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Universal algebra [5, 9, 4] is the theory of equalities t = u. It is a simple
framework within which we can study mathematical structures, for example
groups, rings, and fields. It has also been applied to study the mathematical
properties of mathematical truth and computability. For example boolean alge-
bras correspond to classical truth, heyting algebras correspond to intuitionistic
truth, cylindric algebras correspond to truth in the presence of predicates as
well as propositions, combinators correspond to computability, and so on.

Informal mathematical usage and notation often involve binding. In many
cases, this involves freshness (‘does not occur free in’) and α-equivalence in the
presence of meta-variables. For example:

• λ-calculus: λx.(tx) = t — if x is fresh for t.

• π-calculus: (νa.P ) | Q = νa.(P | Q) — if a is fresh for Q.

• First-order logic: (∀x.φ) ∧ ψ = ∀x.(φ ∧ ψ) — if x is fresh for ψ.

Here t, P , Q, φ and ψ are meta-variables ranging over concrete terms.
Now take any binder ξ ∈ {∀, λ, ν}. Then:

• (ξx.t)[y 7→ u] = ξx.(t[y 7→ u]) — if x is fresh for u.

• α-equivalence: ξx.t = ξy.(t[x 7→ y]) — if y is fresh for t.

Nominal terms [15, 16] are a syntax designed to naturally express binding,
freshness and α-equivalence in the presence of these meta-variables. This paper
studies Nominal Algebra (NA), the theory of equality between nominal terms.

Nominal algebra permits direct and intuitive axiomatisations of systems with
binding, and yet we keep the flavour of ‘normal algebra’.

In other work we apply nominal algebra to investigate specific axiomatic
systems for truth and computability [6, 7]. In this paper we present the syntax
of nominal algebra, its derivation rules, and a sound and complete semantics in
nominal sets.

The principal distinguishing feature of nominal algebra is to have two kinds
of variables; atoms and unknowns. In this way it models the instantiation
behaviour of meta-variables. In informal notation instantiating t to x in λx.t
yields λx.x, reflected formally by a syntactic equality (λ[a]X)[a/X] ≡ λ[a]a.
NA is a logical system in which metavariables are explicitly represented by
unknowns, and variables by atoms. We may thus reflect binding in logic in a
beautiful and direct fashion in our axioms. For example β-reduction may be
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represented as an axiom (λ[a]X)Y = X[a 7→ Y ]. Here X[a 7→ Y ] is an explicit
substitution satisfying further axioms which we also consider.

The properties listed above translate very directly as follows:

• a#X ` λ[a](Xa) = X.

• a#Y ` (ν[a]X) | Y = ν[a](X | Y ).

• a#Y ` (∀[a]X) ∧ Y = ∀[a](X ∧ Y ).

• a#Y ` ([a]X)[b 7→ Y ] = [a](X[b 7→ Y ]).

• b#X ` [a]X = [b](X[a 7→ b]).

In spite of the simplicity and directness of this approach of explicitly representing
metavariables in the syntax as X and Y above, nominal algebra turns out to
have interesting and quite subtle derivations and semantics, and specific nominal
algebra theories display all the richness of structure of the semantics represented
by the syntax they so resemble.

Nominal algebra differs from higher-order algebra [11], because it directly
represents metavariables in its syntax. It loses no expressivity since β-reduction
may be axiomatised. In certain specific cases, nominal algebra theories may even
be better-behaved; for example unification in the core nominal algebra theory is
decidable, whereas a corresponding unification problem in higher-order algebra
is not [16].

Because of the explicit representation of metavariables, nominal algebra is
different from other approaches based on λ-terms, such as the theory of con-
texts [10] and vanilla simply-typed λ-calculus [12, Figures 6 and 7].

Nominal algebra differs from Nominal Logic [13] in spite of a shared se-
mantics in nominal sets [8]; nominal logic does not directly use nominal terms,
as nominal algebra does, and the judgement of freshness in nominal algebra
is syntax-directed and thus always decidable whereas that of nominal logic is
semantic and may not be, depending on the theory [13, p.175 ‘Freshness’].

Nominal algebra differs from some other algebraic methods for axiomatising
specific theories, such as lambda-abstraction algebras [14] for the λ-calculus and
cylindric algebras [4, 1] for predicate logic. This is because the richer syntax
of nominal terms (compared to lambda-abstraction algebras and cylindric alge-
bras) is more expressive on open terms. Though there is no difference in deriv-
ability between the relevant nominal algebra theories and lambda-abstraction
algebras or cylindric algebras on closed terms, on open terms the nominal alge-
bra theory is strictly more expressive. Algebra is properly the study of equalities
on open terms because they represent general truths within the algebraic system
rather than specific facts, so an increase in power on open terms is significant.

Finally, nominal algebra is different from approaches based on combinators
[3, 2]. First, the combinator-based methods is more foundational/semantic than
proof-theoretic/algebraic (the flavour of this work), because the extreme self-
reflective power of untyped combinators makes contradictions hard to avoid.
Second, as mentioned above the expressive power of nominal terms allows vari-
ables to be represented explicitly in a way which combinators deliberately elim-
inate.
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[1] H. Andréka, I. Németi, and I. Sain. Algebraic logic. In D.M. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic, 2nd Edition,
volume 2, pages 133–249. Kluwer, 2001.

[2] H. Barendregt, W. Dekkers, and M. Bunder. Completeness of two systems
of illative combinatory logic for first-order propositional and predicate cal-
culus. Archive für Mathematische Logik, 37:327–341, 1998.

[3] H. P. Barendregt. The Lambda Calculus: its Syntax and Semantics (revised
ed.), volume 103 of Studies in Logic and the Foundations of Mathematics.
North-Holland, 1984.

[4] S. Burris and H. Sankappanavar. A Course in Universal Algebra. Springer,
1981. Available online.

[5] P.M. Cohn. Universal Algebra. Harper and Row, New York, 1965.

[6] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding substitution
as a nominal algebra. In ICTAC’2006, 2006.

[7] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order logic. In
PPDP ’06: Proceedings of the 8th ACM SIGPLAN symposium on Princi-
ples and Practice of Declarative Programming, pages 189–200, New York,
NY, USA, 2006. ACM Press.

[8] Murdoch J. Gabbay and A. M. Pitts. A new approach to abstract syn-
tax with variable binding. Formal Aspects of Computing, 13(3–5):341–363,
2001.

[9] J. Loeckx, H.D. Ehrich, and M. Wolf. Specification of Abstract Data Types.
Wiley, 1996.

[10] Marino Miculan. Developing (meta)theory of lambda-calculus in the theory
of contexts. ENTCS, 1(58), 2001.
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