ∈ L2 , with vn2 ·B2 = B, function dm2, of type L2 → 〈L2 ,L2 〉, has
the following specification.

Specification 6.6 For s ∈ L2 , with s 6= []:

dm2 ·s = 〈 t, u 〉 whr t, u: 〈 vn2 ·t, vn2 ·u 〉 = dm ·(vn2 ·s) end

�

To construct a declaration for this function, we use the restoring and the non-restoring
version of dm, respectively.

6.2.1 Restoring division

We construct a declaration for function dm2 by induction on the length of s. For the
base case s = [0], we have dm ·(vn2 ·[0]) = 〈 vn2 ·[0] , vn2 ·[0] 〉, from definition 2.3
of vn2 and declaration 6.2 of dm. Then we obtain dm2 ·[0] = 〈 [0] , [0] 〉, from
specification 6.6 of dm2. For the other base case s = [1], we have dm ·(vn2 ·[1]) =
〈 vn2 ·[1] , vn2 ·(dec ·1·B2) 〉, from definition 2.3 of vn2, declaration 6.2 of dm and spec-
ification 3.5 of dec. So we obtain dm2 ·[1] = 〈 [1] , dec ·1·B2 〉. For the list s / b, with

40 CHAPTER 6. DIVISION

b ∈ { 0, 1 }, we assume as induction hypothesis that we have 〈 t, u 〉 = dm2 ·s, with
〈 vn2 ·t, vn2 ·u 〉 = dm ·(vn2 ·s). Now, from definition 2.3 of vn2 and declaration 6.2 of
dm, we have:

dm ·(vn2 ·(s / b)) = if m < 0 → 〈 2 ∗ h, l 〉
[] 0 ≤ m → 〈 2 ∗ h + 1 , m 〉
fi whr 〈h, k 〉 = dm ·(vn2 ·s) & l = 2 ∗ k + b

& m = l − B end

(3)

From the induction hypothesis, we have h = vn2 ·t and k = vn2 ·u. Hence, we have
l = vn2 ·v, with v = u / b. We also have m = vn2 ·w, with w = subt2 ·v ·B2 , from
B = vn2 ·B2 and specification 4.24 of subt2. We use these equalities to perform sub-
stitutions in (3), that are listed in table 6.1 .

old new

m < 0 w ·0 = 1
0 ≤ m w ·0 = 0
2 ∗ h vn2 ·(t / 0)
2 ∗ h + 1 vn2 ·(t / 1)
l vn2 ·v
m vn2 ·w

Table 6.1: Substitutions in (3)

From specification 6.6 of dm2, we then obtain the following declaration for function
dm2.

Declaration 6.7 For b ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

dm2 ·[0] = 〈 [0] , [0] 〉
dm2 ·[1] = 〈 [1] , dec ·1·B2 〉
dm2 ·(s / b) = if w ·0 = 1 → 〈 t / 0 , v 〉

[] w ·0 = 0 → 〈 t / 1 , w 〉
fi whr 〈 t, u 〉 = dm2 ·s & v = u / b & w = subt2 ·v ·B2 end

�

6.2.2 Non-restoring division

In this subsection we construct a declaration for function dm2 using declaration 6.4
of dm. To start with, we introduce function gdm2 that divides a binary integer by
a binary integer, according to specification 6.3 of gdm. We choose the quotient in
this function to be a signed unary integer1 instead of a binary integer, because both
the expressions 2 ∗ h + 1 and 2 ∗ h − 1 in declaration 6.5 of gdm can be implemented
using function v2s1 such that their evaluation takes O(1) steps. The restriction that
signed unary integers can only be 0 or odd is not a problem, because the quotient
in declaration 6.5 of gdm can also be only 0 or odd. Then function gdm2, of type
L2 → 〈L2 ,L2 〉, has the following specification.

1Signed unary integers are discussed in subsection 2.3.4.

6.2. BINARY DIVISION 41

Specification 6.8 For s ∈ L2 , with s 6= []:

gdm2 ·s = 〈 t, u 〉 whr t, u: 〈 v2s1 ·t, vn2 ·u 〉 = gdm ·(vn2 ·s) end

�

We use this specification for the construction of a declaration for function dm2. From
declaration 6.4 of dm, we have:

dm ·(vn2 ·s) = if r < 0 → 〈 q − 1 , r + B 〉
[] 0 ≤ r → 〈 q , r 〉
fi whr 〈 q , r 〉 = gdm ·(vn2 ·s) end

(4)

From specification 6.8 of gdm2, we assume 〈 t, u 〉 = gdm2 ·s, with 〈 v2s1 ·t, vn2 ·u 〉 =
gdm ·(vn2 ·s). Then we have q = v2s1 ·t and r = vn2 ·u. We use these equalities to
perform substitutions in (4), that are listed in table 6.2.

old new

r < 0 u ·0 = 1
0 ≤ r u ·0 = 0
q − 1 vn2 ·(ds1to2 ·1·t)
q vn2 ·(ds1to2 ·0·t)
r + B vn2 ·(add2 ·u·B2)
r vn2 ·u

Table 6.2: Substitutions in (4)

In this table, function ds1to2, of type { 0, 1 } → L2 → L2 , has the following specifica-
tion.

Specification 6.9 For c ∈ { 0, 1 } and s ∈ L2 :

vn2 ·(ds1to2 ·c·s) = v2s1 ·s − c

�

We derive a declaration for this function at the end of this section.
Now, from specification 6.6 of dm2, we obtain the following declaration for function

dm2.

Declaration 6.10 For s ∈ L2 , with s 6= []:

dm2 ·s = if u ·0 = 1 → 〈 ds1to2 ·1·t, add2 ·u·B2 〉
[] u ·0 = 0 → 〈 ds1to2 ·0·t, u 〉
fi whr 〈 t, u 〉 = gdm2 ·s end

�

We derive a declaration for function gdm2 by induction on the length of s. For
the base case s = [b], with b ∈ { 0, 1 } we have gdm ·(vn2 ·[b]) = 〈 v2s1 ·[] , vn2 ·[b] 〉,
from definition 2.3 of vn2, definition 2.13 of v2s1 and declaration 6.5 of gdm. Then
we obtain gdm2 ·[b] = 〈 [] , [b] 〉, from specification 6.8 of gdm2. For the list s / b, we

42 CHAPTER 6. DIVISION

assume as induction hypothesis that we have 〈 t, u 〉 = gdm2 ·s, with 〈 v2s1 ·t, vn2 ·u 〉 =
gdm ·(vn2 ·s). From definition 2.3 of vn2 and declaration 6.5 of gdm, we have:

gdm ·(vn2 ·(s / b)) = if l < 0 → 〈 2 ∗ h − 1 , l + B 〉
[] 0 ≤ l → 〈 2 ∗ h + 1 , l − B 〉
fi whr 〈h, k 〉 = gdm ·(vn2 ·s) & l = 2 ∗ k + b end

(5)

From the induction hypothesis, we have h = v2s1 ·t and k = vn2 ·u. Hence, we also
have l = vn2 ·v, with v = u / b. We use these equalities to perform substitutions in (5),
that are listed in table 6.3.

old new

l < 0 v ·0 = 1
0 ≤ l v ·0 = 0
2 ∗ h − 1 v2s1 ·(t / 0)
2 ∗ h + 1 v2s1 ·(t / 1)
l + B vn2 ·(add2 ·v ·B2)
l − B vn2 ·(subt2 ·v ·B2)

Table 6.3: Substitutions in (5)

From specification 6.8 of gdm2, we obtain the following declaration for function gdm2.

Declaration 6.11 For b ∈ { 0, 1 } and s ∈ L2 , with s 6= []:

gdm2 ·[b] = 〈 [] , [b] 〉
gdm2 ·(s / b) = if v ·0 = 1 → 〈 t / 0 , add2 ·v ·B2 〉

[] v ·0 = 0 → 〈 t / 1 , subt2 ·v ·B2 〉
fi whr 〈 t, u 〉 = gdm2 ·s & v = u / b end

�

The only thing that is left to do, is to find a declaration for function ds1to2, of
which we repeat its specification, for bit c and binary list s:

vn2 ·(ds1to2 ·c·s) = v2s1 ·s − c

Using induction on the length of s, we can easily derive the following declaration.

Declaration 6.12 For b, c ∈ { 0, 1 } and s ∈ L2 :

ds1to2 ·c·[] = [c]
ds1to2 ·c·(s / b) = ds1to2 ·(1 − b)·s / (1 − c)

�

Evaluation of this declaration requires O(#s) steps. Because of the carry-propagation
in the recursive case of the declaration, hardware implementations of this declaration
have O(#s) propagation delay. It can also be seen from this declaration that in the
evaluation of ds1to2 ·c·(b . s), b and c are inverted once and every element of s is
inverted twice. This brings us to the following conjecture:

ds1to2 ·c·(b . s) = (1 − b) . s / (1 − c) (6)

We prove this conjecture by induction on the length of s. For the base case s = [], we
derive:

6.2. BINARY DIVISION 43

ds1to2 ·c·(b . [])

= { property of . and / }

ds1to2 ·c·([] / b)

= { declaration 6.12 of ds1to2 (twice) }

[1 − b] / (1 − c)

= { property of . }

(1 − b) . [] / (1 − c)

For the list s / d, with d ∈ { 0, 1 }, we derive:

ds1to2 ·c·(b . (s / d))

= { property of . and / }

ds1to2 ·c·((b . s) / d)

= { declaration 6.12 of ds1to2 }

ds1to2 ·(1 − d)·(b . s) / (1 − c)

= { proposition (6.12), from induction hypothesis }

((1 − b) . s / (1 − (1 − d))) / (1 − c)

= { (1 − (1 − d)) = d, property of . and / }

(1 − b) . (s / d) / (1 − c)

Hence, we obtain the following alternative declaration for function ds1to2.

Declaration 6.13 For s ∈ L2 and b, c ∈ { 0, 1 }:

ds1to2 ·c·[] = [c]
ds1to2 ·c·(b . s) = (1 − b) . s / (1 − c)

�

Evaluation of this declaration requires only O(1) steps.

Remark 6.14 In definition 2.13 of v2s1, each −1 is represented by a 0 and each 1
is represented by a 1. If the rôles of 0 and 1 were interchanged, we would have the
following declaration for v2s1 :

v2s1 ·[] = 0
v2s1 ·(s / b) = 2 ∗ (v2s1 ·s − b) + 1

Then the expressions t / 0 and t / 1 in declaration 6.11 of gdm2 would have been
interchanged. Analogous to declaration 6.12 of ds1to2, we would have the following
declaration for ds1to2 :

ds1to2 ·c·[] = [c]
ds1to2 ·c·(s / b) = ds1to2 ·b·s / (1 − c)

Analogous to conjecture (6), we would have obtained the following alternative decla-
ration for ds1to2 :

ds1to2 ·c·[] = [c]
ds1to2 ·c·(b . s) = b . cmpl ·s / (1 − c)

Evaluation of this declaration takes O(#s) steps, but it can be implemented in hard-
ware with O(1) propagation delay. �

44 CHAPTER 6. DIVISION

Chapter 7

Hardware implementations

In this chapter we show how we can implement the most relevant functions of the
previous chapters in hardware. We restrict ourselfs to combinatorial circuits, although
it is possible to implement functions as sequential circuits as well. First, we provide a
formalism as a basis for our hardware implementations. Then, we use this formalism
to implement the desired functions in hardware.

7.1 A formalism

In this section we define hardware implementations for the basic elements of functions,
of which all parameters and function values are bits, lists of bits, pairs of bits, pairs
of lists of bits and lists of pairs of bits. With these implementations, we are able to
implement all relevant functions of the previous chapters in hardware. To clarify the
implementations, we also introduce a grafical notation that represents the implemen-
tations. We mean hardware implementation when we say implementation and grafical
notation representing an implementation when we say representation.

We assume that a combinatorial circuit consists of wires and components only.
Components are connected by wires on the in- and outputs. A wire carries at most
one value at a time from the output of a component to the input of a component.
This value is 0 or 1. We also assume 0 = false and 1 = true to be able to easily switch
between arithmetic and boolean calculus.

7.1.1 Values

We implement a bit b by a wire containing the value of b and we represent this by an
arrow, labeled with the name of the bit. We implement a list of bits s by a bundle
of wires, where wire i contains the value of s ·i, with 0 ≤ i < #s. We represent this
bundle by a labeled arrow with a slash. We implement a pair of bits either by two
separate wires or by a bundle of wires. We can represent this either by two labeled
arrows or by a labeled arrow with a slash. Similarly, we implement a pair of binary
lists either by two separate bundles of wires or by a bundle of bundles of wires. We can
represent this either by two labeled arrows with a slash, or by a labeled arrow with two
slashes. Finally we implement a list s of binary pairs by a bundle of bundles of wires,
where bundle i contains the value of the pair s ·i, with 0 ≤ i < #s. We represent this
by a labeled arrow with two slashes.

45

46 CHAPTER 7. HARDWARE IMPLEMENTATIONS

7.1.2 Elementary expressions, operators and functions

We implement the expressions b ∧ c, b ∨ c and b 6≡ c, for bits b, c, by a two-bits and-
gate, a two-bits or-gate and a two-bits a xor-gate, respectively. We implement ¬b, i.e.
1 − b, by an inverter. The representations of these expressions are given in figure 7.1.

&

b c b c

b c b c

b c

>1 =

b c

b

b

Figure 7.1: Implementations of ∧, ∨, 6≡ and ¬

For list s and 0 ≤ i < #s, we implement s ·i by selecting the implementation of s ·i
from the implementation of s. We implement b . s and s / b, for list s and element
b, by adding the implementation of b to the implementation of s such that the imple-
mentation of b becomes the most or the least significant element of the resulting im-
plementation, respectively. We implement the inverse of b . s and s / b by splitting off
the most or the least significant implementation of b from the implementation of b . s

or s / b, respectively. We implement [e0, ..., en−1], for elements ei, with 0 ≤ i < n, by
bundling the element implementations, such that element i in the bundle contains the
value of ei. We implement the inverse of this operation by splitting the bundle into
the element implementations. Note that we can implement combinations of ., / and
[·] in one step by bundling all parameter implementations at the same time. We can
implement the inverse of these combinations by splitting the bundle at the same time
into the parameter implementations. In figure 7.2, we give representations for these
implementations, for bits b, c, binary list s and 0 ≤ i < #s.

s

s·i

s b b cb

b cb

·i

b s

b s s bb s

b s

s b b b,c

b,cbs b

Figure 7.2: Implementations of s ·i, b . s, s / b, [], [b] and [b, c]

We can implement pairing of two elements by bundling the element implementations.
We can implement the inverse of this operation by splitting the bundle into the element
implementations. In figure 7.3, we give representations for these implementations, for
bits b, c and binary lists s, t.

Values are sometimes used more than once. We implement this by duplicating the
implementation of the value. In figure 7.3, we give representations for the duplication of
bit b and binary list s. To keep representations clear, we may leave out the duplication
of frequently used values. To avoid ambiguity, we have to explicitly label every use of
such values.

7.1. A FORMALISM 47

s t

s t

b

b b

b c s,t

b,c b cs,t

b,c s

s s

Figure 7.3: Implementations of pairing and duplication

For the implementation of conditional expressions, we introduce function sel, of type
{ 0, 1 } → L2 → L2 → L2 , and selb, of type { 0, 1 } → { 0, 1 } → { 0, 1 } → { 0, 1 }, with
the following definitions.

Definition 7.1 For b, c, d ∈ { 0, 1 } and s, t ∈ L2 :

sel ·b·s·t = if b = 0 → s [] b = 1 → t fi

selb ·b·c·d = if b = 0 → c [] b = 1 → d fi

�

We implement these functions by a so-called multiplexer. This is represented in fig-
ure 7.4.

0 1

d

selb·b·c·d

b

c

0 1

s t

sel·b·s·t

b

Figure 7.4: Implementations of sel and selb

7.1.3 Function applications, function definitions, and recursion

We implement a function application by implementing its defining expression and con-
necting the implementations of its parameters and function value to the implementa-
tion of the defining expression. In figure 7.5, we show possible representations of the im-
plementation of an application f ·b·s of function f, of type { 0, 1 } → L2 → 〈L2 ,L2 〉.

We implement a function’s defining expression by implementing all elementary
expressions, operators and functions, and by implementing all remaining function ap-
plications. After that, we implement all occurring parameters and connect these at
the right way to the implementations of the expressions, operators and functions.

Example 7.2 We introduce function g, of type { 0, 1 } → L2 → L2 , with the follow-
ing definition:

g ·b·s = (b . s) / b

We can implement this definition directly into hardware. Figure 7.6 shows the repre-
sentation of this implementation. �

48 CHAPTER 7. HARDWARE IMPLEMENTATIONS

b

f

s

f·b·s

b

f

s

h k

Figure 7.5: Implementations of f ·b·s, with 〈h, k 〉 = f ·b·s

b s

g·b·s

b s

(b s) b

Figure 7.6: Implementation of g

7.1. A FORMALISM 49

We can implement a function with case distinction on its parameters by implementing
all cases separately. We can implement a linearly recursive function by implementing
the base cases and the inductive cases separately.

As an example, we repeat definition 3.1 of function cmpl, of type L2 → L2 , with
bit b and binary list s:

cmpl ·[] = []
cmpl ·(s / b) = cmpl ·s / (1 − b)

This definition can be implemented directly. Figure 7.7 shows the representation of
the base case and the inductive case of this definition. Note that after unfolding the
inductive case, we can see that function cmpl is simply a row of #s inverters, with
O(1) propagation delay.

cmpl

1-b

s b

cmpl·

cmpl·(s b)

s b

cmpl·s

Figure 7.7: Implementation of cmpl

7.1.4 Frequently used expressions

We now give implementations and representations for a number of expressions, that
are used frequently in the next section.

Inverters

We can simplify the representation of 1 − b and cmpl ·s, for bit b and binary list s. For
this purpose, we can remove the symbol5◦ and insert the symbol ◦ between the output of
a component providing b or s, and the implementation of b or s, respectively. Similarly,
we can remove the symbol5◦ and insert the symbol ◦ between the implementations of
b and s and the input of a component that needs 1 − b or cmpl ·s, respectively.

Multiplexers

We can simplify the implementation of selb ·b·c·d for some cases of c and d. We have
selb ·b·c·d = (¬b ⇒ c) ∧ (b ⇒ d). From the rules of implication and double negation,
this is selb ·b·c·d = (b ∨ c) ∧ (¬b ∨ d). Using predicate calculus, we can simplify this
property for some special cases of c and d as follows.

50 CHAPTER 7. HARDWARE IMPLEMENTATIONS

Property 7.3 For b, c, d ∈ { 0, 1 }, we have:

selb ·b·b·d = b ∧ d

selb ·b·c·b = b ∨ c

selb ·b·c·(1− c) = b 6≡ c

selb ·b·(1− d)·d = ¬(b 6≡ d)

�

Half adders and full adders

We now construct implementations for (b + c) div 2, (b + c) mod 2, (b + c + d) div 2
and (b + c + d) mod 2 for bits b, c and d. For this purpose, we introduce function ha, of
type { 0, 1 } → { 0, 1 } → 〈 { 0, 1 } , { 0, 1 } 〉, and function fa, of type { 0, 1 } → { 0, 1 } →
{ 0, 1 } → 〈 { 0, 1 } , { 0, 1 } 〉, with the following definitions.

Definition 7.4 For b, c, d ∈ { 0, 1 }, we have:

ha ·b·c = 〈 (b + c) div 2 , (b + c) mod 2 〉
fa ·b·c·d = 〈 (b + c + d) div 2 , (b + c + d) mod 2 〉

�

We can implement the expressions (b + c) div 2 and (b + c) mod 2 by a two bits
and-gate and a two bits xor-gate respectively. Hence, we can implement function ha

directly in hardware (see figure 7.8).
To construct an implementation for function fa, we derive as follows:

fa ·b·c·d

= { definition 7.4 of fa }

〈 (b + c + d) div 2 , (b + c + d) mod 2 〉

= { definition of div and mod, property of div and mod }

〈 (b + c) div 2 + ((b + c) mod 2 + d) div 2 , ((b + c) mod 2 + d) mod 2 〉

= { 〈h, k 〉 = ha ·b·c }

〈h + (k + d) div 2 , (k + d) mod 2 〉

= { 〈 l , m 〉 = ha ·k ·d }

〈h + l , m 〉

Hence, we have the following the following property for function fa:

fa ·b·c·d = 〈h + l , m 〉 whr 〈h, k 〉 = ha ·b·c & 〈 l , m 〉 = ha ·k ·d end

Because h + l ≤ 1, we can implement h + l by a two-bits or-gate. In figure 7.8 we give
representations of the implementations of functions ha and fa. These implementations
are the standard implementations of a half adder and a full adder, respectively.

7.2. ARITHMETIC OPERATIONS 51

b

&

c

ha·b·c

(b+c) div 2 (b+c) mod 2

ha ha

b c d

fa·b·c

m

h l

k

h+l

=
>1

Figure 7.8: Implementations of ha and fa

7.2 Arithmetic operations

In this section we give hardware implementations for all relevant functions of the pre-
vious chapters. We do this by rewriting the declaration of each relevant function,
such that it can be implemented using the formalism of the previous section. Also
we have to give hardware implementations for all functions occurring in the declara-
tion that are not implemented yet. We will also give representations of most of the
implementations.

To increase efficiency of implementations, we keep the following guidelines in mind
when we rewrite the declarations:

• minimize case distinction that is not addressed by property 7.3 of selb;

• maximize the re-use of expressions, by naming multiply used expressions.

7.2.1 Simple arithmetic operations

We only consider the functions inc, dec and neg of chapter 3. Functions hlvq and hlvr

are trivial.

Increment

We repeat declaration 3.4 of inc, for bits b, c and non-empty binary list s:

inc ·c·[b] = [b − h div 2, h mod 2] whr h = b + c end

inc ·c·(s / b) = inc ·(h div 2)·s / h mod 2 whr h = b + c end

We obtain an implementation for b − h div 2 by case distinction on b. If b = 0, then
b suffices, from h div 2 = 0. If b = 1, then 1 − h div 2 suffices. Using definition 7.1 of
selb and definition 7.4 of ha, we obtain for inc:

inc ·c·[b] = [selb ·b·b·(1− k), l] whr 〈 k, l 〉 = ha ·b·c end

inc ·c·(s / b) = inc ·k ·s / l whr 〈 k, l 〉 = ha ·b·c end

52 CHAPTER 7. HARDWARE IMPLEMENTATIONS

We can implement this immediately. From property 7.3 of selb, we can implement the
expression selb ·b·b·(1− k) with a two-bits and-gate and an inverter. In figure 7.9 we
give a representation of this implementation of inc.

l

ha

b
k

l

ha cinc

s

s b

inc·c·(s b)

inc·k·s

&

b b
c

b

inc·c· b

ck c

Figure 7.9: Implementation of inc

Note that this implementation essentially is a row of #s half adders, with n = #s.
This can be seen from figure 7.10, where we have completely unfolded the recursive
declaration.

haha&

s·0

cha

s·1 s·n

(inc·c·s)·(n+1)(inc·c·s)·2(inc·c·s)·1(inc·c·s)·0

s·0

Figure 7.10: Unfolding of inc

Decrement

The construction of an implementation of declaration 3.6 of dec is analogous to the
construction of an implementation of declaration 3.4 of inc. Therefore we only consider
declaration 3.7 of dec. We repeat this declaration, for bit c and non-empty binary list
s:

dec ·c·s = cmpl ·(inc ·c·(cmpl ·s))

We can implement this declaration immediately. In figure 7.11 we give a representation
of this implementation.

Negation

We repeat declaration 3.9 of function neg, for non-empty binary list s:

neg ·s = inc ·1·(cmpl ·s)

7.2. ARITHMETIC OPERATIONS 53

dec·c·s

s

inc

c

neg·s

s

inc

1

Figure 7.11: Implementation of dec and neg

We can implement this declaration immediately. In figure 7.11 we give a representation
of this implementation.

7.2.2 Addition and subtraction

We consider all functions of chapter 4 concerning binary lists and lists of binary pairs
of equal length.

Binary addition

We repeat declaration 4.8 of function add2, for bits b, c and non-empty binary lists s, t

of equal length:

add2 ·[b]·[c] = [h div 2 + h mod 2, h mod 2]
whr h = b + c end

add2 ·(s / b)·(t / c) = inc ·(h div 2)·(add2 ·s·t) / h mod 2
whr h = b + c end

We obtain an implementation for h div 2 + h mod 2 by case distinction on h mod 2.
If h mod 2 = 0, then h div 2 suffices. If h mod 2 = 1, then h mod 2 suffices, from
h div 2 = 0. Using definition 7.1 of selb and definition 7.4 of ha, we obtain for add2 :

add2 ·[b]·[c] = [selb ·l·k ·l, l] whr 〈 k, l 〉 = ha ·b·c end

add2 ·(s / b)·(t / c) = inc ·k ·(add2 ·s·t) / l whr 〈 k, l 〉 = ha ·b·c end

We can implement this immediately. The expression selb ·l·k ·l can be implemented
with a two-bits or-gate, from property 7.3 of selb. In figure 7.12 we give a representation
of the implementation of add2.

We repeat declaration 4.10 of function adc2, for bits b, c and non-empty binary lists
s, t of equal length:

adc2 ·d·[b]·[c] = [b + c − h div 2, h mod 2]
whr h = b + c + d end

adc2 ·d·(s / b)·(t / c) = adc2 ·(h div 2)·s·t / h mod 2
whr h = b + c + d end

For the implementation of the expression b + c − h div 2, we have b + c − h div 2 =
2 ∗ (b + c) div 2 + (b + c) mod 2 − h div 2, from the definition of div and mod. If

54 CHAPTER 7. HARDWARE IMPLEMENTATIONS

c
add

2
k l

ha
b c

k l

ha

inc

s

s b

b

t c

add2·(s b)·(t c)

t

add·s·t

·badd2· c

cb

>1

Figure 7.12: Implementation of add2

(b + c) mod 2 = 0, we may simplify this to h div 2, from (b + c) div 2 = h div 2. If
(b + c) mod 2 = 1, we may simplify this to 1 − h div 2, from (b + c) div 2 = 0. Using
definition 7.1 of selb and definition 7.4 of fa, we obtain for adc2 :

adc2 ·d·[b]·[c] = [selb ·((b + c) mod 2)·k ·(1− k), l]
whr 〈 k, l 〉 = fa ·b·c·d end

adc2 ·d·(s / b)·(t / c) = adc2 ·k ·s·t / l

whr 〈 k, l 〉 = fa ·b·c·d end

This can be implemented directly into hardware. We can implement the expression
selb ·((b + c) mod 2)·k ·(1 − k) with two two-bits xor-gates, from property 7.3 of selb.
In figure 7.13 we give a representation of this implementation. Note that the imple-
mentation of adc2 essentially is a row of #s full adders.

c
adc2

l

fa
b c

k
l

fa
s

s b

b

t c

t

adc2·k·s·t

cb

d=

=

cb

·badc2·d· c adc2·d·(s b)·(t c)

d k

(b+c) mod 2

Figure 7.13: Implementation of adc2

7.2. ARITHMETIC OPERATIONS 55

We repeat declaration 4.9 of add2 and declaration 4.25 of subt2, for non-empty binary
lists s, t:

add2 ·s·t = adc2 ·0·s·t
subt2 ·s·t = adc2 ·1·s·(cmpl ·t)

We can implement these declarations directly. In figure 7.14 we give representations
of these implementations.

add2·s·t

s

adc2

t

0

subt2·s·t

s

adc2

t

1

Figure 7.14: Implementations of add2 and subt2

Carry-save addition

We repeat declaration 4.21 of adc2p, for bits b, c, d, e and non-empty binary paired
lists s, t of equal length:

adc2p ·e·[〈 b, c 〉]·[d] = [〈h div 2 , h mod 2 〉, 〈h mod 2 , e 〉]
whr h = b + c + d end

adc2p ·e·(s / 〈 b, c 〉)·(t / d) = adc2p ·(h div 2)·s·t / 〈h mod 2 , e 〉
whr h = b + c + d end

Using declaration 7.4 of fa, we obtain:

adc2p ·e·[〈 b, c 〉]·[d] = [〈 k, l 〉, 〈 l , e 〉]
whr 〈 k, l 〉 = fa ·b·c·d end

adc2p ·e·(s / 〈 b, c 〉)·(t / d) = adc2p ·k ·s·t / 〈 l , e 〉
whr 〈 k, l 〉 = fa ·b·c·d end

We can implement this directly with O(1) propagation delay. In figure 7.15 we give a
representation of this implementation.

We repeat declaration 4.20 of add2p and declaration 4.29 of subt2p, for non-empty
binary paired lists s, t:

add2p ·s·t = adc2p ·0·s·t
subt2p ·s·t = adc2p ·1·s·(cmpl ·t)

The implementations of these declarations are analogous to the implementations of
declaration 4.9 of add2 and declaration 4.25 of subt2.

56 CHAPTER 7. HARDWARE IMPLEMENTATIONS

c

adc2p
k

l
fa

b c

l

fa
sb t

adc2p·k·s·t

dd

t ddb,c s b,c

adc2p·e·(s)·(t c)b,c·adc2p·e· cb,c

k,l l,e l,e

k

ee

Figure 7.15: Implementation of adc2p

Finally, we repeat declaration 4.23 of c2pto2, for bits b, c, d and non-empty binary
paired list s:

c2pto2 ·d·[〈 b, c 〉] = [b + c − h div 2, h mod 2]
whr h = b + c + d end

c2pto2 ·d·(s / 〈 b, c 〉) = c2pto2 ·(h div 2)·s / h mod 2
whr h = b + c + d end

Except for the bundling of wires, the implementation of this declaration is equal to
the implementation of declaration 4.10 of adc2.

7.2.3 Multiplication

We give implementations for binary multiplication, multiplication with carry-save ad-
dition and Booth multiplication.

Binary multiplication

We repeat declaration 5.9 of mul2, declaration 5.11 of addbmul2 and subtbmul2 and
declaration 5.13 of f2, for bit b and non-empty binary lists s, t:

mul2 ·s·t = gmul2 ·[0]·s·t
addbmul2 ·s·0·t = s

addbmul2 ·s·1·t = add2 ·s·t
subtbmul2 ·s·0·t = s

subtbmul2 ·s·1·t = subt2 ·s·t
f2 ·[b] = [b, b]
f2 ·(s / b) = s / b

We can implement the declarations of mul2 and f2 immediately. After elimination of
the parameter patterns and application of definition 7.1 of sel, we obtain for addbmul2

7.2. ARITHMETIC OPERATIONS 57

and subtbmul2 :

addbmul2 ·s·b·t = sel ·b·s·(add2 ·s·t)
subtbmul2 ·s·b·t = sel ·b·s·(subt2 ·s·t)

We can implement this directly. From specification 4.7 of add2 and specification 4.24
of subt2, we can also obtain, with u a list of #t 0’s:

addbmul2 ·s·b·t = add2 ·s·(sel ·b·u·t)
subtbmul2 ·s·b·t = subt2 ·s·(sel ·b·u·t)

Now we may replace the multiplexer in the implementation by a row of #t two bits
and-gates, where and-gate i, with 0 ≤ i < #t, has the values of b and t ·i on its inputs.

We repeat declaration 5.14 of gmul2, for bit b and non-empty binary lists s, t, u:

gmul2 ·u·s·[b] = subtbmul2 ·u·b·s
gmul2 ·u·s·(t / b) = gmul2 ·v ·s·t / c

whr v / c = f2 ·(addbmul2 ·u·b·s) end

We can implement this directly. In figure 7.16 we give a representation of this imple-
mentation.

gmul2·v·s·t

addbmul2 f2

gmul2

subtbmul2

gmul2·u·s· b

u s

t b

u b s

u b s

s tv

c

u s

b

gmul2·u·s·(t b)

Figure 7.16: Implementation of gmul2

Multiplication with carry-save addition

We repeat declaration 5.19 of mul2, for non-empty binary lists s, t:

mul2 ·s·t = c2pto2 ·(gmul2p ·[〈 0 , 0 〉]·s·t)

We can implement this immediately.
The construction of implementations for declarations 5.17, 5.22 and 5.20 of func-

tions addbmul2p, subtbmul2p, f2p and gmul2p is analogous to the construction of the
above implementations for declarations 5.11, 5.13 and 5.14 of functions addbmul2,
subtbmul2, f2 and gmul2.

58 CHAPTER 7. HARDWARE IMPLEMENTATIONS

Booth multiplication

We repeat declaration 5.26 of gmul2 and 5.28 of asbmul2, for bit c and non-empty
binary lists s, t, u:

gmul2 ·u·s·t = gmulbr2 ·u·s·0·t
asbmul2 ·s·0·c·t = subtbmul2 ·s·c·t
asbmul2 ·s·1·c·t = addbmul2 ·s·(1− c)·t

We can implement the declaration of gmul2 immediately. After elimination of the
parameter patterns and application of definition 7.1 of sel, we obtain for asbmul2, for
bit b:

asbmul2 ·s·b·c·t = sel ·b·(subtbmul2 ·s·c·t)·(addbmul2 ·s·(1− c)·t)

We can implement this directly.
We repeat declaration 5.29 of gmulbr2, for bits b, c and non-empty binary lists

s, t, u:

gmulbr2 ·u·s·c·[b] = asbmul2 ·u·c·b·s
gmulbr2 ·u·s·c·(t / b) = gmulbr2 ·v ·s·b·t / d

whr v / d = f2 ·(asbmul2 ·u·c·b·s) end

We can implement this directly. In figure 7.17 we give a representation of this imple-
mentation.

gmulbr2·v·s·b·t

f2

gmulbr2

asbmul2

u s

u c s

s tv

d

bc

b

asbmul2

u s

u c s

c

b

t b

b

gmulbr2·u·s· b

gmulbr2·u·s·(t b)

Figure 7.17: Implementation of gmulbr2

7.2. ARITHMETIC OPERATIONS 59

7.2.4 Division

We give hardware implementations for restoring and non-restoring division, for which
we assume constant B2 ∈ L2 , with vn2 ·B2 > 0.

Restoring division

We repeat declaration 6.7 of dm2, for bit b and non-empty binary list s:

dm2 ·[0] = 〈 [0] , [0] 〉
dm2 ·[1] = 〈 [1] , dec ·1·B2 〉
dm2 ·(s / b) = if w ·0 = 1 → 〈 t / 0 , v 〉

[] w ·0 = 0 → 〈 t / 1 , w 〉
fi whr 〈 t, u 〉 = dm2 ·s & v = u / b & w = subt2 ·v ·B2 end

Minimizing case distinction and maximum the re-use of expressions, we obtain, using
definition 7.1 of sel :

dm2 ·[b] = 〈 t, sel ·b·t·(dec ·b·B2) 〉 whr t = [b] end

dm2 ·(s / b) = 〈 t / c, sel ·c·v ·w 〉 whr 〈 t, u 〉 = dm2 ·s
& v = u / b & w = subt2 ·v ·B2 & c = 1 − w ·0 end

We can implement this directly. In figure 7.18 we give a representation of this imple-
mentation.

subt2

dm2

·0

0 1

0 1

dec

b

dm2· b

b B2b
B2

v

s

ut b

dm2·(s b)

t

wv c

s b

Figure 7.18: Restoring implementation of dm2

60 CHAPTER 7. HARDWARE IMPLEMENTATIONS

Non-restoring division

We repeat declaration 6.10 of dm2 and declaration 6.13 of ds1to2, for bits b, c and
non-empty binary list s:

dm2 ·s = if u ·0 = 1 → 〈 ds1to2 ·1·t, add2 ·u·B2 〉
[] u ·0 = 0 → 〈 ds1to2 ·0·t, u 〉
fi whr 〈 t, u 〉 = gdm2 ·s end

ds1to2 ·c·[] = [c]
ds1to2 ·c·(b . s) = (1 − b) . s / (1 − c)

We can implement the declaration of ds1to2 directly, using only two inverters. Min-
imizing case distinction and maximum the re-use of expressions, we obtain for dm2,
using definition 7.1 of sel :

dm2 ·s = 〈 ds1to2 ·c·t, sel ·c·u·(add2 ·u·B2) 〉
whr 〈 t, u 〉 = gdm2 ·s & c = u ·0 end

We can implement this directly. In figure 7.19 we give a representation of this imple-
mentation.

gdm2

s

·0

ds1to2

add2

B2

0 1

dm2·s

ut

c

Figure 7.19: Non-restoring implementation of dm2

Finally we repeat declaration 6.11 of gdm2, for bit b and non-empty binary list s:

gdm2 ·[b] = 〈 [] , [b] 〉
gdm2 ·(s / b) = if v ·0 = 1 → 〈 t / 0 , add2 ·v ·B2 〉

[] v ·0 = 0 → 〈 t / 1 , subt2 ·v ·B2 〉
fi whr 〈 t, u 〉 = gdm2 ·s & v = u / b end

Minimizing case distinction and maximum the re-use of expressions, we obtain, using
definition 7.1 of sel, declaration 4.9 of add2 and declaration 4.25 of subt2 :

gdm2 ·[b] = 〈 [] , [b] 〉
gdm2 ·(s / b) = 〈 t / c, adc2 ·c·v ·(sel ·c·B2 ·(cmpl ·B2)) 〉

whr 〈 t, u 〉 = gdm2 ·s & v = u / b & c = 1 − v ·0 end

7.2. ARITHMETIC OPERATIONS 61

We can implement this directly. In figure 7.20 we give a representation of this imple-
mentation.

b

b

gdm2· b

adc2

gdm2

·0

0 1

B2
v

s

ut b

s b

c

B2

gdm2·(s b)

Figure 7.20: Implementation of gdm2

62 CHAPTER 7. HARDWARE IMPLEMENTATIONS

Chapter 8

Conclusions and

recommendations

In the previous sections, we have constructed combinatorial circuits that perform bi-
nary arithmetic. To achieve this, we distinguished three levels of reasoning, i.e. the
arithmetic level, the representation level and the implementation level. We derived
declarations at the arithmetic and the representation level, and we used these declara-
tions, together with a formalism, to implement combinatorial circuits at the implemen-
tation level. This thesis has shown that this approach provides for a good separation
of concerns, in which only essential properties of the lower levels have to be taken
into account at the higher levels. Due to this, it is possible to use the declarations
of this thesis for other purposes than combinatorial circuits. Besides implementations
in existing functional programming languages, they can be used for non-functional
implementations such as sequential programs, sequential circuits and probably rewrite
rules for µCRL. Moreover, I am convinced that this approach can be effectively ap-
plied to more complex arithmetic operations, different integer representations and the
extension to floating point numbers.

In the past, a number of efforts were made to formally derive implementations for
arithmetic operations using a calculational style of functional programming. Hutton
et al. ([Hut]) have derived a declaration for the increment of a binary paired natural
by a bit. Kloos et al. ([Klo 1], [Klo 2] and [Klo 3]) have derived declarations for carry-
propagate addition, carry look-ahead addition and multiplication of binary naturals.
Hoogerwoord ([Hoo 2]) has derived declarations for addition of a binary natural to a
binary natural and a ternary natural, respectively. Together with Ebergen ([Ebe]), he
has derived a circuit implementation for a serial-parallel multiplier of binary naturals.
Instead of a using a functional language, Brown and Hutton ([Bro]) have derived a
combinatorial circuit that increments a binary natural of length 3 by a bit, using
relational calculus. But, according to [Hut], this is difficult to derive fully-formally.
This literature differs in the following ways from this thesis:

• In the literature, apart from [Ebe] and [Bro], hardware implementations are given
instead of derived formally. In this thesis we have defined a simple formalism,
such that we can obtain hardware implementations by further developing the
declarations obtained in chapters 3 through 6. This approach is completely
different from that of [Ebe] and [Bro].

63

64 CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

• We have considered binary arithmetic for integers, whereas in the literature only
binary arithmetic for naturals is considered. One could say that we can easily
extend the representation of naturals to integers. However, this extension can be
non-trivial, e.g. we were able to derive declarations for subtraction and decrement
of binary integers, that are completely different from the declarations one would
obtain using binary naturals. Also, they were easier to derive.

• In the literature formal derivations are only given at the representation level.
This often forces the authors to make design decisions at this level which could
have been taken at the arithmetic level. Hence, the derivations at the represen-
tation level become more complex than the derivations in this thesis.

The derivation of a function for binary division is shorter and easier than the
derivation of a sequential program for binary division; e.g. compare the derivation of
declaration 6.2 of function dm of chapter 6 to the derivation of a sequential program
in section 5.1 of [Kal], which is at least twice as long and complex. To my surprise,
I have not found a single functional derivation of a binary division algorithm in the
literature.

One could expect that my mental arithmetic skills have improved while doing
research for this thesis. Unfortunately, this is not the case. I think there is only one
way to really improve these skills, i.e. practise, practise, practise.

Bibliography

[Boo] A.D. Booth
A Signed Binary Multiplication Technique

Quarterly Journal of Mechanics and Applied Mathematics, Volume 4,
Part 2, June 1951, pp 236-240.

[Bro] C. Brown, G. Hutton
Categories, Allegories and Circuit Design

Proceedings Symposium on Logic in Computer Science LICS ’94, Cat. No.
94CH3464-5, 4-7 July 1994, pp 372-381.

[Ebe] J.C. Ebergen, R.R. Hoogerwoord
A Derivation of a Serial-Parallel Multiplier

CS-90-13, University of Waterloo Computer Science Department, January
1990.

[Hoo 1] R.R. Hoogerwoord
The design of functional programs: a calculational approach

Ph. D. thesis, Eindhoven University of Technology, 1989.

[Hoo 2] R.R. Hoogerwoord
Programming by Calculation

unpublished.

[Hut] G. Hutton, E. Meijer
Deriving Representation Changers Functionally

Journal of Functional Programming, Volume 6, Part 1, January 1996,
pp 181-188.

[Kal] A. Kaldewaij
Programming: The Derivation of Algorithms

Prentice Hall, 1990.

[Klo 1] C.D. Kloos, W. Dosch
Transformational Development of Digital Circuit Descriptions: A Case

Study

CompEuro87, 1987, pp 217-237.

[Klo 2] C.D. Kloos, W. Dosch
Transformational Development of Circuit Descriptions for Binary Adders

Methods of Programming, LNCS 544, 1991, pp 217-237.

65

66 BIBLIOGRAPHY

[Klo 3] C.D. Kloos, W. Dosch, B. Möller
Design and Proof of Multipliers by Correctness-Preserving Transformation

CompEuro92 Proceedings ‘Computer System and Software Engineering’,
Cat. No. 91CH3121-1, 4-8 May 1992, pp 238-243.

[Omo] A.R. Omondi
Computer Arithmetic Systems, Algorithms, Architectures and Implemen-

tations

Prentice Hall, 1994.

[Zan] H. Zantema
Basic arithmetic by rewriting and its complexity

unpublished.

