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1 Introduction
In a typical distributed system, a number of components are running simultaneously in parallel. By
working together, these components provide the functionalities that are required from the complete
system. Although the behaviour of a single component can usually be specified and analysed rela-
tively easily, the behaviour of the system as a whole is often too complex to be specified or analysed
thoroughly. This is primarily due to (and inherent to) the parallelism between the system’s com-
ponents. An exhaustive analysis of all of the system’s states and execution paths thus becomes a
formidable task – even for a system with a relatively small number of components.

In this part of the IPA Basic Course on Formal Methods, we introduce and explain process algebra,
which is a formalism that is well suited for the specification of system behaviour. This is done within
the context of the mCRL2 specification language [4] and toolset [9]. With the toolset, users can
specify the behaviour of a distributed system and analyse it using automated techniques. In Section
1.1 we give a short history of mCRL2. In Section 1.2 we give an overview of the remainder of this
document.

1.1 History
As its name suggests, mCRL2 is the successor of the µCRL specification language and toolset [3,
6, 7]. The µCRL toolset has been developed at and maintained by the Centre for Mathematics and
Computer Science (CWI) in Amsterdam since the beginning of the nineties of the previous century.
The µCRL language extends a basic process algebra – based on the Algebra of Communicating
Processes (ACP) [1] – with the possibility to define and use abstract data types. The ability to use
data within a process algebra specification is a valuable (perhaps even a necessary) enhancement
when applying the toolset to a real-life system.

The µCRL language has clear and well-defined syntax and semantics. Over the years, various
tools have been developed for µCRL, all with a strong foundation in formal theories. The toolset has
been used in numerous case studies for the analysis of systems and protocols developed by both the
industry and the academic world (see for example [2, 5, 12]). In nearly all cases the analysis revealed
errors in the system being analysed.

Recently, researchers at the Eindhoven University of Technology (TU/e) started the development
of the mCRL2 language and toolset. Based on user experiences with µCRL, their focus is to develop
a more user friendly language and tool interface. The most substantial improvement to the language
on the data side is the introduction of predefined and higher-order data types, lambda calculus ex-
pressions and various other language constructs that are designed to make the data type definitions
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Figure 1: Overview of the mCRL2 toolset

shorter and easier to read and write. Regarding the process algebra, the most remarkable change is
the introduction of multiactions which allow for a more straightforward conversion of Petri nets to
mCRL2 specifications. Furthermore, the language is truly compositional, meaning that large systems
can be specified in terms of smaller components. Finally, the mCRL2 toolset is being extended with
a graphical user interface which improves the usability of the toolset and can be used alongside the
traditional command line interface.

1.2 Overview
In general, the following steps are involved in the analysis of a system with mCRL2 (see also Fig-
ure 1):

• A specification of the system’s behaviour is written in the mCRL2 language.

• This specification is converted to a Linear Process Equation (LPE) by the mCRL2 lineariser
tool. As we shall see, an LPE is an mCRL2 specification in a stricter format.

• The LPE can be modified using various manipulation tools and can be simulated using various
simulation tools.

• A Labelled Transition System (LTS) or state space is generated from the modified LPE.

Subsequently, this LTS can be analysed for errors using model checking techniques. This is a topic
which is beyond the scope of this document. The remainder of this document contains the following
sections:

2



• Language (Section 2);

• Linear Process Equations (Section 3);

• Toolset (Section 4).

Every section contains exercises to practise the material during the course.

2 Language
This section describes the mCRL2 language. Roughly, the language consists of a process algebra part
and data specification part. These parts are explained in Sections 2.1 and 2.2, respectively.

The precise syntax of the language can be found in Appendix A. Note that this syntax, which is
used in this and the following sections, uses a rich text format. The toolset, however, uses a plain text
format, which is related to the rich notation in Appendix B.

2.1 Process algebra
The most basic notion in the mCRL2 process language is an action. Actions represent atomic events.
The following example illustrates how actions send , receive and error can be declared:

act send, receive;
error;

In general we write a, b, . . . to denote actions.
Process expressions, denoted by p, q, . . ., describe when certain actions can be executed. For

example, “a is followed by either b or c”. We make this notion more formal by introducing operators.

2.1.1 Basic operators
Process expressions are compositions of actions using a number of operators. The most basic expres-
sions are as follows:

• Actions a, b etc. as described above.

• Deadlock or inaction δ, which does not display any behaviour.

• Alternative composition, written as p+q. This represents a non-deterministic choice between
p and q.

• Sequential composition, written p · q. This expression first executes p and then q (assuming p
terminates).

When writing process expressions we usually omit parentheses as much as possible. To do this, we
give · a higher precedence than + and use the associativy of both operators. So, instead of writing
(a · (b · c)) + (d + e) we usually write a · b · c + d + e.

To give meaning to processes we use LTSs. In Figure 2 the LTS corresponding to the process
expression a · b + c · (d · δ + e) is shown. To be able to distinguish deadlock (δ) and successful
termination (e.g. after an action a) we use closed nodes to indicate that a process has terminated and
open nodes if a process has not (yet) done so. Each open node, usually called a state, corresponds to
a process described by the (sub-)graph with this node as root. In Figure 2 we have labelled the states
with the corresponding process expressions.
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a · b + c · (d · δ + e)

b d · δ + e

δ
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Figure 2: LTS of a · b + c · (d · δ + e)

In Figure 3 the LTSs for the basic operators are drawn. Figure 3(c) denotes the LTS for a general
process, meaning that p0 is the (only) initial state of p and p1 to pn (n ≥ 0) are its terminating states.
As shown in Figure 3(d), the alternative composition of two processes is created by merging their
initial states. For the sequential composition p · q each of the terminating states of p is replaced with
a copy of q (Figure 3(e)).

(a) δ

a

(b) a

p0

p1 pn

(c) p

p0, q0

p1

pn q1

qm

(d) p + q

p0

p1, q0 pn, q0

q1 qm q1 qm

�����

(e) p · q

Figure 3: LTSs of the basic operators

Exercise 2.1 Draw the LTS for each of the following processes:

1. (a + b) · c

2. a · c + b · c

3. a + δ
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4. δ · (a + b)

Looking at Exercises 2.1.1 and 2.1.2, we see that after doing either an a or a b both processes have
exactly the same behaviour (namely c). To express this equality with respect to the (observable)
behaviour a process describes we use (strong) bisimulation equivalence. Which processes are equal,
or bisimilar, according to this equivalence is stated as follows. For every action one process can
perform, the other has to be able to perform the same action as well and the resulting processes
should be bisimilar. Furthermore, if one process has terminated the other should have done so as
well. For example, a · (b + c) can perform an a, which results in a process b + c, and a · b + a · c
can also perform an action a, but not such that the resulting process is equal to b + c. Thus, these
processes are not bisimilar.

Other equivalences can also be used. With trace equivalence, for instance, two processes are
equal when the sets of traces that the processes can execute are equal.1 In this case a · (b + c) and
a · b + a · c, which are not bisimilar, would be equivalent as for both we have that {ε, a, a · b, a · c},
with ε the empty trace, is the set of traces.

We explain our choice for bisimilarity by means of the story “The Lady, or the Tiger?” by Frank
Stockton [14], which tells about a barbaric king who puts his accused subjects in the middle of a
public arena. In this arena, there are two closed doors, exactly alike. The fate, and thereby also the
guilt, of the accused is decided by forcing him to open one of the two. Behind one of the doors
is a hungry tiger which will tear him to pieces immediately when given the opportunity. The other
conceals a beautiful lady to whom, once revealed, he will be married instantly.

When modelling such a trial, we treat the opening of the doors as an atomic action, as well as
the resulting behaviour after opening each of the doors. The correct model for the above story is
open door ·marry lady + open door · confront tiger , as depicted in Figure 4(a). It expresses that
whether you will be confronted with the lady or the tiger depends on the open door action. The
model open door · (marry lady + confront tiger ) in Figure 4(b), however, is wrong, because after
opening a door the accused person can somehow still choose between meeting the tiger and marrying
the lady.

open door open door

marry lady confront tiger

(a)

open door

marry lady confront tiger

(b)

Figure 4: The lady, or the tiger?

We use axioms to express the properties of the operators. The axioms for the operators introduced so
far are listed in Table 1. Here, x, y, z are variables that stand for unknown process expressions. With
the axioms we can prove, for instance, a+(δ+a) equal to a using axioms A2, A6 and A3 as follows:

a + (δ + a)
A2
= (a + δ) + a

A6
= a + a

A3
= a

1We will not define the set of traces of a process formally.
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A1 x + y = y + x
A2 x + (y + z) = (x + y) + z
A3 x + x = x
A4 (x + y) · z = x · z + y · z
A5 (x · y) · z = x · (y · z)
A6 x + δ = x
A7 δ · x = δ

Table 1: Basic operator axioms

We introduce more axioms along the way. In Appendix C a complete overview of all axioms is
given. Note that some axioms given in this section are slightly simplified versions of those given in
Appendix C due to the incremental structure of this document.

Exercise 2.2 Prove the following propositions:

1. a + (δ + a) = a (without using axiom A2)

2. δ · (a + b) = δ · a + δ · b

3. p + q = δ implies p = δ

In some occasions it helps to use p ≤ q, which is defined as p + q = q. This relation is sometimes
called summand inclusion and can be used to split a proof obligation in two (possibly) simpler parts
(see Exercise 2.3.3).

Exercise 2.3 Prove the following propositions:

1. p ≤ p + q

2. δ ≤ p

3. p = q if, and only if, p ≤ q and q ≤ p (anti-symmetry)

4. p + q = δ implies p = δ

2.1.2 Recursion

Often processes have some recursive behaviour. A coffee machine, for example, will normally not
stop (terminate) after serving only one cup of coffee. To facilitate this, we introduce process ref-
erences, written as P . These are references to variables declared by process equations, that are
introduced next. Using process expressions we can form process equations. Take for instance the
following declaration:

act switch , break ;
proc Off = switch · On;

On = break · δ + switch · Off ;

This declares process references (often just called processes) Off and On. Process Off can do a
switch action, after which it behaves as process On. Process On can also do a switch action and
return to process Off , but it might also do a break action, which results in a deadlock.
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A complete process specification needs to have an initial process. For example:

init Off ;

Exercise 2.4 Draw the LTS for Off , as described above.

Note that with recursion the composition of LTSs with the alternative operator as shown in Figure
3(d) is no longer valid. For example, given a specification P = a · P , the composition P + b would
result in Q = a · Q + b instead of a · P + b. The precise correct composition is beyond the scope of
this document.

2.1.3 Parallel operators

Having covered the basics, we take a look at some additional operators that play an essential role in
process algebra, namely the parallel operators:

• Parallel composition or merge p ‖ q, which interleaves and synchronises the actions of p with
those of q.

• Synchronisation operator p|q, which synchronises the first actions of p and q and combines
the rest of p and q like the parallel composition.

• Multiaction a | . . . | b, which is a special instance of the synchronisation operator where the
arguments are single actions (or multiactions). The meaning of a multiaction is that all actions
occurring in it happen at the same moment (i.e. truly in parallel). We often write α or β for
multiactions.

• Left merge p T q, which is an auxiliary operator to allow for the axiomatisation of the parallel
composition. (It allows only p to execute a first action and thereafter combines the remainder
of p with q as the parallel composition does.)

The precedence of the operators introduced so far, in decreasing order, is as follows: |, ·, {‖, T}, +.
The related axioms are given in Table 2. Here α and β are multiactions and αδ and βδ are

multiactions or deadlock.

Exercise 2.5 Prove the following propositions:

1. (a + b) ‖ c = a · c + b · c + c · (a + b) + a|c + b|c

2. a ‖ δ = a · δ

3. p ‖ q = q ‖ p

Does the following hold? Why (not)?

4. (p + q) ‖ r = p ‖ r + q ‖ r
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MA3’ α|β = β |α
MA4 α|(β |γ) = (α|β)|γ

CM1 x ‖ y = x T y + y T x + x|y
CM2 αδ T x = αδ · x
CM3 αδ · x T y = αδ · (x ‖ y)
CM4 (x + y) T z = x T z + y T z
CM5 (αδ · x)|βδ = αδ |βδ · x
CM6 αδ |(βδ · x) = αδ |βδ · x
CM7 (αδ · x)|(βδ · y) = αδ |βδ · (x ‖ y)
CM8 (x + y)|z = x|z + y |z
CM9 x|(y + z) = x|y + x|z

CD1 δ |αδ = δ
CD2 αδ |δ = δ

Table 2: Parallel operator axioms

2.1.4 Additional operators

Now that we are able to put various processes in parallel, we need ways to restrict the behaviour
of this composition to model the interaction between processes. For this purpose we introduce the
following operators:

• Restriction operator or allow ∇V (p), where V is a set of multiactions that specifies exactly
which multiactions from p are allowed to occur.

• Blocking operator ∂H(p) (also known as encapsulation), where H is a set of action names
that are not allowed to occur.

• Renaming operator ρR(p), where R is a set of renamings of the form a → b, meaning that
every occurrence of action a in p is replaced by action b.

• Communication operator ΓC(p), where C is a set of allowed communications of the form
a0 | . . . | an → c, with n ≥ 1, meaning that every group of actions a0, . . . , an within a
multiaction is replaced by c.

Before we can give the axioms for these operators, we first need to introduce some special functions
on multiactions that correspond to the above operators. We use conversions 〈〉 and | to convert
multiactions to their corresponding multiset and back, respectively. We extend these conversions to
sets V and C in the straightforward way given in Appendix C. We write multisets as 〈a1, . . . , an〉
and denote them by m and n.

For the blocking operator we need to detect whether or not actions in a multiaction occur in the
set of actions H . We do this by taking the intersection of the corresponding multiset with H , resulting
in a set (e.g. (a|b|b)〈〉 ∩ {b, c} = 〈a, b, b〉 ∩ {b, c} = {b}).

The renaming operator works by applying the function R to a multiaction with •. For example,
R • a|b = R(a)|R(b), where R(a) = c if a → c ∈ R (otherwise R(a) = a). Note that every action
may only occur once as a right-hand side of a → in R.

Somewhat more complicated is the function γC(m), which applies the communication described
by C to a multiset m. It replaces every occurrence of a left-hand side of a communication it can find
in m with the appropriate result. More precisely:
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γC(m ∪ n) = γC(m) ∪ 〈c〉 if n → c ∈ C〈〉

γC(m) = m if there is no such n

For example, γ{a|b→c}(〈a, a, b, c〉) = 〈a, c, c〉 and γ{a|a→a,b|c|d→e}(〈a, b, a, d, c, a〉) = 〈a, a, e〉. To
assure that γC does not have multiple solutions, communications in C should be defined such that
left-hand sides are disjoint (e.g. C = {a|b → c, a|d → e} is not allowed).

Axioms for the additional operators are listed in Table 3.

VD ∇V (δ) = δ
V1’ ∇V (α) = α if α〈〉 ∈ V〈〉

V2’ ∇V (α) = δ if α〈〉 6∈ V〈〉

V3 ∇V (x + y) = ∇V (x) + ∇V (y)
V4 ∇V (x · y) = ∇V (x) · ∇V (y)

DD ∂H(δ) = δ
D1 ∂H(α) = α if α〈〉 ∩ H = ∅
D2 ∂H(α) = δ if α〈〉 ∩ H 6= ∅
D3 ∂H(x + y) = ∂H(x) + ∂H(y)
D4 ∂H(x · y) = ∂H(x) · ∂H(y)

RD ρR(δ) = δ
R1 ρR(α) = R • α
R3 ρR(x + y) = ρR(x) + ρR(y)
R4 ρR(x · y) = ρR(x) · ρR(y)

GD ΓC(δ) = δ
G1 ΓC(α) = γC(α〈〉)|
G3 ΓC(x + y) = ΓC(x) + ΓC(y)
G4 ΓC(x · y) = ΓC(x) · ΓC(y)

Table 3: Additional operator axioms

Exercise 2.6 Prove the following propositions:

1. ∂{b}(a · ρ{c→a}(b|c)) = a · δ

2. Γ{a|c→d}(a|b ‖ c) = a|b · c + c · a|b + b|d

3. ∂{sa,sb}(Γ{sa|sb→s}(a · sa ‖ sb · b)) = a · s · b

4. Γ{sa|sb→s}(∇{a,b,sa|sb}(a · sa ‖ sb · b)) = a · s · b

5. ∇{a,b,s}(Γ{sa|sb→s}(a · sa ‖ sb · b)) = a · s · b

Exercise 2.7 Assume we have some component S that communicates via a channel K with an en-
vironment. We are only interested in the communication between S and K, so we specify S as
follows:

proc S = r1 · s2 · S;
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The communication behaviour of S is specified as repeatedly receiving something over connection 1
and sending something over connection 2. (Note that these somethings are not modelled, as they are
not relevant here.)

The channel can be specified as follows (only considering the connection to S):

proc K = s1 · K + r2 · K;

The composition of S and K would then be:

init ∇{ c1,c2 }(Γ{ r1|s1→c1,r2|s2→c2 }(K ‖ S));

1. Simplify the initial process to a process expression with only basic operators.

2. What happens if the specification of channel K is replaced with the following trace equiva-
lent specification of L, that allows burst communication over connection 1? (In other words,
simplify the system again with L instead of K.)

proc L = s1 · L + s1 · s1 · L + r2 · L;

2.1.5 Abstraction
An important notion in process algebra is that of abstraction. Usually the requirements of a system
are defined in terms of external behaviour (i.e. the interactions of the system with its environment),
while one wishes to check these requirements on an implementation of the system which also contains
internal behaviour (i.e. the interaction between the components of the system). So it is desirable to
be able to abstract from the internal behaviour of the implementation. For this purpose the following
constructs are available:

• Internal action or silent step τ , which is a special multiaction that denotes that some (un-
known) internal behaviour happens.

• Hiding operator τI (p), which hides (or renames to τ ) all actions in I in all multiactions in p.

Because one can only observe external actions, (the effects of) internal actions are only observable
if such an action determines a choice. To reflect this in the equivalence on processes we need a
somewhat weaker notion of bisimulation. This branching bisimulation equivalence differs in the
fact that if one process can perform a τ , then the other does not necessarily has to be able to perform
a τ as well. In this case, however, it is needed that the τ performed by the first process results in a
process that is equivalent to the other. Also, in matching an action (both external and τ ) it is allowed
to first execute some internal actions. For example, p = τ · a and q = a are branching bisimilar
because q can skip the τ of p and p is allowed to first do its τ before matching q’s a.

A somewhat stricter variant named rooted branching bisimulation equivalence is needed to
make sure that processes are also equal within some context. This equivalence adds a rootedness
condition to branching bisimulation equivalence stating that internal actions that can be performed
from the initial state of a process should be considered as external actions. So τ · a and a are not
rooted branching bisimilar, but a · τ · b and a · b are.

The axioms are listed in Table 4. For the axioms of the hiding operator we use a function θI(α) which
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removes all actions in set I from multiaction α. It is defined by θI(a|α) = θI(α) and θI(a) = τ if
a ∈ I and θI(a|α) = a|θI(α) and θI(a) = a otherwise. Also, θI(τ) = τ .

Note that axioms V1’ and V2’ (from Table 3) are replaced by slightly different versions. Because
τ is not observable, it cannot be blocked and will always be allowed. Axiom T2 expresses that a τ
can only be removed from a choice if it does not reduce the possible behaviour. When a (first) action
of y is executed, we have no way of determining which of the two occurrences of y it was. However,
if we have the expression τ ·x+ y instead and τ happens, we can observe that it is no longer possible
to execute y and thus the executed τ is observable. This also explains why the initial x is required
and there is no axiom τ ·x = x; without it there could be another alternative in the context. Note that
this corresponds to the rootedness condition.

Note that τ is not allowed to occur in sets V ,H ,R and C. Also, the conversion α〈〉 removes any
τ that occurs in α (e.g. (a |τ |b)〈〉 = 〈a, b〉). Finally, we now allow communications in C to be of
the form a|b (besides a|b → c), meaning that a and b communicate to τ .

MA2’ α|τ = α

T1 x · τ = x
T2 x · (τ · (y + z) + y) = x · (y + z)

TID τI (δ) = δ
TI1 τI (α) = θI(α)
TI3 τI (x + y) = τI(x) + τI(y)
TI4 τI (x · y) = τI (x) · τI(y)

V1 ∇V (α) = α if α〈〉 ∈ (V ∪ {τ})〈〉
V2 ∇V (α) = δ if α〈〉 6∈ (V ∪ {τ})〈〉

Table 4: Abstraction axioms

Exercise 2.8 Prove the following propositions:
1. τ{ b,c }(a · (b + c · b) · d) = a · d

2. τ{ b }(a|b) = a

Exercise 2.9 Assume we have components Ca, Cb and Cc that are connected sequentially (i.e. there
is a connection between Ca and Cb and a connection between Cb and Cc). They are specified as
follows, with the purpose of implementing a leader election protocol:

The protocol works like this: if you have only one neighbour, then you can tell your neighbour
that you give up your chance to be leader (with an si). If a neighbour tells you that he will no
longer participate (via ri), you no longer consider him to be your neighbour and if he was your only
neighbour, you proclaim your leader position (li).

act r1, r2, s1, s2, l1, l2, l3;
proc Ca = s1 + r1 · l1;

Cb = r1 · (s2 + r2 · l2) + r2 · (s1 + r1 · l2);
Cc = s2 + r2 · l3;

init τ{ c1,c2 }(∂{ r1,r2,s1,s2 }(Γ{r1|s1→c1,r2|s2→c2}(Ca ‖ Cb ‖ Cc)));

Simplify the initial process.
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2.2 Data
The mCRL2 data language is a functional language based on higher-order abstract data types [10,
11]. Sorts (types), constructors, functions and their definitions can be declared. For instance, the
following declares the sort A with constructors c and d. Also functions f ,g and h are declared and
(partially) defined:

sort A;
cons c, d : A;
map f : A × A → A;

g : A → A;
h : A → A → A;

var x : A;
eqn f(c, x) = c;

f(d, x) = x;
g = h(c);

In the equations variables are used to represent unknown data expressions. Note that function types
are first-class citizens: functions may return functions.

Sort references can be declared. For instance in

sort B = A;

B is a synonym for A. Using sort references it is possible to define recursive sorts (see below).
Furthermore, lambda abstractions and where clauses can be used. For example:

var x, y : A;
eqn h(x) = λy′:A(λz:Af(z, g(z)))(g(f(x, y′)));

h(x)(y) = f(z, g(z)) whr z = g(f(x, y)) end;

Note that the two definitions of h are equivalent.
As mentioned above, mCRL2 also has concrete data types. These consist of standard data types

and functions as well as type constructors. For the former, we have the following:

• Booleans (B) with constants true, false and operators ¬, ∧, ∨, ⇒. For all sorts the equality
operator ≈, inequality 6≈, conditional if and quantifiers ∀ and ∃ are provided. So for instance
the expression c ≈ c is equal to true, c 6≈ c to false, if (true, c, d) to c, and ∀x:A.(f(x, c) ≈ c)
to true (using the above definition of f ). Also, expressions of sort B may be used as conditions
in equations, for instance:

var x, y : A;
eqn x ≈ y → f(x, y) = x;

• Unbounded positive (N+), natural (N), integer (Z) and non-negative real numbers (R≥0) with
relational operators <, ≤, >, ≥, unary negation −, binary arithmetic operators +, −, ∗, div,
mod and arithmetic operations max , min, abs , succ, pred , exp. Also conversion functions
A2B are provided for all sorts A, B ∈ {N

+, N, Z, R≥0 }.
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There are a number of type constructors, of which the first is a structured type. This is a compact
way of defining a sort and its distinct constructor functions, together with projection and recogniser
functions for these constructors. For instance, a sort MS of machine states can be declared by:

sort MS = struct off | standby | starting | running | broken;

This sort has constructors off , standby , starting , running and broken and no projection or recog-
niser functions. Note that the constructors are distinct, so e.g. off ≈ off is true and off ≈ standby

is false .
A sort of binary trees with numbers as their leaves can be defined as follows:

sort T = struct leaf (value : N)?is leaf | node(left : T, right : T )?is node;

This declares sort T with constructors leaf : N → T and node : T × T → T , projection functions
value : T → N and left , right : T → T , and recognisers is leaf : T → B and is node : T → B.
So for example value(leaf (n)) = n and left(node(t, u)) = t, and is leaf (leaf (n)) = true and
is leaf (node(t, u)) = false .

We also have a list type constructor. The following declares a list containing elements of sort A:

sort AL = List(A);

This list has constructors [ ] : AL and . : A ×AL → AL. Other operators include / , ++ (concatena-
tion), . (element at), head , tail , rhead and rtail together with list enumeration [ e0, . . . , en ]. The fol-
lowing expressions of type AL are all equivalent: [ c, d, d ], c . [ d, d ], [ c, d ] / d and [ ] ++ [ c, d ]++ [ d ].

Possibly infinite sets and bags where all elements are of sort A are denoted by Set(A) and
Bag(A), respectively. The following operations are provided for these sort expressions: set enu-
meration { a0, . . . , an }, bag enumeration 〈a0 : c0, . . . , an : cn〉 (ci is the multiplicity or count of
element ai), set/bag comprehension {x : s | c }, element test ∈, bag multiplicity count , set comple-
ment s and infix operators ⊆, ⊂, ∪, −, ∩ with their usual meaning for sets and bags. Also conversion
functions Set2Bag and Bag2Set are provided.

Integration with the process language
Actions can be parameterised with data. For example:

act a;
b : B;
c : B × N

+;

This declares parameterless action a, action b with a data parameter of sort B, and action c with two
parameters of sort B and N

+ respectively. For the above declaration, a, b(true) and c(false , 6) are
valid actions.

For some operators this parameterisation involves small changes in the semantics:

• Restriction ∇V (p), blocking ∂H(p) and hiding τI(p) disregard the data parameters of the mul-
tiactions in p when determining if an (multi)action should be blocked or hidden. For example,
∇{ b|c }(a(0) + b(true, 5)|c) = b(true, 5)|c and ∂{ b }(a(0) + b(true, 5)|c) = a(0).

• Renaming ρR(p) also disregards the data parameters, but when a renaming is applied the data
parameters are retained. For example, ρ{ a→b }(a(0) + a) = b(0) + b.
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• Communication ΓC(p) has become stricter: for each communication a0 | · · ·|an → c, n ≥ 1,
multiactions a0(. . .) | · · · |an(. . .) in p are only replaced by c(. . .) when the data parameters
of all ai are equal (both the number of parameters and their values). The data parameters are
retained in action c. For example Γ{ a|b→c }(a(0)|b(0)) = c(0), but also Γ{ a|b→c }(a(0)|b(1)) =
a(0)|b(1). Furthermore, Γ{ a|b→c }(a(1)|a(0)|b(1)) = a(0)|c(1).

This requires some small changes in the axioms for these operators. The new axioms can be found in
Appendix C.

Next to actions, process references can be parameterised. For example:

proc P (d : B, e : N
+) = a · P (d, e)

+ b(d) · P (¬d, e + 1)
+ c(d, e) · P (false ,max (e − 1, 1));

This declares the process P with data parameters d and e of sort B and N
+, respectively. Note that

the sorts of the data parameters are declared in the left-hand side of the equation. In the process
references on the right-hand side the values of the data parameters are specified.

Data can influence process behaviour by means of a conditional operator, written as c → p � q,
where c is a data expression of sort B. This process expression behaves as an if-then-else construct: if
c is true then p is executed, else q is executed. The else part is optional: c → p is a valid expression
that behaves as c → p � δ. The operator binds stronger than ‖ and T, but weaker than ·. The
corresponding axioms for the conditional operator are given in Table 5.

C1 true → x � y = x
C2 false → x � y = y
C3 c → x = c → x � δ

Table 5: Conditional axioms

Exercise 2.10 Prove the following propositions:

1. c → p � q = c → p + ¬c → q

2. (c → p � q) · r = c → p · r � q · r

We also extend process expressions with the ability to quantify over data types. For this we
introduce the summation operator

∑
d:D p where p is a process expression in which data variable d

may occur. The corresponding behaviour is p[d0/d] + · · ·+ p[dn/d], n ≥ 0, for all elements di ∈ D.
Here, p[di/d] stands for p in which each free occurrence of d (i.e. not bound by another

∑
d:D) is

replaced by di. Summation has the lowest precedence after +.
Summations over a data type are particularly useful to model the receipt of an arbitrary element

of a data type. For example the following process is a description of a single-place buffer, repeatedly
reading a natural number using action name r, and then delivering that value via action name s.

act r, s : N;
proc Buffer =

∑
n:N

r(n) · s(n) · Buffer ;

The axioms for summation are given in Table 6. Here X and Y are function variables from the
data type D to process expressions.
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SUM1
∑

d:D x = x
SUM3

∑
d:D X(d) =

∑
d:D X(d) + X(e) with e ∈ D

SUM4
∑

d:D(X(d) + Y (d)) =
∑

d:D X(d) +
∑

d:D Y (d)
SUM5 (

∑
d:D X(d)) · x =

∑
d:D X(d) · x

SUM6 (
∑

d:D X(d)) T x =
∑

d:D X(d) T x
SUM7 (

∑
d:D X(d))|x =

∑
d:D X(d)|x

SUM7’ x|
∑

d:D X(d) =
∑

d:D x|X(d)
SUM11

∑
d:D X(d) =

∑
d:D Y (d), if X(d) = Y (d) for all d ∈ D

V6 ∇V (
∑

d:D X(d)) =
∑

d:D ∇V (X(d))
D6 ∂H(

∑
d:D X(d)) =

∑
d:D ∂H(X(d))

R6 ρR(
∑

d:D X(d)) =
∑

d:D ρR(X(d))
G6 ΓC(

∑
d:D X(d)) =

∑
d:D ΓC(X(d))

TI6 τI(
∑

d:D X(d)) =
∑

d:D τI(X(d))

Table 6: Summation axioms

Note that
∑

acts as a binder. In the axioms, a process variable x that is in the scope of a
∑

d:D

may only be instantiated with process expressions in which data variable d does not occur freely. For
example, in SUM1 x may be instantiated with a(1), but not with a(d). However, using function vari-
ables we are able to bind variables, i.e. we can instantiate X with λd′:Dp2 for any process expression
p such that X(d) becomes p[d/d′]. As in the λ-calculus we allow α-conversion (renaming of bound
variables), i.e.

∑
d:D X(d) =

∑
d′:D X(d′).

Exercise 2.11 Prove the following propositions, where p, q are process expressions in which variable
b of sort B does not occur freely, e is a data expression of sort D, and F is a function from D to process
expressions:

1.
∑

b:B b → p � q = p + q

2.
∑

d:D(d ≈ e) → F (d) = F (e) (sum elimination lemma)

Hint: use anti-symmetry of ≤ (see Exercise 2.3.3).

2.3 Time
Time can be added to processes using the at operator ↪. The expression α↪t indicates that multiaction
α happens at time t, where t is a data expression of sort R

≥0 and t ≥ 0. This notion is extended
to arbitrary process expressions as follows: in p↪t the first multiactions of p happen at time t. The
operator has higher precedence than ·, but lower than |.

We do not give the full details of this operator, because it is beyond the scope of this document.
Instead, we give a few examples. To start with, we specify a simple clock:

act tick;
proc C (t : R

≥0) = tick ↪t · C (t + 1);

For a value u of sort R
≥0, the process C (u) exhibits the single infinite trace tick ↪u · tick ↪(u + 1) ·

tick ↪(u + 2) · · · · .
2The λ in λd′:Dp is not part of the actual language; it lives at the meta-level.
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To make the behaviour a bit more interesting, we add a timeout and the possibility to reset the
clock:

act reset;
proc TRC (t : R

≥0) = (t < 1000) → tick ↪t · TRC (t + 1)
+ reset · TRC (0);

This clock can increment its counter by 1 consecutively for at most a thousand times, while at any
moment can reset the counter to 0.

As a different example, we show a model of a drifting clock (taken from [17]). This is a clock
that is accurate within a bounded interval [1 − d, 1 + d], where d < 1.

proc DC (t : R
≥0) =

∑
ε:R≥0(1 − d ≤ ε ∧ ε ≤ 1 + d) → tick ↪(t + ε) · DC (t + ε);

3 Linear process equations
For manipulating processes – either by hand or using tools – it is useful to transform them to a basic
form. This basic form is called a linear process equation or LPE for short. The most important
characteristics of a linear process are that there is one single equation and that there is precisely one
action in front of the recursive invocation of the process variable at the right-hand side:

Definition 3.1 A linear process equation (LPE) is a process equation of the form

proc P (d:D) =
∑

i∈I

∑
ei:Ei

ci(d, ei) → ai(fi(d, ei))↪ti(d, ei)·P (gi(d, ei));

where I a finite index set, ci a condition, fi the parameter of action ai occurring at time ti and gi

the next state.3 Note that the first summand is a meta-level operation:
∑

i∈I pi is a shorthand for
p1 + · · · + pn, where n is the size of I .

We call data parameter d the state parameter. In general we only strictly adhere to the form above
with one state parameter d and one sum variable ei per summand in theoretical considerations. In
practice we can use any number or leave out both. Also, if the condition is true it is usually left out.

The form as described above is sometimes described as the condition-action-effect rule. In a
particular state d the action ai can be done at time ti if condition ci holds. The effect of the action is
given by the function gi.

Example 3.2 The process Buffer on page 14 is not linear because there are two actions in front of
the reference to Buffer in the right-hand side of the process definition. The LPE for the buffer has the
following form:

proc P (n:N, b:B) =
∑

m:N
b → r(m)·P (m,¬b)

+ ¬b → s(n)·P (n,¬b);

init P (0, true);

Note that the linear form is less readable than the much more concise form we started with.
3The general form of an LPE also contains terminating summands and multiactions. We do not include these here because

they only add complexity and provide no essential insight in the concept.
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LPEs can be seen as a (symbolic) representation of the state space of a model. The state space often
has a number of states that is exponential in the number of parallel processes. The fact that many
process descriptions lead to systems with a huge number of states is commonly known as the state
space explosion problem. Because of this, it often takes a large amount of time to generate a state
space and a large amount of space to store it.

In general, it is relatively straightforward to transform processes to linear form. For two parallel
processes it generally boils down to joining the state variables and concatenating the summands. In
[15] it is described how this can be done for all timed µCRL processes. Using these techniques,
a model of hundreds of parallel processes can be transformed to a single LPE relatively easily and
within a small amount of time; even if the corresponding state space is infinitely large.

Example 3.3 Consider the following process equations that describe two buffers in sequence. The
first one reads from channel 1 and delivers at channel 2. The second one reads from 2 and sends to 3.
The subsequent (non-linear) equation defines a system as the parallel composition of both processes
where they pass the value on via channel 2:

proc P12(n:N, b:B) =
∑

m:N
b → r1(m)·P12(m,¬b)

+ ¬b → s2(n)·P12(n,¬b);

P23(n:N, b:B) =
∑

m:N
b → r2(m)·P23(m,¬b)

+ ¬b → s3(n)·P23(n,¬b);

System = ∇{r1,s3,c2}(Γ{r2|s2→c2}(P12(0, true) ‖ P23(0, true)));

The process System behaves exactly the same as the process P13(0, true, 0, true) defined by the
following LPE that has been derived from the three equations above:

proc P13(n1:N, b1:B, n2:N, b2:B) =
∑

m:N
b1 → r1(m)·P13(m,¬b1, n2, b2)

+ (¬b1 ∧ b2) → c2(n1)·P13(n1,¬b1, n1,¬b2)
+ ¬b2 → s3(n2)·P13(n1, b1, n2,¬b2);

Exercise 3.4 Give an LPE that is behaviourally equivalent to the process P defined by P = a·b·c·P .

Exercise 3.5 Give an LPE that is behaviourally equivalent to the process P defined by P = a·(P +
Q) and Q = b·Q.

Exercise 3.6 Consider the process P = a1·a2·a3·a4·a5·a6·a7·a8·a9·a10·P . How many summands
does an LPE with the same behaviour as

∇{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10}(P ‖ P ‖ P ‖ P ‖ P ‖ P ‖ P ‖ P ‖ P ‖ P )

have? How many states does this process have?

4 mCRL2 toolset
We introduce the tools found in the current distribution of the mCRL2 toolset. For each tool we
sketch how it can be used and what for. Tool names are typeset in teletype as are command line
options to tools.

Many tools in the mCRL2 toolset offer a variety of options that can be used to change the be-
haviour of such a tool. In general the --help command line option can be used to view a compact
description of available options.
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4.1 Linearisation
As depicted in Figure 1 on page 2, analysis starts with a model of a system expressed in the mCRL2
language. The next step is to generate an LPE for the model. This is accomplished by using the tool
mcrl22lpe. It also provides a number of useful options that may prove useful during the case study
later on.

4.2 LPE manipulation
The following tools can be used to manipulate LPEs:

• lpeinfo: print basic information about an LPE;

• lpepp: pretty print an LPE;

• lpeconstelm: eliminate process parameters which are constant in the reachable state space;

• lpeparelm: eliminate unused parameters from an LPE;

• lpedataelm: remove unused parts of the data specification of an LPE;

• lperewr: evaluate conditions through rewriting and remove unused alternatives.

Most of these tools perform either transformation or conversion operations except for lpeinfo and
lpepp. The other tools are useful for simplifying LPEs, which can have a substantial effect on the
final size of the state space, or the time/space needed for generation.

To get some more feeling for the kind of transformations that these tools perform consider the
following example.

Example 4.1 Consider the following LPE:

act a;
c : B;

proc P (b:B, x:N, y:N, z:N) = a·P (false , 0, 0, y + z)
+ (y 6≈ z ∨ ¬b) → c(b)·P (true, y, y, y + z + 1);

init P (false , 0, 0, 0);

The tool lpeparelm eliminates process parameter x, while lpeconstelm also eliminates y.

4.3 Simulation
Using simulation a model can be explored without generating the state space. It is used to get more
intuition about the possible behaviour of the model under scrutiny. Using the interactive simulation
tools sim (command line) and xsim (GUI), a user can explore a model (expressed as an LPE) by
manually performing individual (multi)actions. After an action is performed the simulator shows a
representation of the new state (a state vector), and the actions that are possible from this state.

A trace is a single run through the system, in this case explicitly specified by the user. The
simulator can load and store traces at any time. Traces are important because they can show presence
of behaviour and as such can be used as a proof or counter example. The tool tracepp can be used
to pretty print traces.
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4.4 State space generation
To generate a state space from an LPE the tool lpe2lts can be used. The state space contains the
behaviour of a model. It can be stored in two different file formats: SVC and Aldebaran (AUT). The
Aldebaran format uses plain text which may result in large files. SVC files are more compressed but
they require more time to generate. To use the visualisation tools introduced in the next section the
SVC format should be used.

The tool ltsconvert can be used to convert between different formats of LTSes. The tool
ltsmin can be used to minimise the state space modulo (branching) bisimulation equivalence.

4.5 Visualisation
Visualisation of a state space can help to provide insight in model behaviour. For instance, it can be
used to trace errors in the specification of a model. But it can also provide means to gain insight into
the structure of the behaviour and to identify symmetries.

A number of visualisation tools are available for use. The most straightforward visualisation of
a state space is a direct visualisation as a labelled directed graph. The tool ltsconvert with the
-o dot option can be used for this purpose. Other available visualisation tools are NoodleView
(based on the StateVis tool [13]) and FSMView [16], for 2D and 3D visualisation respectively.
These tools use clustering techniques, which allows them to be used effectively on large state spaces.
Both tools operate on state spaces in FSM format, which can be obtained from an SVC file using
ltsconvert.

4.6 Tool overview
Table 7 is included for easy reference of what tools are available.

Name Description
mcrl22lpe generate an LPE of an mCRL2 specification
lpeinfo print some basic information about an LPE
lpepp pretty print an LPE
lpeconstelm remove constant process parameters from an LPE
lpeparelm remove unused process parameters from an LPE
lpedataelm remove unnecessary parts of the data specification of an LPE
lperewr remove unused alternatives in conditions of an LPE
sim / xsim manually explore the behaviour of an LPE
tracepp pretty print a trace
lpe2lts generate the state space for an LPE
ltsconvert convert an LTS to a different format
ltsmin minimise an LTS
NoodleView/FSMView visualise a state space through clustering in 2D/3D

Table 7: Quick reference of tools and their functionality

5 Case study
At ASML, the world leading wafer stepper manufacturer situated in Veldhoven (near Eindhoven), a
new generation of wafer steppers is currently under construction. Wafers are being used to produce
integrated circuits (ICs). Transistors and other components are etched onto a wafer using a mask and
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a light beam. The components on ICs become increasingly smaller. This leads to the need for light
with a higher frequency, i.e. in the ultraviolet bandwidth. But as the atmosphere absorbs ultraviolet
light, the whole process must take place in vacuum.

Figure 5: Layout of the wafer stepper

In Figure 5 a layout of a wafer stepper is shown. Fresh wafers enter the system via the tray (T).
They must travel to one of the load locks (L0-3) that have a capacity of one wafer each. The load
locks form the bridge between atmospherical pressure outside (tray-side) and the vacuum inside the
system. There they wait to be transported by a robot (R0-1). Robot R0 transports wafers from and to
locks L0 and L1, R1 does the same for locks L2 and L3. Both robots have two arms A and B that can
pick up and hold a single wafer each. The arms are mounted on opposite sides of the robot such that
arm A faces the locks when arm B faces a wafer stage (WS0-1) and vice versa. To transport wafers a
robot just turns around its axis. At wafer stage WS0 a wafer is measured. Once it has been measured
a wafer is exposed at wafer stage WS1, after which the wafer is ready. Both wafer stages can only
accommodate a single wafer and wafers are moved by simultaneously swapping the contents of WS0
and WS1. Finally, if a wafer is ready, it leaves the system via the same path through one of the load
locks back to the tray.

Exercise 5.1 Show that the system without scheduling constraints contains deadlocks.

By limiting the amount of wafers that can be in certain parts of the system it is possible to remove
deadlocks. For instance, the number of fresh wafers that is in a lock at the same time can be limited
to three. Note that this particular constraint does not remove deadlocks.

Exercise 5.2 Add appropriate constraints that prevent from deadlock yet still allow all fresh wafers
that are initially on the tray to be exposed and leave the system.
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A Formal syntax
The following describes the formal syntax of the mCRL2 language. It is given in a rich text format
for readability. In Appendix B a translation of rich text to plain text is given, which is needed for
using the toolset. In both formats a %-sign indicates the beginning of a comment that extends to the
end of the line.

In the following, b stands for a sort name, f for a function name, x for a data variable name,
a for an action name and P for a process variable name. They are all strings matching the pattern
“[a−z ][a−z 0−9]∗”. N stands for a number that matches the pattern “0 | [1−9][0−9]∗”. Suggestive
dots (. . ., · · · ) are used to indicate repeating patterns with one or more occurrence. Furthermore, |
distinguishes alternatives (not to be mistaken with the sync operator |), (pattern)+ indicates one or
more occurrences of pattern, and (pattern)∗ indicates zero or more occurrences of pattern. As
opposed to real EBNF, we do not use quotes to separate the terminals from the non-terminals.

Sort expressions s:

s ::= b | s → s | B | N
+ | N | Z | R

≥0 | struct scs |· · · |scs | List(s) | Set(s) | Bag(s)
scs ::= f | f(spj , . . ., spj ) | f?f | (spj , . . ., spj )?f
spj ::= s | s × · · · × s → s | f : s | f : s × · · · × s → s

Here scs and spj stand for the constructors and the projection functions of a structured sort.
Declarations:

sd ::= b | b = s
fd ::= f, . . ., f : s
vd ::= x, . . ., x : s
ed ::= d = d | c → d = d
ad ::= a | a : s × · · · × s
pvd ::= P | P (vd , . . ., vd)

Here, sd stands for sort declaration, fd for function declaration, vd for data variable declaration, ed

for equation declaration, ad for action declaration, pvd for process variable declaration, d for a data
expression and c for a data expression of sort B.

Data expressions d:

d ::= x | f(d, . . ., d) | d(d) | N | ¬d | − d | d | #d | d ⊕ d
| [ ] | [d, . . ., d] | { } | { d, . . ., d } | { d : d, . . ., d : d } | {x : s | d }
| λvd ,. . .,vdd | ∀vd,. . .,vdd | ∃vd,. . .,vdd | d whr x = d, . . ., x = d end

⊕ ::= ∗ | . | ∩ | div | mod | + | − | ∪ | ++ | / | .
| < | ≤ | > | ≥ | ⊂ | ⊆ | ∈ | ≈ | 6≈ | ∧ | ∨ | ⇒

The unary operators have the highest priority, followed by the infix operators ⊕, followed by λ,
∀ and ∃, followed by whr end. The descending order of precedence of the infix operators is:
{ ∗, .,∩}, {div,mod}, {+,−,∪}, ++ , / , ., {<,≤, >,≥,⊂,⊆,∈}, {≈, 6≈ }, {∧,∨},⇒. Of these
operators ∗, ., ∩, div, mod, +, −, ∪ and ++ associate to the left and ≈, 6≈, ∧, ∨ and ⇒ associate to
the right.

Process expressions p:

p ::= a | δ | τ | p + p | p · p | P | p|p | p ‖ p | p T p
| ∇{ as,. . .,as }(p) | ∂{ a,. . .,a }(p) | τ{ a,. . .,a }(p) | ρ{ ar ,. . .,ar }(p) | Γ{ ac,. . .,ac }(p)
| a(d, . . ., d) | P (d, . . ., d) | c → p � p | c → p |

∑
vd,. . .,vd p | p ↪ t

as ::= a| · · · |a
ar ::= a → a
ac ::= a|as | a|as → a

22



Here, c and t stand for data expressions of sort B and R
≥0, respectively. as represents an action

sequence, ar an action renaming, and ac an action communication. The descending order of prece-
dence of the operators is: |, ↪, ·,→, { ‖, T },

∑
, +. Of these operators +, ‖, T, · and | associate to the

right.
Specification elements:

spec elt ::= sort (sd ; )+

| cons (fd ; )+

| map (fd ; )+

| var (vd ; )+ eqn (ed; )+

| eqn (ed; )+

| act (ad ; )+

| proc (pvd = p; )+

Specification:

spec ::= (spec elt)∗ init p; (spec elt)∗
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B Table of mCRL2 symbols
In the toolset, a plain text format is used as opposed to the rich text format of section 2. A mapping
from rich text to plain text symbols is provided in Table 8.

Symbol Rich Plain
arrow → ->
cross × #
diamond � <>
standard sorts B, N+, N, Z, R≥0 Bool,Pos,Nat,Int,Time
equality and inequality ≈, 6≈ ==,!=
logical operators ¬,∧,∨,⇒ !,&&,||,=>
relational numeric operators ≤,≥ <=,>=
relational set operators ∈,⊆,⊂ in,<=,<
set operators ,∪,∩ !,+,*
list operators ., / , ++ |>,<|,++
lambda abstraction λx:sd lambda x:s.d
universal quantification ∀x:sd forall x:s.d
existential quantification ∃x:sd exists x:s.d
deadlock δ delta
internal action τ tau
left merge T ||_
at ↪ @
sum

∑
x:s p sum x:s.p

allow ∇{ a|b }(p) allow({a|b},p)
block ∂{ a }(p) block({a},p)
hide τ{ a }(p) hide({a},p)
rename ρ{ a→b }(p) rename({a -> b},p)
communication Γ{ a|b→c }(p) comm({a|b -> c},p)

Table 8: Mapping from rich to plain text

24



C Axioms
In Table 9 all axioms for (untimed) mCRL2 are given. Table 10 contains the auxiliary functions used
in these axioms.

MA2’ α|τ = α

MA3’ α|β = β |α
MA4 α|(β |γ) = (α|β)|γ

A1 x + y = y + x

A2 x + (y + z) = (x + y) + z

A3 x + x = x

A4 (x + y) · z = x · z + y · z
A5 (x · y) · z = x · (y · z)
A6 x + δ = x

A7 δ · x = δ

T1 x · τ = x

T2 x · (τ · (y + z) + y) = x · (y + z)

VD ∇V (δ) = δ

V1 ∇V (α) = α if µ(α〈〉) ∈ (V ∪ {τ})〈〉
V2 ∇V (α) = δ if µ(α〈〉) 6∈ (V ∪ {τ})〈〉
V3 ∇V (x + y) = ∇V (x) + ∇V (y)
V4 ∇V (x · y) = ∇V (x) · ∇V (y)
V6 ∇V (

P

d:D
x) =

P

d:D
∇V (x)

RD ρR(δ) = δ

R1 ρR(α) = R • α

R3 ρR(x + y) = ρR(x) + ρR(y)
R4 ρR(x · y) = ρR(x) · ρR(y)
R6 ρR(

P

d:D
x) =

P

d:D
ρR(x)

GD ΓC(δ) = δ

G1 ΓC(α) = γC(α〈〉)|
G3 ΓC(x + y) = ΓC(x) + ΓC(y)
G4 ΓC(x · y) = ΓC(x) · ΓC(y)
G6 ΓC(

P

d:D
x) =

P

d:D
ΓC(x)

C1 true → x � y = x

C2 false → x � y = y

C3 c → x = c → x � δ

CM1 x ‖ y = x T y + y T x + x|y
CM2 αδ T x = αδ · x
CM3 αδ · x T y = αδ · (x ‖ y)
CM4 (x + y) T z = x T z + y T z

CM5 (αδ · x)|βδ = αδ |βδ · x
CM6 αδ |(βδ · x) = αδ |βδ · x
CM7 (αδ · x)|(βδ · y) = αδ |βδ · (x ‖ y)
CM8 (x + y)|z = x|z + y |z
CM9 x|(y + z) = x|y + x|z

CD1 δ |αδ = δ

CD2 αδ |δ = δ

DD ∂H(δ) = δ

D1 ∂H(α) = α if µ(α〈〉) ∩ H = ∅
D2 ∂H(α) = δ if µ(α〈〉) ∩ H 6= ∅
D3 ∂H(x + y) = ∂H(x) + ∂H(y)
D4 ∂H(x · y) = ∂H(x) · ∂H(y)
D6 ∂H(

P

d:D
x) =

P

d:D
∂H(x)

TID τI(δ) = δ

TI1 τI(α) = θI(α)
TI3 τI(x + y) = τI (x) + τI (y)
TI4 τI(x · y) = τI (x) · τI (y)
TI6 τI(

P

d:D
x) =

P

d:D
τI(x)

SUM1
P

d:D
x = x

SUM3
P

d:D
X(d) =

P

d:D
X(d) + X(e) with e ∈ D

SUM4
P

d:D
(X(d) + Y (d)) =

P

d:D
X(d) +

P

d:D
Y (d)

SUM5 (
P

d:D
X(d)) · x =

P

d:D
X(d) · x

SUM6 (
P

d:D
X(d)) T x =

P

d:D
X(d) T x

SUM7 (
P

d:D
X(d))|x =

P

d:D
X(d)|x

SUM7’ x|(
P

d:D
X(d)) =

P

d:D
x|X(d)

SUM11
P

d:D
X(d) =

P

d:D
Y (d),

if X(d) = Y (d) for all d ∈ D

Table 9: Axioms for (untimed) mCRL2
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θI(τ) = τ

θI(a(. . .)) = τ if a ∈ I

θI(a(. . .)) = a(. . .) if a 6∈ I

θI(a(. . .)|α) = θI(α) if a ∈ I

θI(a(. . .)|α) = a(. . .)|θI(α) if a 6∈ I

R • τ = τ

R • a(. . .) = R(a)(. . .)
R • a(. . .)|α = R(a)(. . .)|(R • α)

(a0 |. . .|an)〈〉 = 〈a0 , . . . , an〉 \ { τ } (Note: 〈a, τ, τ〉 \ { τ } = 〈a〉)
{α0, . . . , αn}〈〉 = {α0〈〉, . . . , αn〈〉}
{α0 → c0, . . . , αn → cn}〈〉 = {α0〈〉 → c0, . . . , αn〈〉 → cn}
〈〉| = τ

〈a0 , . . . , an〉| = a0 |. . .|an

µ(〈〉) = 〈〉
µ(〈a(. . .)〉 ∪ m) = 〈a〉 ∪ µ(m)

γC(m ∪ n) = γC(m) ∪ 〈c(d1, . . . , dn)〉 if µ(n) → c ∈ C〈〉 and the data
parameters of all actions in n have
the same data arguments d1, . . . , dn

γC(m ∪ n) = γC(m) if µ(n) ∈ C〈〉 and the data
parameters of all actions in n have
the same data arguments d1, . . . , dn

γC(m) = m if there is no such n

Table 10: Auxiliary functions for the axioms
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