Technische Universiteit
T U Eindhoven
University of Technology
The mCRL2 Toolset

Aad Mathijssen Bas Ploeger

Design and Analysis of Systems Group / LaQuSo
Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

NXP Semiconductors

July 9th, 2008

department of mathematics and computing science 1/44

Technische Universiteit
T U Eindhoven

University of Technology
Analysis techniques

Analysis techniques used in hardware/software development:
@ Structural analysis: what things are in the system
e Class diagrams
4] Component diagrams

o Package diagrams
e ...

@ Behavioural analysis: what happens in the system
State diagrams

Message sequence charts

Petri nets

Process algebra

Temporal logic

matics and computing science

Technische Universiteit
T U Eindhoven

University of Technology
Behavioural analysis
What is it?

What is behavioural analysis about?
@ Modelling:
o Create an abstract model of the behaviour
@ Validation and Verification:

e Validation: does the model roughly behave as expected?
o Verification: does the model satisfy the requirements in
all states?

department of mathematics and computing science 3/44

Technische Universiteit
T U Eindhoven

University of Technology
Behavioural analysis
Modelling

Why modelling?

department of mathematics and computing science 4/44

Technische Universiteit
T U Eindhoven

University of Technology
Behavioural analysis
Modelling

Why modelling?

To reduce complexity:

@ Direct verification of all states of the software is
impossible due to the huge number of states.

@ Much more complex than e.g. Rubik’s cube:

43,252,003, 274,489, 856,000 (4.3 x 10'?) states

department of mathematics and computing science

Technische Universiteit
T U Eindhoven

University of Technology
Behavioural analysis
Software lifecycle

Behavioural analysis is applicable to all phases of the
software lifecycle:
@ Requirements Analysis and Design:
Prove that the design satisfies the requirements
before anything is built.
@ Implementation to Maintenance:

Prove that the software satisfies the requirements
in a rigorous way.

ment of mathematics and computing science

Technische Universiteit
T U Eindhoven

University of Technology
Behavioural analysis
Experience

From our experience:

@ Without proper modelling it is impossible to get a
system right.

@ Implementing a model does not introduce substantial
flaws.

@ Modelling an implementation nearly always reveals flaws.

department of mathematics and computing science 6/44

Technische Universiteit
T U Eindhoven

University of Technology
Behavioural analysis
Tool support

For verification of industrial systems, tool support is essential.

Toolsets for modelling, validation and verification of
behaviour:

CADP (INRIA Rhone Alpes, France)

SPIN (Bell Labs, USA)

FDR (Formal Systems Limited, Oxford, UK)
Uppaal (Uppsala University, Sweden)
NuSMV (Carnegie Mellon University, USA)
mCRL2 (OAS group / LaQuSo, TU/e)

department of mathematics and computing science 7/44

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview
History

History of the mCRL2 toolset:
o Late 1980s: Common Representation Language (CRL)

@ From 1990: micro Common Representation Language
(1CRL)

@ During 1990s: development of the ;/CRL toolset

@ Since 2004: micro Common Representation Language 2
(mCRL2) + toolset

department of mathematics and computing science

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview
General information

@ The mCRL2 toolset can be used for modelling, validation
and verification of concurrent systems and protocols.

Collection of tools

Available for the following platforms:

e Microsoft Windows
Linux

Mac OS X
FreeBSD

Solaris

Distributed under the Boost license
Available at http://mcrl2.org

department of mathematics and computing science

http://mcrl2.org

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview
Tool categories

Process Modal

specification formula
user input
. . PBES
Lineariser
generator
Linear abstract
Theorem .
. process boolean equation
proving e
specification system
. LTS BES
Simulators Solvers
generator generator
concrete

Labelled
transition
system

Boolean
equation
system

matics and computing science

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview
Linear process specifications

LPS tools:
@ Generation:
e mcrl22lps: Linearise a process specification
@ Information:

e Ipsinfo: Information about an LPS
o lpspp: Pretty prints an LPS

@ Simulation:

e sim: Text based simulation of an LPS
e xsim: Graphical simulation of an LPS

department of mathematics and computing science 11/44

Technische Universiteit
Eindhoven
University of Technology

Toolset overview
Linear process specifications (2)

LPS tools:
@ Optimisation:

Ipsconstelm: Removes constant process parameters
Ipsparelm: Removes irrelevant process parameters
[pssuminst: Instantiate sum operators

Ipssumelm: Removes superfluous sum operators
Ipsactionrename: Renaming of actions

Ipsconfcheck: Marks confluent tau summands
Ipsinvelm: Removes violating summands on invariants
Ipsbinary: Replaces finite sort variables by vectors of
boolean variables

Ipsrewr: Rewrites data expressions of an LPS

e Ipsuntime: Removes time from an LPS

atics and computing science

Technische Universiteit
Eindhoven
University of Technology

Toolset overview
Linear process specifications (3)

Simulation using xsim:

Ele Edit Views Help

Current State

Pay e

Gs_hal glob_ <6, pb), occupied, w Current state

Tansitions

mang-

= glob_state(update(pos(rL. c6, pb). free™adate(posirL, c7.
gs hal = glob_state(update(posir, cs, pb), ree, updat

Action

exec(move_shuttle(lowered, r2a, r3b))
exec(move_shuttleltitted, r3b, r1a))
exec(move_shuttleltited, r3b, r1b))

exec(move.shuttlelited, r3b, r2a)) Possible transitions

exec(move_shuttle(tited, r3b, r2b))

ove_shuttle(tited, r3a, r1b))
shuttle(tited, r3a, r2a))

exec(move Swgleltited, r3a, r2b)

Al e]

department of

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview
Linear process specifications (3)

Simulation using xsim with plugins:

0 G st

Lift

T Lift height

Free position

_—Tilted shuttle

Unavailable position

~ Occupied position

thematics and computing science

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview
Labelled transition systems

LTS tools:
@ Generation:
o Ips2lts: Generates an LTS from an LPS

@ Information and visualisation:
e ltsinfo: Information about an LTS
o tracepp: View traces generated by sim/xsim or Ips2lts
o ltsgraph: 2D LTS graph based visualisation
o lItsview: 3D LTS state based clustered visualisation
o diagraphica: Multivariate state visualisation and
simulation analysis for LTSs
@ Comparison, conversion and minimisation:
o Itscompare: Compares two LTSs with respect to

an equivalence or preorder
o ltsconvert: Converts and minimises an LTS

ment of mathematics and computing science

Technische Universiteit
T U Eindhoven

University of Technology
Toolset overview
Labelled transition systems (2)

Visualisation using ltsgraph:

sgraph- scratchlocatimert/share mrizexamples academic dning aut
e Draw Help

Posiion of selscted nod: (380, 256)

department of mathematics and computing science

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview

Labelled transition systems (3)

Visualisation using ltsview:

department of mathematics and computing science

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview

Labelled transition systems (4)

Visualisation using diagraphica:

sbpfam - DisGraphica

®

ooagéio‘oo‘sob

\‘W
— ‘QZIIIIIIIIII-IIIIIIII
; 10 H
-~ | - el sl
| i 11
| — - o mil

department of mathematics and computing science

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview
Parameterised boolean equation systems

PBES tools:
@ Generation:

o Ips2pbes: Generates a PBES from an LPS and a
temporal formula
e txt2pbes: Parses a textual description of a PBES

@ Information:

e pbesinfo: Information about a PBES
o pbes2pp: Pretty prints a PBES

@ Solving:
o pbes2bool: Solves a PBES
o Optimisation:
e pbesrewr: Rewrite data expressions in a PBES

department of mathematics and computing science

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview
Import and export

Import and export tools:

@ chi2mcrl2: Translates a y specification to an mCRL2
specification

@ pnml2mcrl2: Translates a Petri net to an mCRL2
specification

@ tbf2lps: Translates a yCRL LPE to an mCRL2 LPS

o formcheck : Checks whether a boolean data expression
holds

@ Ips2torx: Provide TorX explorer interface to an LPS

department of mathematics and computing science 19/44

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview
Tools under development

Graphical specification (individual component):

s_done(p)

getip. If(p))

getip. rfie)) putip 11({p)) put(p,rfip))

rtment of mathematics and computing science

Technische Universiteit
I U Eindhoven
University of Technology
Toolset overview

Tools under development

Graphical specification (communicating components):

rtment of mathematics and computing science

Technische Universiteit
Eindhoven
University of Technology

Toolset overview
Tools under development (2)

Systems Quality Analysis and Design Toolkit (SQUADT):

000 deskSQUADT - voordracht_colloguium

1) [isconvert - swp_wtb1u0038.aut
Output format : () Aldebaran O) SVC/mCRLO) SVC/mCRL2 O FSM O dot
195 file name

v [swp_wiblu.meri2
v [swpwtb1u0035.ps

v B o wtb1u0026 00 ¥ Perform reachability check
() swp_wtb1u003Bau| [V Add state information)
B svp.wib140041.pbes] | | LTS transformation
D swo_wtb10045.Ips eduction modulo strong bisimutior
reduction modulo branching bisimulation
v D) abpmeri2
D e reduction modulo trace equivalence
v [abpoosCips reduction modulo weak trace equivalence
v [abpo0D.pbes determinisation
d equivalence classes to state instead of reducing LTS
B abpoosrio Irermal) actions f
[swo.wtb.meri2 3
v: il a2 - swp b1 mer2 =

v [swp_wib1u002F.svc
D swp.wib1u0030.8
D swpwo200031f6m | | i clustering s rwniting
D swpwibtuswc 5 Aoplysphabet aiorns
D swp-wivzumertz
D swp.wiblu redsve g
D swp.wib2usps

Stack @ Regular O Regular2 O Expansion

s from specification ¥ Generate free variables

Add delta summands

[swp.wtb2u.aut Stop after
B St Parsing O Type checking O Data implementation () Alphabet reduction @) Linearisation
D swe.wtblu_error.fsm -
D swea.spe

[swe.wtb2u_red.aut

D swe.wtb2u_trace.aut

[sw_wtb2u_red.sgraph |
) nodeadlock.mcf +

department of mathematics and computing science

Technische Universiteit
Eindhoven
University of Technology

Toolset demo: dining philosophers

Dining philosophers:
© Problem description
@ Model the problem
© Verify the problem
Q A solution
© Verify the solution

department of mathematics and computing science 22/44

Technische Universiteit
T U Eindhoven

University of Technology
Toolset demo: dining philosophers
Problem description

@ lllustrative example of a
common computing problem
in concurrency

@ 5 hungry philosophers

@ 5 forks in-between the
philosophers

@ Rules:

e Philosophers cannot
communicate

e Two forks are needed
for eating

department of mathematics and computing science 23/44

Technische Universiteit
TU Eindhoven

University of Technology
Toolset demo: dining philosophers
Problem description (2)

@ Deadlock: Every philosopher holds a left fork and waits
for a right fork (or vice versa).

@ Starvation: If a philosopher cannot acquire two forks
he will starve.

The dining philosophers problem is a generic and abstract
problem used for explaining various issues which arise in
concurrency theory.

@ The forks resemble shared resources.

@ The philosophers resemble concurrent processes.

department of mathematics and computing science 24/44

Technische Universiteit
T U Eindhoven

University of Technology
Toolset demo: dining philosophers
Modelling the problem: data types

Data type for representing the philosophers and the forks:

sort Philld = struct py | p2 | p3 | pa | ps;
Forkld = struct f1 | f2 | f3 | f4 | f5;

Function for representing the positions of the forks relative to
the philosophers (the left and right fork):

map lf, rf : Philld — Forkld;

eqn If(p1) = fi; If(p2) = fo; Uf(p3) = f;
If (pa) = fa; Uf (ps) = fss
rf(p1) = f55 vf(p2) = fi; vf(p3) = fos
vf(pa) = f3; vf(ps) = fa;

department of mathematics and computing science 25/44

Technische Universiteit
TU Eindhoven

University of Technology
Toolset demo: dining philosophers
Modelling the problem: individual processes

Modelling the behaviour of the philosophers:
e eat(p): philosopher p eats
e get(p, f): philosopher p takes up fork f
e put(p, f): philosopher p puts down fork f

act get, put : Philld x Forkld;
eat : Philld;
proc Phil(p : Philld) =
(get(p, If (p)) - get(p, 7f (p)) + get(p, rf (p)) - get(p, If (p)))
- eat(p)
- (put(p, If (p)) - put(p, rf (p)) + put(p, 7f (p)) - put(p, if (p)))
- Phil(p);

department of mathematics and computing science 26/44

Technische Universiteit
TU Eindhoven

University of Technology
Toolset demo: dining philosophers
Modelling the problem: individual processes

Modelling the behaviour of the forks:
@ up(p, f): fork f is picked up by philosopher p
e down(p, f): fork f is put down by philosopher p

act up,down : Philld x Forkld;
proc Fork(f : Forkld) =

2 p:phit UP(P; f) - down(p, f) - Fork(f);

department of mathematics and computing science 27/44

Technische Universiteit
T U Eindhoven

University of Technology
Toolset demo: dining philosophers
Modelling the problem: communication and initialisation

Complete specification:
@ put all forks and philosophers in parallel

@ synchronise on actions get and up,
and on actions put and down

act lock, free : Philld x Forkld;
init V ({lock, free, eat},
I'({get|up — lock, put|down — free},
Phil(p1) || Phil(pz) || Phil(ps) || Phil(pa) || Phil(ps) |
Fork(f1) || Fork(f2) [| Fork(f3))) [| Fork(fa) || Fork(fs)
)i

department of mathematics and computing science 28/44

Technische Universiteit
T U Eindhoven

University of Technology
Toolset demo: dining philosophers
Analysing the model

@ Linearisation:
mcrl22lps -vD diningb.mcrl2 dining5.Ips

Sum instantation:
Ipssuminst -v dining5.lps dining5.sum.Ips

Constant elimination:
Ipsconstelm -v dining5.sum.Ips dining5.sum.const.Ips

@ Parameter elimination:
Ipsparelm -v dining5.sum.const.lps
dining5.sum.const.par.lps

Generate state space:
Ips2lts -vD diningb.sum.const.lps dining5.sum.const.lts

@ Deadlock detected!

department of mathematics and computing science 29/44

Technische Universiteit
T U Eindhoven

University of Technology
Toolset demo: dining philosophers
A Possible solution: the waiter

Waiter:
@ Decides whether a philosopher may pick up two forks
@ Only allowed when less than four forks are in use

department of mathematics and computing science 30/44

Technische Universiteit
T U Eindhoven

University of Technology
Toolset demo: dining philosophers
Modelling the solution: actions

New actions:

@ ack(p): philosopher p takes the opportunity to pick up
two forks and eat

@ done(p): philospher p signal the waither that he is done
eating and has put down both forks

act r_ack, s_ack, ack : Phil;
r_done, s_done, done : Phil;

department of mathematics and computing science 31/44

Technische Universiteit
T U Eindhoven

University of Technology
Toolset demo: dining philosophers
Modelling the solution: the waiter

Modelling the behaviour of the waiter:

proc Waiter(n : N) =
(n <4) — >, ppis-ack(p) - Waiter(n+2)
+ (n>1) = > ppy r-done(p) - Waiter(Int2Nat(n—2));

department of mathematics and computing science 32/44

Technische Universiteit
T U Eindhoven
University of Technology
Toolset demo: dining philosophers

Modelling the solution: the philosophers

Extend the philosopher process:

proc Phil(p : Philld) =
r_ack(p)
- (get(p, If (p)) - get(p, vf (p)) + get(p, 7f () - get(p, If (1))
- eat(p)

“(put(p, If (p)) - put(p, rf (p)) + put(p, 7f(p)) - put(p, if (p)))
-s_done(p)

- Phil(p);

department of mathematics and computing science 33/44

Technische Universiteit
T U Eindhoven

University of Technology
Toolset demo: dining philosophers
Modelling the solution: communication and initialisation

Complete specification:

init V({lock, free, eat, ack, done},
I'({get|up — lock, put|down — free
r_ack|s_ack — ack, r_done|s_done — done,
Phil(ps) || Phil(pz) || Phil(ps) || Phil(ps) || Phil(ps) |
Fork(f1) || Fork(f2) || Fork(fs) || Fork(f4) || Fork(fs) |
Waiter(0)
)i

department of mathematics and computing science 34/44

Technische Universiteit
T U Eindhoven

University of Technology
Toolset demo: dining philosophers
Verifying the solution

@ Deadlock freedom: Yes

[true®] (true) true

@ Ips2pbes --formula=nodeadlock.mcf dining5_waiter.lps
diningb_waiter_nd.pbes
@ pbes2bool diningb_waiter_nd.pbes

@ Starvation freedom: Yes
Vyp:phit [true” - (—eat(p))*] ((—eat(p))” - eat(p)) true

© Ips2pbes --formula=nostarvation.mcf dining5_waiter.lps
dining5_waiter_ns.pbes
@ pbes2bool diningb_waiter_ns.pbes

department of mathematics and computing science 35/44

Technische Universiteit
Eindhoven
University of Technology

Industrial case studies

Industrial case studies carried out using the yCRL and
mCRL2 toolsets:
@ Océ: automated document feeder
@ Add-controls: distributed system for lifting trucks
o CVSS: automated parking garage
e Vitatron: pacemaker
@ AlA: ITP load-balancer
@ Philips Healthcare: patient support platform
o

...and lots more

department of mathematics and computing science 36/44

Technische Universiteit
T U Eindhoven

University of Technology
Industrial case studies
Océ: automated document feeder

Automated document feeder:
@ Feed documents to the scanner automatically
@ One sheet at a time
@ Prototype implementation
Analysis:
e Model: uCRL
@ Verification: CADP

@ Size: 350,000 states
and 1,100,000 transitions

@ Actual errors found: 2

department of mathematics and computing science 37/44

Technische Universiteit
T U Eindhoven
University of Technology
Industrial case studies
Add-controls: distributed system for lifting trucks

Distributed system for lifting trucks:
@ Each lift has a controller
@ Controllers are connected via a circular network
@ 3 errors found after testing by the developers
Analysis:
@ Model: uCRL
o Verification: CADP
@ Actual errors found: 4

Lifts States | Transitions
2 383 716
3 7,282 18,957

4 128,901 419,108
5 | 2,155,576 8,676,815

ematics and computing science

Technische Universiteit
T U Eindhoven

University of Technology
Industrial case studies

CVSS: automated parking garage

An automated parking garage:

ment of mathematics and computing science

Technische Universiteit
T U Eindhoven

University of Technology
Industrial case studies
CVSS: automated parking garage (2)

Verified design of an automated parking garage:
@ Design of the control software
@ Verified the safety layer of this design
Analysis:
@ Design: 991 lines of mCRL2
@ Verification: 217 lines of mCRL2
@ Size: 3.3 million states and 98 million transitions
@ Simulation using custom built visualisation plugin

Lift I
Conveyor belt
_ I— e
[Tilted shuttle
Occupied position
L} Unavailable position

Lift height

Shuttle

ment of mathematics and computing science

Technische Universiteit
T U Eindhoven

University of Technology
Industrial case studies
CVSS: automated parking garage (3)

Design flaws detected using the visualisation plugin:

(|] | Il
I —> 1 L
I .

TN T |ﬁ|
T (= i
I 2 .

b

department of mathematics and computing science

Technische Universiteit
T U Eindhoven

University of Technology
Industrial case studies
Vitatron: pacemaker

Pacemaker:
@ Controlled by firmware
@ Must deal with all possible rates and arrhythmias
@ Firmware design

Analysis:
e Model: mCRL2 (and Uppaal)
@ Verification: mCRL2 model checking

f vitatron

@ Size:

o full model: 500 million states
@ suspicious part: 714.464 states

@ Actual errors found: 1 (known)

department of mathematics and computing science 42/44

Technische Universiteit
TU Eindhoven

University of Technology
Industrial case studies
AlA: ITP load balancer

Intelligent Text Processing (ITP):
@ Print job distribution over document processors
@ 7,500 lines of C code
Analysis:
@ Load balancing part

@ Model: mCRL2

@ Verification:
mCRL2 model checking

Actual errors found: 6

Size: 1.9 billion states
and 38.9 billion transitions

Distributio

@ LaQuSo certification

department of mathematics and computing science 43/44

Technische Universiteit
T U Eindhoven
University of Technology
Industrial case studies
Philips Healthcare: patient support platform

Patient support platform:
@ Verified design of the control software
@ Convertor and Motion Controller
@ Implemented in Python
Analysis:
@ Model: mCRL2
o Verification: CADP

@ Requirements:

@ 4 checked
e 1 did not hold but
was very unlikely to occur

@ Size: 45 million states

department of mathematics and computing science

