I! l ! technische universiteit eindhoven

One-and-a-halfth-order Logic

Aad Mathijssen Murdoch J. Gabbay

6th June 2006

/department of mathematics and computer science

1/35

Il ! [technische universiteit eindhoven

Motivation

Consider the following valid assertions in first-order logic:
*¢)DYPD9P
e ifa & fn(¢) then ¢ D Va.¢
o ifa & fn(¢) then ¢ D ¢fla —]
o if b & fn(¢) then Va.¢ D Vb.¢[a — b]

/department of mathematics and computer science

2/35

I! l [technische universiteit eindhoven

Motivation

Consider the following valid assertions in first-order logic:
* DY D9
e ifa ¢ fn(¢) then ¢ D Va.¢

e ifa & fn(¢) then ¢ D ¢fa — t]
e ifb & fu(o) thenVa.¢ O Vb.¢[a — b

These are not valid syntax in first-order logic, because of meta-level concepts:
e meta-variables varying over syntax: ¢, ¥, a, b, t

e properties of syntax: a & fn(¢), ¢[a — t], a-equivalence

/department of mathematics and computer science

2/35

I! l ! technische universiteit eindhoven

Motivation

Consider the following valid assertions in first-order logic:
* DY D9
e ifa & fn(¢) then ¢ D Va.¢

e ifa & fn(¢) then ¢ D ¢fa — t]
e ifb & fu(o) thenVa.¢ O Vb.¢[a — b

These are not valid syntax in first-order logic, because of meta-level concepts:
e meta-variables varying over syntax: ¢, ¥, a, b, t

e properties of syntax: a & fn(¢), ¢[a — t], a-equivalence

Is there a logic in which the above assertions can be expressed directly in the
syntax?

/department of mathematics and computer science

2/35

Il l [technische universiteit eindhovén
Motivation (2)

Consider the following derivations in Gentzen’s sequent calculus:

(Ax) (Ax)
v, 0F ¢ p(d),plc) F plc)
A Y (?R)> p(c) = p(d) 2 p(c) (?DRI){)
F¢DY D9 = p(c) D p(d) Dplc)
And for b & fn(¢):
varo - holars o] Vep(o) FVdp(d) AX)
- vé.qb > V.b.qb[[a, —] OR) =Ve.p(e) 5 vid.pid) PR

/department of mathematics and computer science

3/35

I! l ! technische universiteit eindhoven

Motivation (2)

Consider the following derivations in Gentzen’s sequent calculus:

(Ax) (Ax)
V,0F ¢ (d), plc) = p(c)
6F 0506 0 p(c] - pld) > plc) e
F¢DY D = p(c) D p(d) D plc)
And for b € fn(¢):
Va6 - Vb.d[a — b (?;2{) Vep(c) FVdp(d) A 2 %{)
- Va.¢ D Vb.g[a — b = Ve.p(c) D Vd.p(d)

The left ones are not derivations, they are schemas of derivations.
When p is a specific atomic predicate and c and d are specific variables, the right
ones are derivations; they are instances of the schemas on the left.

/department of mathematics and computer science

3/35

I! l ! technische universiteit eindhoven

Motivation (2)
Consider the following derivations in Gentzen’s sequent calculus:

(RS AUEGIEE

o5v5g R S CELCELCIS
And for b & fn ()
Va.p - Vb.ola — 0] (?;2{) Vep(d) F vdp(d) A 2 %{)
- Va.¢ D Vb.¢[a — b] = Veple) D Vd.p(d)

The left ones are not derivations, they are schemas of derivations.
When p is a specific atomic predicate and c and d are specific variables, the right
ones are derivations; they are instances of the schemas on the left.

Is there a logic in which the derivation on the left is a derivation too?

/department of mathematics and computer science

3/35

Il l [technische universiteit eindhoven

Motivation (3)

First-order logic and its proof systems formalise reasoning.
But also a lot of reasoning is about first-order logic.

So why shouldn’t that be formalised?

/department of mathematics and computer science

4/35

I! l ! technische universiteit eindhoven

Motivation (3)

First-order logic and its proof systems formalise reasoning.
But also a lot of reasoning is about first-order logic.

So why shouldn’t that be formalised?

One-and-a-halfth-order logic does this by means of:
e formalising meta-variables;

e making properties of syntax explicit.

/department of mathematics and computer science

4/35

I! l [technische universiteit eindhoven

Overview

e Introduction to one-and-a-halfth-order logic

e Syntax of one-and-a-halfth-order logic

e Sequent calculus for one-and-a-halfth-order logic
e Axiomatisation of one-and-a-halfth-order logic

e Relation to first-order logic

e Semantics of one-and-a-halfth-order logic

e Conclusions, related and future work

/department of mathematics and computer science

5/35

I! l [technische universiteit eindhoven

Introduction

In the syntax of one-and-a-halfth-order logic:
e Unknowns P, () and T' represent meta-variables ¢, 1) and .
e Atoms a and b represent meta-variables a and b.

e Freshness a#t P represents a & fn(o).
e Explicit substitution Pla — T represents ¢[a — t].

/department of mathematics and computer science

6/35

I! l [technische universiteit eindhoven

Introduction (2)

The meta-level assertions in first-order logic
*9DYD9
o ifa & fn(¢) then ¢ D Va.¢

e ifa & fn(¢) then ¢ D ¢fa — t]
e ifb & fu(o) thenVa.¢ O Vb.¢[a — b

correspond to valid assertions in the syntax of one-and-a-halfth-order logic:
e PDODQDOP
e a#P — P D V|a|P
e a#P — P D Pla— T]
o b#P — Y|a]P D V[b]Pla — b

/department of mathematics and computer science

7/35

I! l [technische universiteit eindhoven

Introduction (3)

In sequent derivations of one-and-a-halfth-order logic:
e Contexts of freshnesses are added to the sequents.
e Derivability of freshnesses are added as side-conditions.

o Substitutional equivalence on terms is added as two derivation rules, taking
care of a-equivalence and substitution.

/department of mathematics and computer science

3/35

I! l [technische univr.férsit;itre‘lndhoven
Introduction (4)

The (schematic) derivations in first-order logic

(Ax) (Ax)
= d),p(c) F pl(c
AT 22 St i) 5 o (252,
F¢DY D¢ = plc) D p(d) D plc)
correspond to valid derivations in one-and-a-halfth-order logic:
Q.Pr, P ™Y pld), ple] -, plc] 2
(OR) (OR)
P+ P c) F, pld c
-7 S0 p OB I—E(p()c) P OR)

/department of mathematics and computer science

9/35

I! l [technische universiteit eindhoven

Introduction (5)

The (schematic) derivations in first-order logic, where b & fn(¢),

(Ax) (Ax)
Va.¢ = Vb.¢[a — b] Ve.p(c) F Yd.p(d)
- VYa.¢ D Vb.¢[a — 0] OR) = Vep(e) 5 Vd.p(d) "R
correspond to valid derivations in one-and-a-halfth-order logic:
- 7P (AX)
P P SUrMotR) (P o Vil =V Fla -)
=0 V]a]P D V[b]Pla — b]
VIelp(c) T, Vdpla) (A%) _
et FVidlo(d) <s(grﬁ5:tR> (0 Fye Velp(c) = V[dJp(d))
=, Vlelp(c) D V[d]p(d)

/department of mathematics and computer science

10/35

I! l { technische universiteit eindhoven

Syntax of one-and-a-halfth-order logic

We use Nominal Terms to specify the syntax, since they have built-in support
for: meta-variables, freshness and binding.

Nominal terms allow for a direct and natural representation of systems with bind-
ing.

Nominal terms are first-order, not higher-order.

Timeline of nominal terms:
e FM Set Theory (Gabbay, Pitts)
e Nominal Sets (Gabbay, Pitts)
e Nominal Terms (Urban, Pitts, Gabbay)
e Nominal Rewriting (Fernandez, Gabbay)

e Nominal Algebra (Gabbay, Mathijssen)

/department of mathematics and computer science

11/35

Il l [technische universiteit eindhoven

Sorts

Base sorts [P for ‘predicates’ and T for ‘terms’.
Atomic sort A for the object-level variables.

Sorts 7:
To=P|T|A|[AlT

/department of mathematics and computer science
12/35

I! l ! technische universiteit eindhoven

Terms

Atoms a, b, c, . . . have sort A; they represent object-level variable symbols.

Unknowns X, Y, Z, ... have sort 7; they represent meta-level variable symbols.
Let P, (), R be unknowns of sort P, and T', U of sort T.

We call 7 - X a moderated unknown.
This represents the permutation of atoms 7 acting on an unknown term.

Term-formers f, have an associated arity p = (7y,...,7,)7.
f : p means ‘f with arity p’.

Terms ¢, subscripts indicate sorting rules:

t = ap | (7T : XT)T ‘ ([CLA]tT)[A]T | (f(ﬁ,...,Tn)T(t}-la <. 7t:n))7

Write f for f() if n = 0.

/department of mathematics and computer science

13/35

I! l ! technische universiteit eindhoven

Terms (2)

Term-formers for one-and-a-halfth-order logic:
e | : ()P represents falsity;
e O: (P, P)IP represents implication, write ¢ D 1) for D(¢, ©);
o V : ([A]P)P represents universal quantification, write V|a|¢ for V(|a]¢);
o ~: (T, T)P represents object-level equality, write t =~ u for (¢, u);

e var : (A)T is variable casting, forced upon us by the sort system,
write a for var(a);

e sub : ([A]7, T)7, where 7 € {T, [A]T, P, [A|P}, is explicit substitution,
write v[a +— t] for sub([a]v, t);

®p1,...,pn: (T,..., T)P are object-level predicate term-formers;
o fy,....fn: (T,..., T)T are object-level term-formers.

/department of mathematics and computer science

14/35

Il l [technische universiteit eindhoven

Terms (3)

Sugar:

Tis LDL —=9pis¢pDL oAYis =(¢p D)
PVYis 29 DY pePis (PDY)A(Y D @) Tlalp is —V]a]e

Descending order of operator precedence:
[CL]_, —[—'_) —]7 ~, {ﬂ,v,ﬂ}, {/\7\/}7 D, &

A, V, D and < associate to the right.

/department of mathematics and computer science

15/35

Il l [technische universiteit eindhoven

Terms (3)

Sugar:

Tis LDL —=9pis¢pDL oAYis =(¢p D)
PVYis 29 DY pePis (PDY)A(Y D @) Tlalp is —V]a]e

Descending order of operator precedence:

al—, == {5V 35 A VE D e
A, V, D and < associate to the right.
Example terms of sort IP:

P>@Q>P PDOVaP PD>Pla—T] V]aP DV[bPlar b

|
| /department of mathematics and computer science

1 15/35

I! l [technische universiteit eindhoven

Freshness

Freshness (assertions) a#t, which means ‘a is fresh for ¢.
If ¢ is an unknown X, the freshness is called primitive.

A freshness context A is a set of primitive freshnesses.

Example freshness contexts:

0 a#X a#PW#Q a#PQ

/department of mathematics and computer science
16/35

I! l ! technische universiteit eindhoven

Freshness

Freshness (assertions) a#t, which means ‘a is fresh for ¢.
If ¢ is an unknown X, the freshness is called primitive.

A freshness context A is a set of primitive freshnesses.
Example freshness contexts:
0 a#X a#Pb#Q a#PQ

We call A — t a term-in-context.
We may write ¢ if A = ().

Example terms-in-context of sort PP:

P>Q>P a#P — PDOV[a]P
a#P — P D Pla—T] b#P — V|a|P D V[b|Pla — b

/department of mathematics and computer science
16/35

I! l [technische universiteit eindhoven

Derivability of freshness
g (#ab) THUEK ()

) o) ot e

a and b range over distinct atoms.

Write A = a#t when there exists a derivation of a#t using the elements of A
as assumptions. Say that a#t is derivable from A.

/department of mathematics and computer science
17/35

I! l [technische universiteit eindhoven

Derivability of freshness

S (#ab) ﬂﬁi (#X)

e (1) agf GHIb) it~ G

a and b range over distinct atoms.

Write A = a#t when there exists a derivation of a#t using the elements of A
as assumptions. Say that a#t is derivable from A.

Examples:

Fa#Va|P a#PFa#VDIP a# T, Ul a#T~U

/department of mathematics and computer science

17/35

I! l ! technische universiteit eindhoven

Derivability of equality
Equality (assertions) ¢ = u, where ¢ and u are of the same sort.

Nominal Algebra is the logic of equality between nominal terms.

Derivability:
;— (refl) Z::Ié (symm) L= ?:%: Y (tran)
= t bt
Cl = ?(Lj[u] (cong) (a#) F— ﬁé 7 (perm)
WX, a#X,] A
i A_ﬂaﬂ (aXA)AiSA%t:u t—
7= “U () (agtuA)

t =

Write A . ¢ = u when ¢ = w is derivable from A using axioms A from T only.

/department of mathematics and computer science
18/35

I! l [technische universiteit eindhoven

Derivability of equality (2)

Nominal algebraic theory SUB of explicit substitution:

(var —) ala— T)=T

#e) a#X - XlaT]=X

(f=) f(Xy,. o Xla—= T =f(Xila—T],..., Xyla— TJ)
(abs —) AT = ([pX)]a — T) = p(X[a — T)
(ren —) b#X — Xla—bl=(ba) - X

/department of mathematics and computer science

19/35

I! l [technische universiteit eindhoven

Derivability of equality (2)

Nominal algebraic theory SUB of explicit substitution:

(var —) ala— T)=T
#e) a#X = Xla 7] =X
(f—) f(Xy,...,X)a—T]=f(Xila—T],..., X,Ja—T))
(abs —) AT — ((]X)[a — T] = B](X[a — T)
(ren —) b#X — Xla—bl=(ba) - X
Examples:

b#P +.,, Y|a]|P = V[b|Pla — D]
oy X[a) = X

a#Y bk, Zla— X|b—Y]|=2Zb— Yl]la— X[b— Y]

/department of mathematics and computer science

19/35

I! l { technische universiteit eindhoven

Sequent calculus for one-and-a-halfth-order logic

We may call terms of sort [P predicates, and denote them by ¢ and 7).

Let (predicate) contexts ¢, U be finite sets of predicates.
Examples:

b o o> D

A sequent is a triple ® -, W.
We may omit empty predicate contexts, e.g. writing -, for () -, (.

Define derivability on sequents...

/department of mathematics and computer science

20/35

Il l [technische universiteit eindhoven

Sequent calculus (2)

Rules resembling Gentzen’s sequent calculus for first-order logic:

5 0F. U, ¢A% T oF vUD
OE U, ¢ o, dE U DU,
$ O 55 <I>¢PA g O cb(bh T, & 3¢¢ (OR)
3@%?5%@ (VL) @?j@,@ Vap ("R) (A Fagd, T)

qb[aHt/]? (I)l_qu ~L
t/%t,¢[a|—>t}7®|_A\Ij() q)l_A\Ijth

|
| /department of mathematics and computer science

1 21/35

Il ! [technische universiteit eindhoven

Sequent calculus (3)

Other rules:

!/ CD l_ \Ij /
ﬁ”) l_A T (StructL) (A |_SUB ¢ — ¢)
o W, !
e qj@fb (StructR) (A b, ¥/ = ¢)
O

Alfa# Xy \D:&le v (Fresh) (CL ¢ (I)a \Ija A)

&
O, \If,q)cb O ORY (Cut) (A, é=d)

/department of mathematics and computer science

22/35

Il l [technische universiteit eindhoven

Example derivations

Derivation of a##P — P D V|al]P:
pF—p (AX)

Pr P

PE .,V

a

p (VR)

- PSP P

Derivation of a##P — P O Pla +— T]:

A e

Pr _ . Pla—T
Fupr P D Pla—T

2 (StructR)
] (OR)

(a#P - a#P)

R)

(a#P gy, P = Pla—T])

/department of mathematics and computer science

23/35

I! l ! technische universiteit eindhoven

Properties of the sequent calculus

We may permute atoms and instantiate unknowns in derivations.

Theorem 1 If I] is a valid derivation of ® =, W,
then II" is a valid derivation of ®" ~,, W™.

Theorem 2 If I is a valid derivation of & -, W and A" - Ao,
then [I(o, A') is a valid derivation of o I- , Vo.

[1(o, A) is IT in which:
e each unknown X is replaced by o (X);

e each freshness context A is replaced by A'.

/department of mathematics and computer science
24/35

I! l ! technische universiteit eindhoven

Properties of the sequent calculus (2)

For example, 1 is the derivation of a#P — P D Pla — TI:

(Ax)
(StructR) (a#PtF,, P= Pla— T)])
(OR)

P, P

a#tP

PF ., Pa—T
For D Pla— T

Take o = [p(c)/P,d/T] and A’ = (), then:
o AN'F Ao, ie. 0 F aftp(c);
o [I(0, A') is the following valid derivation of p(c) D p(c)[a — d]:

p(c) =, plc) (A 8StructR) (0 Fyys Plc) = p(c)]a — d])

S F, plo)a 1= d
oS plla s q] OR)

/department of mathematics and computer science

25/35

Il l [technische universiteit eindhoven

Properties of the sequent calculus (3)

Theorem 3 [Cut elimination]
The (Cut) rule is admissible in the system without it.

|
| /department of mathematics and computer science

1 26/35

I! l [technische universiteit eindhoven

Properties of the sequent calculus (3)

Theorem 3 [Cut elimination]
The (Cut) rule is admissible in the system without it.

Corollary 4 The sequent calculus is consistent, i.e. -, can never be derived.

/department of mathematics and computer science
26/35

I! l ! technische universiteit eindhoven

Axiomatisation of one-and-a-halfth-order logic

Theory FOL extends theory SUB with the following axioms:

P>QDO>P =T ——=PDP=T (Props)
(P2Q)D(@Q@D>RD(PDODR =T L1dDP=T

Via|P D Pla—T| = T (Quants)
V[a|(PAQ) < V[alPAVaQ = T
a#P — V(PO Q)< POVAQ =T

T~T=T U=xTAPla—T]DPla—Ul=T (Eq)
Axioms are all of the form ¢ = T, which intuitively means ‘¢ is true’.

Note that this is a finite number of axioms.

/department of mathematics and computer science

27/35

I! l ! technische universiteit eindhoven

Axiomatisation of one-and-a-halfth-order logic (2)

The conjunctive form ®" of a predicate contexts ¢ is ® where we put A between
its elements. Analogously, define its disjunctive form by putting V between its
elements. For example:

=T Ao, v} =9ny 0'=1 {o} =9V

/department of mathematics and computer science

28/35

I! l { technische universiteit eindhoven

Axiomatisation of one-and-a-halfth-order logic (2)

The conjunctive form ®" of a predicate contexts ¢ is ® where we put A between

its elements. Analogously, define its disjunctive form by putting V between its
elements. For example:

=T Ao, v} =9ny 0'=1 {o} =9V

Theorem 5 For all predicate contexts @, U and freshness contexts A:
d b, Wisderivable iff Ak & D U = T.

So sequent and equational derivability are equivalent.

/department of mathematics and computer science

28/35

I! l { technische universiteit eindhoven

Axiomatisation of one-and-a-halfth-order logic (2)

The conjunctive form ®" of a predicate contexts ¢ is ® where we put A between
its elements. Analogously, define its disjunctive form by putting V between its
elements. For example:

=T Ao, v} =9ny 0'=1 {o} =9V

Theorem 5 For all predicate contexts @, U and freshness contexts A:
d b, Wisderivable iff Ak & D U = T.

So sequent and equational derivability are equivalent.

Corollary 6 Theory FOL is consistent, i.e. A -, T = _L does not hold.

/department of mathematics and computer science

28/35

I! l ! technische universiteit eindhoven

Relation to First-order Logic

Call a term or a predicate context ground if it does not contain unknowns or
explicit substitutions.

Call ® = W a first-order sequent, when ¢ and ¥ are ground predicate contexts.

Gentzen’s sequent calculus for first-order logic:

(LL)

5 3F U ¢BX) T oFvU
ORU. 6 . OEU .y 6 OFEU Y

DY, PFV O, ¢ D
oo bV) GRLS (MR) (o g (@, 1)
oo MLOEY (oy) Grgrag (= R)

Vat, dla—t], dF W

/department of mathematics and computer science
29/35

I! l [technische universiteit eindhoven

Relation to First-order Logic (2)

Note that:
e we write Va.¢ for V|a|¢;
e [a — t] is capture-avoiding substitution;
e a & fn(¢) is ‘a does not occur in the free names of ¢’;

e we take predicates up to a-equivalence.

/department of mathematics and computer science

30/35

I! l { technische universiteit eindhoven

Relation to First-order Logic (2)

Note that:
e we write Va.¢ for V|a|¢;
e [a — t] is capture-avoiding substitution;
e a & fn(¢) is ‘a does not occur in the free names of ¢’;

e we take predicates up to a-equivalence.

Theorem 7 ® ~ W is derivable in the sequent calculus for first-order logic, iff
$ k=, VU is derivable in the sequent calculus for one-and-a-halfth-order logic.

So on ground terms, one-and-a-halfth-order logic is first-order logic.

/department of mathematics and computer science
30/35

I! l ! technische universiteit eindhoven

Semantics

For closed terms ¢, its ground form t[] is ¢ in which each explicit substitution
v|a +— wu) is replaced by v[a — u] bottom-up in the syntax.

Theorem 8 For closed terms ¢, .t =[]

Call a substitution o closing for a term ¢ if {0 is closed.

A term-in-context A — ¢ is valid iff for all closing substitutions o (for ¢) for
which = Ao holds, ¢o([] is valid in the semantics of first-order logic.

/department of mathematics and computer science

31/35

I! l { technische universiteit eindhoven

Semantics

For closed terms ¢, its ground form t[] is ¢ in which each explicit substitution
v|a +— wu) is replaced by v[a — u] bottom-up in the syntax.

Theorem 8 For closed terms ¢, .t =[]

Call a substitution o closing for a term ¢ if {0 is closed.

A term-in-context A — ¢ is valid iff for all closing substitutions o (for ¢) for
which = Ao holds, ¢o([] is valid in the semantics of first-order logic.

The sequent calculus for one-and-a-halfth-order logic is sound for this seman-
tics:

Theorem g If =, ¢ is derivable then A — ¢ is valid.

/department of mathematics and computer science

31/35

I! l { technische universiteit eindhoven

Conclusions

Using nominal terms, we can:

e accurately represent systems with binding:
e.g. explicit substitution and first-order logic;

e specify novel systems with their own mathematical interest:
e.g. one-and-a-halfth-order logic.

One-and-a-halfth-order logic:
e makes meta-level concepts of first-order logic explicit;
e has a sequent calculus with syntax-directed rules;
e has a semantics in first-order logic;
e has a finite equational axiomatisation;

o is the result of axiomatising first-order logic in nominal algebra.

/department of mathematics and computer science

32/35

I! l { technische universiteit eindhoven

Related work

Second-order logic (SOL):

e In this logic we can quantify over predicates anywhere, which makes it more
expressive than one-and-a-halfh-order logic.

e On the other hand, we can easily extend theory FOL with one axiom to ex-
press the principle of induction on natural numbers:

Pla — 0] AV]a](P D Pla v+ succ(a)]) D V[a|P = T.

Higher-order logic (HOL) is type raising, while one-and-a-halfth-order logic is
not: Pla — t] corresponds to f(¢) in HOL, where f : T — P; Pla +— t][a’ — 1]
corresponds to f'(t)(t') where f': T — T — PP, and so on...

One-and-a-halfth-order logic is not a subset of SOL or HOL because of fresh-
nesses.

/department of mathematics and computer science
33/35

I! l [technische universiteit eindhoven

Future work

e Completeness of the sequent calculus with respect to the semantics.

e Let unknowns range over sequent derivations, and establish a Curry-Howard
correspondence (term-in-contexts as types, derivations as terms).

e Two-and-a-halfth-order logic (where you can abstract X)?

e Implementation and automation?

/department of mathematics and computer science

34/35

I! l { technische universiteit eindhoven

Future work

e Completeness of the sequent calculus with respect to the semantics.

e Let unknowns range over sequent derivations, and establish a Curry-Howard
correspondence (term-in-contexts as types, derivations as terms).

e Two-and-a-halfth-order logic (where you can abstract X)?

e Implementation and automation?

Current status

e M.]. Gabbay, A.H.]. Mathijssen, Nominal Algebra, submitted CSL00.

e M.]. Gabbay, A.H.]. Mathijssen, Capture-avoiding Substitution as a Nominal
Algebra, submitted ICTAC’06.

e M.]. Gabbay, A.H.]. Mathijssen, One-and-a-halfth-order Logic, PPDP’00.

/department of mathematics and computer science

34/35

I! l ! technische universiteit eindhoven

Just to scare you

(Ax)

Plb— c|la c]t_,, Plb— c]la— ¢

R (VL)
V0a]P[b— c|F ., Plb c]la— (] (StructL) (1)
(V]a]P)[b — C} cxp PlO— dlla— (] (VL)
v[olvla]P &y Plb— clla— (]
(VR) (2.)
v[blvla] P+ or [Pl dla — ¢
VOVAP o, ValPloo o] . SrructR) (3
(Fresh) (4.

VIbV[a]P VuPh o
Side-conditions:

I. ¢c#P kg V[a]Plb— c] = (V[a]|P)[b +— (]

2. c#P - c#V[b]V[a] P
3 #P g Ve Plb = clla — o = V][a]P[b — d]
4. ¢ ZV[bv[a]P, V]

alP[b — d]

/department of mathematics and computer science

35/35

