


Behavioural Analysis using mCRL2

Aad Mathijssen Bas Ploeger Frank Stappers
Tim Willemse

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

IPA Course on Formal Methods
Technische Universiteit Eindhoven

June 26, 2008

1/105



Introduction
Analysis techniques

Main analysis techniques used in hardware/software
development:

Structural analysis: what things are in the system

Class diagrams
Component diagrams
Package diagrams

Behavioural analysis: what happens in the system

State diagrams
Message sequence charts
Petri nets
Process algebra
Temporal logic

2/105



Introduction
Schedule

10:00 - 11:00 Basic process algebra
Parallelism and abstraction
Processes with data

11:00 - 11:15 Break
11:15 - 12:15 Linear processes

Temporal logic
Verification

12:15 - 13:15 Lunch

13:15 - 13:45 Toolset overview and demo
13:45 - 14:15 Hands-on experience
14:15 - 14:30 Break
14:30 - 15:30 Hands-on experience
15:30 - 15:45 Break
15:45 - 16:15 Wrap-up

Industrial case studies

3/105



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

4/105



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

5/105



Labelled transition systems
Introduction

A labelled transition system is a basic formalism for
describing behaviour.

Also known as labelled directed graphs or state spaces.

Labels represent discrete events, also called actions.

6/105



Labelled transition systems
Formal definition

A labelled transition system is a tuple (S,L,→, s, T) where:

S is a set of states

L is a set of labels

→⊆ S × L× S is a transition relation

s ∈ S is the initial state

T ⊆ S is the set of terminating states

7/105



Labelled transition systems
Example: order items

Example

Ordering items:

order

receive

keep

refund

return

8/105



Basic process algebra
Motivation

Labelled transition systems are powerful, but low-level.

Basic process algebra allows us to:

describe labelled transition systems at an abstract level

reason about labelled transition systems using equations

9/105



Basic process algebra
Describe behaviour

Basic processes: p ::= a | p · p | p+ p | δ

a, b, c, . . . represent actions

p · q represents sequential composition

p+ q represents non-deterministic choice

δ represents inaction or deadlock

Operator precedence:

· binds stronger than +
· and + associate to the right

Use parentheses to override

For example: a · b + c · d · e stands for (a · b) + (c · (d · e))

10/105



Basic process algebra
Describe behaviour

Exercise: draw LTSs

a · δ + b · c (a + b) · δ · c a + δ

11/105



Basic process algebra
Describe behaviour

Exercise: draw LTSs

a · δ + b · c (a + b) · δ · c a + δ

a b

c a b a

11/105



Basic process algebra
Describe behaviour

Exercise: draw LTSs

a · (b + c) · d · (b + c) a · (b · d · (b + c) + c · d · (b + c))

11/105



Basic process algebra
Describe behaviour

Exercise: draw LTSs

a · (b + c) · d · (b + c) a · (b · d · (b + c) + c · d · (b + c))

a

b c

d

b c

a

b c

d d

b c b c

11/105



Basic process algebra
Describe behaviour

Exercise: draw LTSs

a · (b + c) · d · (b + c) a · (b · d · (b + c) + c · d · (b + c))

a

b c

d

b c

a

b c

d d

b c b c

Are the two equivalent?

11/105



Basic process algebra
Describe behaviour

Exercise: draw LTSs

a · (b + c) · d · (b + c) a · (b · d · (b + c) + c · d · (b + c))

a

b c

d

b c

a

b c

d d

b c b c

Are the two equivalent? Yes!

11/105



Basic process algebra
Reason about behaviour: derivation rules

Derivation rules for process equality:

p = p

p = q

q = p

p = q q = r

p = r

p1 = q1 p2 = q2
p1 · p2 = q1 · q2

p1 = q1 p2 = q2
p1 + p2 = q1 + q2

p = q ∈ Ax

p = q

12/105



Basic process algebra
Reason about behaviour: axioms

Axioms for the basic operators:

A1 p+ q = q + p
A2 p+ (q + r) = (p+ q) + r
A3 p+ p = p
A4 (p+ q) · r = p · r + q · r
A5 (p · q) · r = p · (q · r)
A6 a + δ = a
A7 δ · p = δ

Exercise

1 a + (δ + a) = a

2 δ · (a + b) = δ · a + δ · b
3 a · (b+c) · d · (b+c) = a · (b · d · (b+c) + c · d · (b+c))

13/105



Basic process algebra
Reason about behaviour: axioms

Axioms for the basic operators:

A1 p+ q = q + p
A2 p+ (q + r) = (p+ q) + r
A3 p+ p = p
A4 (p+ q) · r = p · r + q · r
A5 (p · q) · r = p · (q · r)
A6 a + δ = a
A7 δ · p = δ

Exercise

1 a + (δ + a) = a

2 δ · (a + b) = δ · a + δ · b
3 a · (b+c) · d · (b+c) = a · (b · d · (b+c) + c · d · (b+c))

13/105



Basic process algebra
Reason about behaviour: axioms (2)

Solution to exercise 1

Derivation of a + (δ + a) = a:

a + (δ + a)
= { Axiom A2: p+ (q + r) = (p+ q) + r }

(a + δ) + a

= { Axiom A6: a + δ = a }
a + a

= { Axiom A3: p+ p = p }
a

14/105



Basic process algebra
Reason about behaviour: axioms (2)

Solution to exercise 2

Derivation of δ · (a + b) = δ · a + δ · b:

δ · (a + b)
= { Axiom A7: δ · p = δ }
δ

= { Axiom A3: p+ p = p }
δ + δ

= { Axiom A7 (twice) }
δ · a + δ · b

14/105



Basic process algebra
Reason about behaviour: axioms (2)

Solution to exercise 3

Derivation of
a · (b + c) · d · (b + c) = a · (b · d · (b + c) + c · d · (b + c)):

a · (b + c) · d · (b + c)
= { Axiom A4: (p+ q) · r = p · r + q · r }

a · (b · d · (b + c) + c · d · (b + c))

14/105



Basic process algebra
Reason about behaviour: axioms (3)

Is the following valid: p · (q + r) = p · q + p · r ?

15/105



Basic process algebra
Reason about behaviour: axioms (3)

Is the following valid: p · (q + r) = p · q + p · r ?

The princess, or the dragon?

open door

marry princess confront dragon

6= open door open door

marry princess confront dragon

F. Stockton, “The Lady, or the Tiger?”, An Anthology of Famous
American Stories, New York, Modern Library, 1953, pp. 248-253.

15/105



Basic process algebra
Reason about behaviour: axioms (3)

Is the following valid: p · (q + r) = p · q + p · r ?

It depends on your view:

Bisimulation equivalence: no

Trace equivalence: yes

Lots of equivalences inbetween.

15/105



Basic process algebra
Process definition

Deal with loops by introducing recursive processes:

Add process definitions of the form P = p

P is called a process reference

Processes: p ::= a | p · p | p+ p | δ | P

16/105



Basic process algebra
Process definition

Deal with loops by introducing recursive processes:

Add process definitions of the form P = p

P is called a process reference

Processes: p ::= a | p · p | p+ p | δ | P

Example: LTS of P

P = a · P P = a · a · P P = c · P + a · b · P

a

a a

c

a b

16/105



Basic process algebra
Process definition

Deal with loops by introducing recursive processes:

Add process definitions of the form P = p

P is called a process reference

Processes: p ::= a | p · p | p+ p | δ | P

Example: LTS of P

P = a · P P = a · a · P P = c · P + a · b · P

a

a a

c

a b

P = a · P is equivalent to P = a · a · P.

16/105



Basic process algebra
Process specifications

Process specifications:

act a0, . . . , an;
proc P0 = p0; · · · Pm = pm;
init p;

act declares actions used in proc and init

proc consists of process definitions

init represents the initial process

17/105



Basic process algebra
Process specifications (2)

Exercise

Give a process specification of the following LTS:

order

receive

keep

refund

return

18/105



Basic process algebra
Process specifications (2)

Solution

Process specification:

order

receive

keep

refund

return

act order, receive, keep, refund, return;
proc Start = order · Ordered;

Ordered = receive · Received

+ refund · Start;
Received = return · Ordered

+ keep;
init Start;

18/105



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

19/105



Parallelism and abstraction
Motivation

Observation (Robin Milner, 1973):

Interaction is a primary concept
in computer science.

Key ideas:

Black box philosophy: focus on the interactions
(inputs and outputs) of a system

Treat distributed systems as communicating black boxes

20/105



Parallelism and abstraction
Motivation

Observation (Robin Milner, 1973):

Interaction is a primary concept
in computer science.

Key ideas:

Black box philosophy: focus on the interactions
(inputs and outputs) of a system

Treat distributed systems as communicating black boxes

20/105



Parallelism and abstraction
Parallelism

Processes:

p ::= a | p · p | p+ p | δ | P | p ‖ p | p | p

‖ represent parallel composition

| represents synchronisation

Processes of the form a | · · · | a are called multiactions

21/105



Parallelism and abstraction
Parallelism: example

P Q
r1 s2 r2 s3

22/105



Parallelism and abstraction
Parallelism: example

P Q
r1 s2 r2 s3

Process specification:

act r1, s2, r2, s3;
proc P = r1 · s2 · P;

Q = r2 · s3 · Q;
init P ‖ Q;

22/105



Parallelism and abstraction
Parallelism: example

P Q
r1 s2 r2 s3

Corresponding LTS:

r1|r2

r2

r1

s2|s3

s3

s2

r1|s3

s3

r1
s2|r2

r2

s2

22/105



Parallelism and abstraction
Communication

Processes:

p ::= a | p · p | p+ p | δ | P | p ‖ p | p | p
| Γ{a|ma→a,...,a|ma→a}(p) | ∂{a,...,a}(p) | ∇{ma,...,ma}(p)

ma ::= a | · · · | a

Γ{a|b→c}(p) renames multiactions a|b to c

∂S(p) blocks (renames to δ) all actions in the set S

∇S(p) blocks all multiactions different from
the ones in S

23/105



Parallelism and abstraction
Communication

Processes:

p ::= a | p · p | p+ p | δ | P | p ‖ p | p | p
| Γ{a|ma→a,...,a|ma→a}(p) | ∂{a,...,a}(p) | ∇{ma,...,ma}(p)

ma ::= a | · · · | a

Γ{a|b→c}(p) renames multiactions a|b to c

∂S(p) blocks (renames to δ) all actions in the set S

∇S(p) blocks all multiactions different from
the ones in S

Enforce communication of a|b to c:

∂{a,b}(Γ{a|b→c}(p)) by blocking a and b
∇{c}(Γ{a|b→c}(p)) by only allowing c

23/105



Parallelism and abstraction
Communication: example

P Q
r1 s2

c2

r2 s3

24/105



Parallelism and abstraction
Communication: example

P Q
r1 s2

c2

r2 s3

Process specification:

act r1, s2, r2, s3, c2;
proc P = r1 · s2 · P;

Q = r2 · s3 · Q;
init ∂{r2,s2}(Γ{s2|r2→c2}(P ‖ Q));

24/105



Parallelism and abstraction
Communication: example

P Q
r1 s2

c2

r2 s3

Corresponding LTS:

r1

c2

r1|s3
s3

r1 s3

24/105



Parallelism and abstraction
Communication: example

P Q
r1 s2

c2

r2 s3

Process specification:

act r1, s2, r2, s3, c2;
proc P = r1 · s2 · P;

Q = r2 · s3 · Q;
init ∇{c2,r1,s3,r1|s3}(Γ{s2|r2→c2}(P ‖ Q));

24/105



Parallelism and abstraction
Abstraction

Motivation for abstraction:

Focus on external behaviour:
abstract from internal behaviour

Composition of models

25/105



Parallelism and abstraction
Abstraction (2)

Processes:

p ::= a | p · p | p+ p | δ | P | p ‖ p | p | p
| Γ{a|ma→a,...,a|ma→a}(p) | ∂{a,...,a}(p) | ∇{ma,...,ma}(p)
| τ | τ{a,...,a}(p)

ma ::= a | · · · | a

τ represents an internal action

τS(p) hides (renames to τ) all actions from S in p

26/105



Parallelism and abstraction
Abstraction: example

P Q
r1 s2

c2

r2 s3

27/105



Parallelism and abstraction
Abstraction: example

P Q
r1 s2

c2

r2 s3

Process specification:

act r1, s2, r2, s3, c2;
proc P = r1 · s2 · P;

Q = r2 · s3 · Q;
init τ{c2}(∂{r2,s2}(Γ{s2|r2→c2}(P ‖ Q)));

27/105



Parallelism and abstraction
Abstraction: example

P Q
r1 s2

c2

r2 s3

Corresponding LTS:

r1

τ

r1|s3
s3

r1 s3

27/105



Parallelism and abstraction
Abstraction: example

P Q
r1 s2

c2

r2 s3

Corresponding LTS:

r1

r1|s3

s3

r1 s3

27/105



Parallelism and abstraction
Branching bisimulation

Consequences of adding τ transitions:

Only external actions are observable

The effects of an internal action can only be observed if
it determines a choice

Weaker notion of bisimulation: branching bisimulation

28/105



Parallelism and abstraction
Branching bisimulation: example

Example

The following are equivalent: a · (τ + τ · τ) · b and a · b

29/105



Parallelism and abstraction
Branching bisimulation: example

Example

The following are equivalent: a · (τ + τ · τ) · b and a · b

a

τ
τ

τ

b

a

b

29/105



Parallelism and abstraction
Branching bisimulation: example

Example

The following are equivalent: a · (τ + τ · τ) · b and a · b

a

τ
τ

τ

b

a

b

29/105



Parallelism and abstraction
Branching bisimulation: example

Example

The following are equivalent: a · (τ + τ · τ) · b and a · b

a

τ
τ

τ

b

a

b

29/105



Parallelism and abstraction
Branching bisimulation: example

Example

The following are equivalent: a · (τ + τ · τ) · b and a · b

a

τ
τ

τ

b

a

b

29/105



Parallelism and abstraction
Branching bisimulation: example

Example

The following are equivalent: a · (τ + τ · τ) · b and a · b

a

τ
τ

τ

b

a

b

29/105



Parallelism and abstraction
Branching bisimulation: example

Example

The following are equivalent: a · (τ + τ · τ) · b and a · b

a

τ
τ

τ

b

a

b

29/105



Parallelism and abstraction
Branching bisimulation: axioms

Axioms for the basic operators and τ :

A1 p+ q = q + p
A2 p+ (q + r) = (p+ q) + r
A3 p+ p = p
A4 (p+ q) · r = p · r + q · r
A5 (p · q) · r = p · (q · r)
A6 a + δ = a
A7 δ · p = δ

T1 p · τ = p
T2 p · (τ · (q + r) + q) = p · (q + r)

30/105



Parallelism and abstraction
Branching bisimulation: axioms

Axioms for the basic operators and τ :

A1 p+ q = q + p
A2 p+ (q + r) = (p+ q) + r
A3 p+ p = p
A4 (p+ q) · r = p · r + q · r
A5 (p · q) · r = p · (q · r)
A6 a + δ = a
A7 δ · p = δ

T1 p · τ = p
T2 p · (τ · (q + r) + q) = p · (q + r)

Exercise

Show the following: a · ((τ + τ · τ) · b) = a · b

30/105



Parallelism and abstraction
Branching bisimulation: axioms

Axioms for the basic operators and τ :

A1 p+ q = q + p
A2 p+ (q + r) = (p+ q) + r
A3 p+ p = p
A4 (p+ q) · r = p · r + q · r
A5 (p · q) · r = p · (q · r)
A6 a + δ = a
A7 δ · p = δ

T1 p · τ = p
T2 p · (τ · (q + r) + q) = p · (q + r)

Exercise

a · ((τ + τ · τ) · b) T1= a · ((τ + τ) · b) A3,A5= (a · τ) · b T1= a · b

30/105



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

31/105



Processes with data
Why add data?

In real-life systems data is essential

Data allows for finite specifications of infinite systems

Example

A specification of a buffer that repeatedly receives a natural
number and then sends it to the outside world:

act send 0, receive 0, send 1, receive 1, . . .

proc Buffer = receive 0 · send 0 · Buffer

+ receive 1 · send 1 · Buffer

+ . . .

init Buffer;

32/105



Processes with data
Why add data?

In real-life systems data is essential

Data allows for finite specifications of infinite systems

Example

A specification of a buffer that repeatedly receives a natural
number and then sends it to the outside world:

act send 0, receive 0, send 1, receive 1, . . .

proc Buffer = receive 0 · send 0 · Buffer

+ receive 1 · send 1 · Buffer

+ . . .

init Buffer;

32/105



Processes with data
Data types

All types: equality, inequality and if
≈, 6≈, if (, ,)
Basic types: B, N+, N, Z, R
¬, ∧, ∨, ∀, ∃, <, ≤, +, −, ∗, div, mod, max, min, . . .

Lists, sets and bags
[1, 3, 4], ., / , ++ , ∪, ∩, \, ∈, ⊆, ⊂, . . .

Functions
λx:N . x ∗ x
Structured types
sort State = struct idle | running | defect ;
sort Tree = struct leaf (N) | node(Tree,Tree);

33/105



Processes with data
Data specifications

Example: flatten a tree using pattern matching

sort Tree = struct leaf (N)
| node(Tree,Tree);

map flatten:Tree → List(N);
var n:N; t, u:Tree;
eqn flatten(leaf (n)) = [n];

flatten(node(t, u)) = t++u;

34/105



Processes with data
Data specifications

Example: flatten a tree without pattern matching

sort Tree = struct leaf (val :N)?is leaf
| node(left :Tree, right :Tree)?is node;

map flatten:Tree → List(N);
var t:Tree;
eqn is leaf (t) → flatten(t) = [val(t)];

is node(t) → flatten(t) =
flatten(left(t)) ++ flatten(right(t));

34/105



Processes with data
Adding data to processes

Processes:

p ::= a | p · p | p+ p | δ | P | p ‖ p | p | p
| Γ{a|ma→a,...,a|ma→a}(p) | ∂{a,...,a}(p) | ∇{ma,...,ma}(p)
| τ | τ{a,...,a}(p)
| a(d, . . . , d) | P(d, . . . , d) | b→ p � p |

∑
x:s p

ma ::= a | · · · | a

Action and processes can be parameterised: a(25), P(true)
Declarations of actions and processes: a:N, P(b:B) = . . .

Conditions influence process behaviour: b→ a � b
b→ p is an abbrevation of b→ p � δ
Summation over data types:

∑
n:N a(n)

35/105



Processes with data
Adding data to processes: example

684

up down

set

act up, down;
set:N;

proc Counter(n:N) = up · Counter(n+ 1)
+ (n > 0)→ down · Counter(n− 1)
+
∑

m:N set(m) · Counter(m);
init Counter(684);

36/105



Processes with data
Adding data to processes: example (2)

Prime Checker
ask(n) yes/no

map primes : Set(N);
eqn primes = {n:N | ∀p,q:N p > 1 ∧ q > 1 ⇒ p ∗ q 6= n};
act ask : N;

yes, no;
proc PC =

∑
n:N ask(n) · ((n ∈ primes)→ yes � no) · PC;

init PC;

37/105



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

38/105



Linear processes
Linear process definitions

A linear process definition is a process of the form:

P(d : D) =
∑
i∈I

∑
e:Ei

ci(d, e)→ ai(fi(d, e)) · P(gi(d, e))

Idea: a series of condition – action – effect rules:

Given the current state

If the condition holds

The action can be executed

Resulting in the next state (optional)

39/105



Linear processes
Linear process definitions

A linear process definition is a process of the form:

P(d : D) =
∑
i∈I

∑
e:Ei

ci(d, e)→ ai(fi(d, e)) · P(gi(d, e))

Idea: a series of condition – action – effect rules:

Given the current state

If the condition holds

The action can be executed

Resulting in the next state (optional)

39/105



Linear processes
Linear process definitions

A linear process definition is a process of the form:

P(d : D) =
∑
i∈I

∑
e:Ei

ci(d, e)→ ai(fi(d, e)) · P(gi(d, e))

Idea: a series of condition – action – effect rules:

Given the current state

If the condition holds

The action can be executed

Resulting in the next state (optional)

39/105



Linear processes
Linear process definitions

A linear process definition is a process of the form:

P(d : D) =
∑
i∈I

∑
e:Ei

ci(d, e)→ ai(fi(d, e)) · P(gi(d, e))

Idea: a series of condition – action – effect rules:

Given the current state

If the condition holds

The action can be executed

Resulting in the next state (optional)

39/105



Linear processes
Linear process definitions

A linear process definition is a process of the form:

P(d : D) =
∑
i∈I

∑
e:Ei

ci(d, e)→ ai(fi(d, e)) · P(gi(d, e))

Idea: a series of condition – action – effect rules:

Given the current state

If the condition holds

The action can be executed

Resulting in the next state (optional)

39/105



Linear processes
Linear process specifications

A linear process specification (LPS) is a restricted form of an
mCRL2 process specification:

a data type specification;

an action specification;

a single, linear process definition;

an initial process reference.

An LPS is a symbolic representation of a labelled transition
system.

An mCRL2 specification can be linearised to an LPS if it is a
parallel composition of parallel-free processes.

40/105



Linear processes
Linearisation

Example

mCRL2 specification before linearisation:

act order, receive, keep, refund, return;
proc Start = order · Ordered;

Ordered = receive · Received + refund · Start;
Received = return · Ordered + keep;

init Start;

41/105



Linear processes
Linearisation

Example

mCRL2 specification after linearisation:

sort State = struct start | ordered | received ;
act order, receive, keep, refund, return;
proc P(s : State) =

(s ≈ start) → order · P(ordered)
+ (s ≈ ordered) → receive · P(received)
+ (s ≈ ordered) → refund · P(start)
+ (s ≈ received) → return · P(ordered)
+ (s ≈ received) → keep;

init P(start);

41/105



Linear processes
Linearisation

Exercise: linearise the following mCRL2 specification

Buffer
receive(n) send(n)

act receive, send : N;
proc Buffer =

∑
n:N receive(n) · send(n) · Buffer;

init Buffer;

42/105



Linear processes
Linearisation

Exercise: linearise the following mCRL2 specification

Buffer
receive(n) send(n)

act receive, send : N;
proc Buffer =

∑
n:N receive(n) · send(n) · Buffer;

init Buffer;
Parameter b : B:

42/105



Linear processes
Linearisation

Exercise: linearise the following mCRL2 specification

Buffer
receive(n) send(n)

act receive, send : N;
proc Buffer =

∑
n:N

false

receive(n)

true

· send(n)

false

· Buffer;
init Buffer;
Parameter b : B:

42/105



Linear processes
Linearisation

Exercise: linearise the following mCRL2 specification

Buffer
receive(n) send(n)

act receive, send : N;
proc Buffer =

∑
n:N

false

receive(n)

true

· send(n)

false

· Buffer;
init Buffer;
Parameter b : B:

proc P(b:B,m:N) =
∑

n:N ¬b → receive(n) · P(true, n)
+ b → send(m) · P(false, 0);

init P(false, 0);

42/105



Linear processes
Summary

Linear process specification:

Simple mCRL2 specification:

no parallelism
single process
restricted format (condition – action – effect)

Symbolic representation of LTS, hence:

compact
finite, even if LTS is infinite

Very suitable for automated manipulation and analysis

Most mCRL2 specifications can be easily linearised

Central notion in mCRL2 toolset

43/105



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

44/105



Temporal Logic

Model checking is an automated verification method. It can
be used to check functional requirements against a model.

A (software or hardware) system is modelled in mCRL2

The requirements are specified as properties in a
temporal logic

A model checking algorithm decides whether the
property holds for the model: the property can be
verified or refuted. Sometimes, witnesses or counter
examples can be provided

Temporal logic of choice in mCRL2:
µ-calculus with data, time and regular expressions.

45/105



Temporal Logic

Idea of µ-calculus: add fixed point operators (i.e. recursion)
as primitives to standard Hennessy-Milner logic.

µ-calculus is very expressive (subsumes e.g. CTL∗).

µ-calculus is very pure.

drawback: lack of intuition.

Today: alternation-free µ-calculus using regular
expressions and data.

LTL CTL

CTL∗

µ-calculus

46/105



Temporal Logic

Hennessy-Milner logic: propositional logic with modalities:

φ ::= true | false | φ ∧ φ | φ ∨ φ | [a]φ | 〈a〉φ

Notation

s |= φ: state s of a transition system satisfies formula φ

for all states s: s |= true; for no state s: s |= false;

s |= [a]φ iff all a-labelled transitions starting in s and
leading to a state t satisfy t |= φ;

s |= 〈a〉φ iff there is at least one a-labelled transition
starting in s and leading to a state t satisfying t |= φ.

47/105



Temporal Logic

Exercise

Determine the largest subset S ⊆ {s1, s2, s3, s4} in the
following satisfaction problems:

s1 s2

s3 s4

a

a

b

b

a
S |= [b]false
S |= [a][b][c]true
S |= 〈a〉true

48/105



Temporal Logic

Exercise

Determine the largest subset S ⊆ {s1, s2, s3, s4} in the
following satisfaction problems:

s1 s2

s3 s4

a

a

b

b

a
S |= [b]false S = {s2, s3}
S |= [a][b][c]true S = {s1, s2, s3, s4}
S |= 〈a〉true S = {s1, s2, s3}

48/105



Temporal Logic

HM-logic + basic regular expressions:

φ ::= true | false | φ ∧ φ | φ ∨ φ | [ρ]φ | 〈ρ〉φ
ρ ::= ε | a | ρ · ρ | ρ+ ρ

ε is the empty word;

a is an action;

ρ · ρ is concatenation;

ρ+ ρ is choice.

49/105



Temporal Logic

HM-logic + basic regular expressions:

φ ::= true | false | φ ∧ φ | φ ∨ φ | [ρ]φ | 〈ρ〉φ
ρ ::= ε | a | ρ · ρ | ρ+ ρ

ε is the empty word;

a is an action;

ρ · ρ is concatenation;

ρ+ ρ is choice.

Combined with the modalities [] and 〈 〉 :

s |= [ρ1 · ρ2]φ iff s |= [ρ1][ρ2]φ
s |= [ρ1 + ρ2]φ iff s |= [ρ1]φ ∧ [ρ2]φ

s |= 〈ρ1 · ρ2〉φ iff s |= 〈ρ1〉〈ρ2〉φ
s |= 〈ρ1 + ρ2〉φ iff s |= 〈ρ1〉φ ∨ 〈ρ2〉φ

49/105



Temporal Logic

Exercise

Determine the largest subset S ⊆ {s1, s2, s3, s4} in the
following satisfaction problems:

s1 s2

s3 s4

a

a

b

b

a

S |= [b + a]false
S |= [a · b · c]false
S |= 〈a · a · b + a · a · a〉true

50/105



Temporal Logic

Exercise

Determine the largest subset S ⊆ {s1, s2, s3, s4} in the
following satisfaction problems:

s1 s2

s3 s4

a

a

b

b

a

S |= [b + a]false S = ∅
S |= [a · b · c]false S = {s1, s2, s3, s4}
S |= 〈a · a · b + a · a · a〉true

S = {s1, s2}

50/105



Temporal Logic

HM-logic + iteration + regular expressions:

φ ::= true | false | φ ∧ φ | φ ∨ φ | [ρ]φ | 〈ρ〉φ
ρ ::= ε | a | ρ · ρ | ρ+ ρ | ρ∗ | ρ+

ρ∗ := ε+ ρ · ρ∗: transitive, reflexive closure of ρ;

ρ+ := ρ · ρ∗: transitive closure of ρ.

Iteration operators + modalities = recursion.

recursion is coded using fixed points in the µ-calculus.

51/105



Temporal Logic

HM-logic + iteration + regular expressions:

φ ::= true | false | φ ∧ φ | φ ∨ φ | [ρ]φ | 〈ρ〉φ
ρ ::= ε | a | ρ · ρ | ρ+ ρ | ρ∗ | ρ+

ρ∗ := ε+ ρ · ρ∗: transitive, reflexive closure of ρ;

ρ+ := ρ · ρ∗: transitive closure of ρ.

Iteration operators + modalities = recursion.

recursion is coded using fixed points in the µ-calculus.

[ρ∗]φ := νX. [ρ]X ∧ φ; ν expresses looping;

〈ρ∗〉φ := µX. 〈ρ〉X ∨ φ; µ expresses finite looping.

51/105



Temporal Logic

Exercise

Determine the largest subset S ⊆ {s1, s2, s3, s4} in the
following satisfaction problems:

s1 s2

s3 s4

a

a

b

b

a

S |= 〈a∗〉true
S |= 〈a+〉true
S |= [a∗ · b]false
How to phrase absence of deadlock?

52/105



Temporal Logic

Exercise

Determine the largest subset S ⊆ {s1, s2, s3, s4} in the
following satisfaction problems:

s1 s2

s3 s4

a

a

b

b

a

S |= 〈a∗〉true S = {s1, s2, s3, s4}
S |= 〈a+〉true S = {s1, s2, s3}
S |= [a∗ · b]false S = {s2}
How to phrase absence of deadlock?

[(a + b)∗]〈a + b〉true

52/105



Temporal Logic

Consider the following definition of a lossy channel:

proc C(b:B,m:M) =
∑

k:M b→ read(k) · C(false, k)
+ ¬b→ send(m) · C(true,m)
+ ¬b→ lose · C(true,m);

53/105



Temporal Logic

Consider the following definition of a lossy channel:

proc C(b:B,m:M) =
∑

k:M b→ read(k) · C(false, k)
+ ¬b→ send(m) · C(true,m)
+ ¬b→ lose · C(true,m);

Problem

|M | =∞ =⇒ infinitely many read and send actions;

How to specify deadlock freedom as a finite expression?

How to verify that no miracles happen? (e.g. message
creation, duplication, etc.)

53/105



Temporal Logic

Extended HM-logic + action abstraction:

φ ::= true | false | φ ∧ φ | φ ∨ φ | [ρ]φ | 〈ρ〉φ
ρ ::= ε | α | ρ · ρ | ρ+ ρ | ρ∗ | ρ+

α ::= a | a(d, . . . , d) | b | α ∧ α | α ∨ α | ¬α | ∀x:D α | ∃x:D α

Changes regular formulae (ρ):

Actions have been replaced by parameterised actions.

Logic is used to describe a possibly infinite set of actions.

Nota Bene:

d stands for a data expression;

b stands for a data expression of sort B.

54/105



Temporal Logic

Logic for describing sets of actions:

true acts as wildcard (i.e. the entire set of actions);

∀ acts as intersection; ∃ is dual;

¬ acts as set complement.

Examples:

Any parameterised action a:N: 〈∃n:N a(n)〉true
Any action (but not a:N):.〈∀n:N ¬a(n)〉true
Absence of deadlock: [true∗]〈true〉true

55/105



Temporal Logic

Logic for describing sets of actions:

true acts as wildcard (i.e. the entire set of actions);

∀ acts as intersection; ∃ is dual;

¬ acts as set complement.

Examples:

Any parameterised action a:N: 〈∃n:N a(n)〉true
Any action (but not a:N):.〈∀n:N ¬a(n)〉true
Absence of deadlock: [true∗]〈true〉true

Abstraction enables finite description of infinite set of actions.
It does not provide full support for data-dependence.

55/105



Temporal Logic

Extended HM-logic + action abstraction + data:

φ ::= φ ∧ φ | φ ∨ φ | [ρ]φ | 〈ρ〉φ | b | ∀x:D φ | ∃x:D φ
ρ ::= ε | α | ρ · ρ | ρ+ ρ | ρ∗ | ρ+

α ::= a | a(d, . . . , d) | b | α ∧ α | α ∨ α | ¬α | ∀x:D α | ∃x:D α

Example

No a(n) action with n < 10 is allowed to occur:

∀n:N(n < 10) =⇒ [true∗ · a(n)]false

All a(n) actions can be followed by a(n+1) actions:

∀n:N[true∗ · a(n)]〈true∗ · a(n+1)〉true

56/105



Temporal Logic

Exercise

s1

s2 s3

a(2)a(1)

c

Which of the following holds:

s1 |= ∃n:N [a(n)]〈c〉true
s1 |= [∃n:N a(n)]〈c〉true

57/105



Temporal Logic

Exercise

s1

s2 s3

a(2)a(1)

c

Which of the following holds:

s1 |= ∃n:N [a(n)]〈c〉true Yes.

s1 |= [∃n:N a(n)]〈c〉true No.

57/105



Temporal Logic

Patterns coding for functional properties:

Invariance: . [true∗]ψ
Safety: . [ρ]false
Attainability: . 〈ρ〉true
Fair reachability: [ρ · (¬a)∗]〈(¬a)∗ · a〉true

Outside regular formulae (but still valid µ-calculus formulae):

Inevitability of a: µX. [¬a]X ∧ 〈true〉true
Finitely many a actions: µX. νY. [a]X ∧ [¬a]Y
Infinitely often action a: νX. µY. 〈a〉X ∨ 〈¬a〉Y
ψ holds along ρ-paths while φ fails: . νX. φ ∨ (ψ ∧ [ρ]X)

58/105



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

59/105



Verification

Model Checking Problem

Given a model with initial state s and a formula φ,
decide (compute) whether s |= φ holds or not.

infinity in specifications C(n:N) = a(n) · C(n+1)
infinity in µ-calculus νX(n:N = 0). 〈a(n)〉X(n+1)

60/105



Verification

Model Checking Problem

Given a model with initial state s and a formula φ,
decide (compute) whether s |= φ holds or not.

infinity in specifications C(n:N) = a(n) · C(n+1)
infinity in µ-calculus νX(n:N = 0). 〈a(n)〉X(n+1)

mCRL2 Model Checking Rationale

The two sources of infinity require symbolic techniques to
make model checking tractable in practice PBESs

60/105



Verification

Equation Systems

Sequences of equations of the following form:

(µX(x1:D1, . . . , xn:Dn) = φ)
or

(νX(x1:D1, . . . , xn:Dn) = φ)

X is a (sorted) predicate variable;

φ is a predicate in which predicate variables occur.

61/105



Verification

Equation Systems

Sequences of equations of the following form:

(µX(x1:D1, . . . , xn:Dn) = φ)
or

(νX(x1:D1, . . . , xn:Dn) = φ)

X is a (sorted) predicate variable;

φ is a predicate in which predicate variables occur.

Example(
νX(n:N) = ∀m:N. m ≤ 10 =⇒ Y (n+m)

)(
µY (n:N) = X(n+ 1)

)
61/105



Verification

Methodology

Logic Process

Model Checking
Transformation

Equivalences
Transformation

Equation System

Manipulators/Solvers

62/105



Verification

Example (Infinite State Counter System)

act inc:N;
proc C(n:N) = inc(n) · C(n+1);
init C(0);

n
inc(n)
n := n+1

Absence of deadlock: C(0)
?

|= [true∗]〈true〉true
Equation system encoding absence of deadlock:
. .

(
νX(n:N) = X(n+ 1)

)
Note: X(0) = true iff C(0) is deadlock-free.

63/105



Verification

Solving equation systems is generally undecidable;

Decidable fragment: Boolean Equation Systems;

PBES manipulations:

logic rewriting, e.g.:

φ = ψ =⇒ (νX(d:D) = φ) ≡ (νX(d:D) = ψ)

strengthen/weaken equations, e.g.;

φ v ψ =⇒ (νX(d:D) = φ) ≤ (νX(d:D) = ψ)

Gauß elimination + symbolic approximation;
invariants;
instantiation to BES.

64/105



Verification

Example (Symbolic approximation)

Equation coding absence of deadlock for the counter:(
νX(n:N) = X(n+ 1)

)
Computing the solution to X using symbolic approximation:

Denote the ith approximant of X by Xi:
- X0 = true
- X1 = X(n+ 1)[X := true]

= true

Solution to X is true, since X0 = X1;
Conclusion: the counter system is deadlock-free

65/105



Verification

Tools for Gauß Elimination + Symbolic Approximation:

mucheck (µCRL), and
pbessolve (mCRL2, still under development);

Successful case studies with mucheck:

ABP with infinitely large data domain (instead of the
usual 2 elements);
Bakery Protocol infinite state (natural numbers);
EUV Wafer Handler Controller;
FireWire;

Slow when complex data is involved;

On finite state-spaces, symbolic approximation is often
(not always!) outperformed by explicit state techniques.

66/105



Verification

Example (Instantiation)(
νX(n:N) = n ≤ 2 ∧ Y (n)

) (
µY (n:N) = odd(n) ∨X(n+1)

)
Instantiation to BES for solution of X(0):

1 X(0) = 0 ≤ 2 ∧ Y (0) . = Y (0)
2 Y (0) = odd(0) ∨X(1) . = X(1)
3 X(1) = 1 ≤ 2 ∧ Y (1) . = Y (1)
4 Y (1) = odd(1) ∨X(2) . = true

X(0) 7→ X0 X(1) 7→ X1 Y (0) 7→ Y0 Y (1) 7→ Y1

BES: (νX0 = Y 0) (νX1 = Y 1) (µY0 = X1) (µY1 = true)

67/105



Verification

Instantiation is akin to state-space exploration;

Algorithms for solving BESs:

Gauß Elimination (no symbolic approximation needed!);
Small Progress Measures;
. . .

Linear time algorithms for alternation-free BESs exist;

Tool implementing instantiation and BES solving:
pbes2bool (mCRL2);

Applicable to all finite state systems and formulae;

Remarkable: instantiation and solving can outperform
state space exploration.

68/105



Verification

Instantiation may not terminate:
(
νX(n:N) = X(n+ 1)

)
- Instantiation starting at e.g. X(2)
- X(3) occurs in (X(n+ 1)[n := 2])
- X(4) occurs in (X(n+ 1)[n := 3])
- etcetera

Observe: parameter n is non-influential and can be removed
(tool: pbesparelm):(

νX(n:N) = X(n+ 1)
)
≈
(
νX = X

)
Note: n cannot be removed in:
proc C(n:N) = inc(n) · C(n+1);

69/105



Verification

Open Ends

Develop tooling to support invariants;

Exploit confluence and symmetry for PBESs;

Conduct timed verifications using PBESs;

Transfer regions techniques from Timed Automata;

Develop (and implement) new patterns;

Connect to theorem proving technology.

70/105



Verification

Some References
1 A. Mader, Verification of Modal Properties Using Boolean Equation

Systems, 1997.

2 R. Mateescu, Local model-checking of an alternation-free value-based
modal mu-calculus, 1998.

3 J.F. Groote and T.A.C. Willemse, Verification of temporal properties of
processes in a setting with data, 2005.

4 J.F. Groote and T.A.C. Willemse, Parameterised Boolean Equation
Systems, 2005.

5 M.M. Gallardo, C. Joubert, and P. Merino Implementing influence
analysis using parameterised boolean equation systems, 2006.

6 T. Chen, B. Ploeger, J. van de Pol, and T.A.C. Willemse, Equivalence
checking for infinite systems using parameterized boolean equation
systems, 2007.

7 S.M. Orzan and T.A.C. Willemse, Invariants for parameterised boolean
equation systems, 2008.

71/105



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

72/105



Toolset overview
Introduction

The mCRL2 toolset can be used for modelling, validation
and verification of concurrent systems and protocols.

Developed at the department of Mathematics and
Computer Science of the Technische Universiteit
Eindhoven, in collaboration with LaQuSo and CWI.

The mCRL2 toolset is available for the following
platforms:

Microsoft Windows
Linux
Mac OS X
FreeBSD
Solaris

Available at http://mcrl2.org

73/105

http://mcrl2.org



Toolset overview
Tool categories

Process
specification

Modal
formula

Lineariser
PBES

generator

Theorem
proving

Linear
process

specification

Parametrised
boolean equation

system

Simulators
LTS

generator
BES

generator Solvers

Labelled
transition

system

Boolean
equation
system

Visualisers

user input

abstract

concrete

74/105



Toolset overview
Linear process specifications

LPS tools:

Generation:

mcrl22lps: Linearise a process specification

Information:

lpsinfo: Information about an LPS
lpspp: Pretty prints an LPS

Simulation:

sim: Text based simulation of an LPS
xsim: Graphical simulation of an LPS

75/105



Toolset overview
Linear process specifications (2)

LPS tools:

Optimisation:

lpsconstelm: Removes constant process parameters
lpsparelm: Removes irrelevant process parameters
lpssuminst: Instantiate sum operators
lpssumelm: Removes superfluous sum operators
lpsactionrename: Renaming of actions
lpsconfcheck: Marks confluent tau summands
lpsinvelm: Removes violating summands on invariants
lpsbinary: Replaces finite sort variables by vectors of
boolean variables
lpsrewr: Rewrites data expressions of an LPS
lpsuntime: Removes time from an LPS

76/105



Toolset overview
Labelled transition systems

LTS tools:

Generation:

lps2lts: Generates an LTS from an LPS

Information and visualisation:

ltsinfo: Information about an LTS
tracepp: View traces generated by sim/xsim or lps2lts
ltsgraph: 2D LTS graph based visualisation
ltsview: 3D LTS state based clustered visualisation
diagraphica: Multivariate state visualisation and
simulation analysis for LTSs

Comparison, conversion and minimisation:

ltscompare: Compares two LTSs with respect to
an equivalence or preorder
ltsconvert: Converts and minimises an LTS

77/105



Toolset overview
Parameterised boolean equation systems

PBES tools:

Generation:

lps2pbes: Generates a PBES from an LPS and a
temporal formula
txt2pbes: Parses a textual description of a PBES

Information:

pbesinfo: Information about a PBES
pbes2pp: Pretty prints a PBES

Solving:

pbes2bool: Solves a PBES

Optimisation:

pbesrewr: Rewrite data expressions in a PBES

78/105



Toolset overview
Import and export

Import and export tools:

chi2mcrl2: Translates a χ specification to an mCRL2
specification

pnml2mcrl2: Translates a Petri net to an mCRL2
specification

tbf2lps: Translates a µCRL LPE to an mCRL2 LPS

formcheck : Checks whether a boolean data expression
holds

lps2torx: Provide TorX explorer interface to an LPS

79/105



Toolset demo: dining philosophers

Dining philosophers:

1 Problem description

2 Model the problem

3 Verify the problem

4 A solution

5 Verify the solution

80/105



Toolset demo: dining philosophers
Problem description

Illustrative example of a
common computing problem
in concurrency

5 hungry philosophers

5 forks in-between the
philosophers

Rules:

Philosophers cannot
communicate
Two forks are needed
for eating

p1

p2

p3 p4

p5

f1

f2

f3

f4

f5

81/105



Toolset demo: dining philosophers
Problem description (2)

Deadlock: Every philosopher holds a left fork and waits
for a right fork (or vice versa).

Starvation: If a philosopher cannot acquire two forks
he will starve.

The dining philosophers problem is a generic and abstract
problem used for explaining various issues which arise in
concurrency theory.

The forks resemble shared resources.

The philosophers resemble concurrent processes.

82/105



Toolset demo: dining philosophers
Modelling the problem: data types

Data type for representing the philosophers and the forks:

sort PhilId = struct p1 | p2 | p3 | p4 | p5;
ForkId = struct f1 | f2 | f3 | f4 | f5;

Function for representing the positions of the forks relative to
the philosophers (the left and right fork):

map lf , rf : PhilId → ForkId ;
eqn lf (p1) = f1; lf (p2) = f2; lf (p3) = f3;

lf (p4) = f4; lf (p5) = f5;
rf (p1) = f5; rf (p2) = f1; rf (p3) = f2;
rf (p4) = f3; rf (p5) = f4;

83/105



Toolset demo: dining philosophers
Modelling the problem: individual processes

Modelling the behaviour of the philosophers:

eat(p): philosopher p eats

get(p, f): philosopher p takes up fork f

put(p, f): philosopher p puts down fork f

act get, put : PhilId × ForkId ;
eat : PhilId ;

proc Phil(p : PhilId) =
(get(p, lf (p)) · get(p, rf (p)) + get(p, rf (p)) · get(p, lf (p)))
· eat(p)
· (put(p, lf (p)) · put(p, rf (p)) + put(p, rf (p)) · put(p, lf (p)))
· Phil(p);

84/105



Toolset demo: dining philosophers
Modelling the problem: individual processes

Modelling the behaviour of the forks:

up(p, f): fork f is picked up by philosopher p

down(p, f): fork f is put down by philosopher p

act up, down : PhilId × ForkId ;
proc Fork(f : ForkId) =∑

p:Phil up(p, f) · down(p, f) · Fork(f);

85/105



Toolset demo: dining philosophers
Modelling the problem: communication and initialisation

Complete specification:

put all forks and philosophers in parallel

synchronise on actions get and up,
and on actions put and down

act lock, free : PhilId × ForkId ;
init ∇({lock, free, eat},

Γ({get|up→ lock, put|down→ free},
Phil(p1) ‖ Phil(p2) ‖ Phil(p3) ‖ Phil(p4) ‖ Phil(p5) ‖
Fork(f1) ‖ Fork(f2) ‖ Fork(f3))) ‖ Fork(f4) ‖ Fork(f5)
));

86/105



Toolset demo: dining philosophers
Analysing the model

Linearisation:
mcrl22lps -vD dining5.mcrl2 dining5.lps

Sum instantation:
lpssuminst -v dining5.lps dining5.sum.lps

Constant elimination:
lpsconstelm -v dining5.sum.lps dining5.sum.const.lps

Parameter elimination:
lpsparelm -v dining5.sum.const.lps

dining5.sum.const.par.lps

Generate state space:
lps2lts -vD dining5.sum.const.lps dining5.sum.const.lts

Deadlock detected!

87/105



Toolset demo: dining philosophers
A Possible solution: the waiter

Waiter:

Decides whether a philosopher may pick up two forks

Only allowed when less than four forks are in use

p1

p2

p3 p4

p5

f1

f2

f3

f4

f5

88/105



Toolset demo: dining philosophers
Modelling the solution: actions

New actions:

ack(p): philosopher p takes the opportunity to pick up
two forks and eat

done(p): philosopher p signal the waither that he is done
eating and has put down both forks

act r ack, s ack, ack : Phil ;
r done, s done, done : Phil ;

89/105



Toolset demo: dining philosophers
Modelling the solution: the waiter

Modelling the behaviour of the waiter:

proc Waiter(n : N) =
(n < 4) →

∑
p:Phil s ack(p) ·Waiter(n+2)

+ (n > 1) →
∑

p:Phil r done(p) ·Waiter(Int2Nat(n−2));

90/105



Toolset demo: dining philosophers
Modelling the solution: the philosophers

Extend the philosopher process:

proc Phil(p : PhilId) =
r ack(p)
· (get(p, lf (p)) · get(p, rf (p)) + get(p, rf (p)) · get(p, lf (p)))
· eat(p)
· (put(p, lf (p)) · put(p, rf (p)) + put(p, rf (p)) · put(p, lf (p)))
· s done(p)
· Phil(p);

91/105



Toolset demo: dining philosophers
Modelling the solution: communication and initialisation

Complete specification:

init ∇({lock, free, eat, ack, done},
Γ({get|up→ lock, put|down→ free

r ack|s ack→ ack, r done|s done→ done,

Phil(p1) ‖ Phil(p2) ‖ Phil(p3) ‖ Phil(p4) ‖ Phil(p5) ‖
Fork(f1) ‖ Fork(f2) ‖ Fork(f3) ‖ Fork(f4) ‖ Fork(f5) ‖
Waiter(0)
));

92/105



Toolset demo: dining philosophers
Verifying the solution

Deadlock freedom: Yes

[true∗] 〈true〉 true

1 lps2pbes --formula=nodeadlock.mcf dining5 waiter.lps
dining5 waiter nd.pbes

2 pbes2bool dining5 waiter nd.pbes

Starvation freedom: Yes

∀p:Phil [true∗ · (¬eat(p))∗] 〈(¬eat(p))∗ · eat(p)〉 true

1 lps2pbes --formula=nostarvation.mcf dining5 waiter.lps
dining5 waiter ns.pbes

2 pbes2bool dining5 waiter ns.pbes

93/105



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

94/105



Hands-on experience

Start up:

Boot the laptop into Ubuntu!

Log in as usual (local).

Start a terminal window and go to directory:

~/Desktop/VendingMachine for the vending machine

~/Desktop/RopeBridge for the rope bridge

Directories are also visible on your desktop.

Information on mCRL2 language/tools can be found:

in your handouts

on the website: http://mcrl2.org

Good luck!

95/105

~/Desktop/VendingMachine
~/Desktop/RopeBridge
http://mcrl2.org



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

96/105



Outline

1 Basic process algebra

2 Parallelism and abstraction

3 Processes with data

4 Linear processes

5 Temporal Logic

6 Verification

7 Toolset overview and demo

8 Hands-on experience

9 Wrap-up

10 Industrial case studies

97/105



Industrial case studies
Overview

Some industrial case studies:

Océ: automated document feeder

Add-controls: distributed system for lifting trucks

CVSS: automated parking garage

Vitatron: pacemaker

AIA: ITP load-balancer

98/105



Industrial case studies
Océ: automatic document feeder

Feed documents to the scanner automatically

One sheet at a time

Prototype implementation

Analysis:

Model: µCRL

Verification: CADP
µ-calculus model checking

Size: 350,000 states
and 1,100,000 transitions

Actual errors found: 2

99/105



Industrial case studies
Add-controls: distributed system for lifting trucks

Each lift has a controller

Controls are connected in a circular network

3 errors found after testing by the developers

Analysis:

Model: µCRL

Verification: µ-calculus

Actual errors found: 4

Lifts States Transitions

2 383 716
3 7,282 18,957
4 128,901 419,108
5 2,155,576 8,676,815

100/105



Industrial case studies
CVSS: automated parking garage

An automated parking garage:

101/105



Industrial case studies
CVSS: automated parking garage (2)

Verified design:

Design of the control software

Verified the safety layer of this design

Analysis:

Design: 991 lines of mCRL2

Verification: 217 lines of mCRL2

Size: 3.3 million states and 98 million transitions

Simulation using custom built visualisation plugin

102/105



Industrial case studies
CVSS: automated parking garage (3)

Design flaws detected using the visualisation plugin:

103/105



Industrial case studies
Vitatron: pacemaker

Controlled by firmware

Must deal with all possible rates and arrhythmias

Firmware design

Analysis:

Model: mCRL2 (and Uppaal)

Verification: mCRL2 state space
generation and µ-calculus model checking

Size:

full model: 500 million states
suspicious part: 714.464 states

Actual errors found: 1 (known)

104/105



Industrial case studies
AIA: ITP load-balancer

ITP: Intelligent Text Processing

Print job distribution over document processors

7,500 lines of C code

Analysis:
Load balancing part

Model: mCRL2

Verification: mCRL2
state space generation

Actual errors found: 6

Size: 1.9 billion states
and 38.9 billion transitions

LaQuSo certification
105/105

	Basic process algebra
	Parallelism and abstraction
	Processes with data
	Linear processes
	Temporal Logic
	Verification
	Toolset overview and demo
	Hands-on experience
	Wrap-up
	Industrial case studies

