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Motivation

Concrete datatypes for µCRL: algebraic specification of booleans, numbers,
function types, sets, tables, etc.

Wish: when reading the equations from left to right, we obtain a complete, con-
fluent and terminating rewrite system

Problem: computing the truth value of universal and existential quantifications
is undecidable
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Motivation (2)

First solution: leave out universal and existential quantifications

Not sufficient when we want to implement more complex data types.

Second solution: find at least a representation of quantifications

Question: can you do anything with these representations?

• rewriting: still research

• equations: completeness
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Overview

• Formal introduction to algebraic specifications

• Specification of first-order logic:

– Propositional logic

– Binding

– Quantifications

• Completeness
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Signatures and terms

Algebraic specification: a description of a number of abstract data types

Signature Σ:
- set of sorts S
- set of functions Fn, of type Sn → S, for any n ∈ N

Terms T (Σ, X)s, for each set of variablesXs and all s ∈ S:
- every x ∈ Xs is in T (Σ, X)s

- every c ∈ F0, of type→ s, is in T (Σ, X)s

- if all ti are in T (Σ, X)si
with 0 ≤ i ≤ n, then f (t0, . . . , tn) is in T (Σ, X)s,

for all f ∈ Fn+1, of type s0 × · · · × sn → s, and n ∈ N
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Σ-equations and validity

Σ-equations are of following form, for sort s ∈ S and terms t, u ∈ T (Σ, X)s:

t =s u

Validity under a set of Σ-equations E:

|=
E
t =s u

Equivalent to: for all computation structures A of Σ and valuations v ofX

[[t ]]Av = [[u ]]Av



12

/ department of mathematics and computer scienceJJ J N I II 7/31JJ J N I II 7/31

Derivability

Derivability under a set of Σ-equations E:

`
E
t =s u

Axioms:
(axiom) `

E
e, for all e ∈ E

Inference rules:
(reflexivity) `

E
t =s t

(symmetry) if `
E
t =s u then `

E
u =s t

(transitivity) if `
E
t =s u and `

E
u =s v then `

E
t =s v

(congruence) if `
E
ti =si

ui then `E
f (t0, . . . , tn) =s f (u0, . . . , un)

for all f ∈ Fn+1, of type s0 × · · · × sn → s, and n ∈ N
(substitution) if `

E
t =s u then `

E
t[x := v] =s u[x := v]
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Derivability (2)

Contextual congruence:
For all terms t, u ∈ T (Σ, X)s and contexts C of sort s′:

if `
E
t =s u then `

E
C[t]s =s′ C[u]s

Calculational derivation:

C[t]s
=s′ { hint why `

E
t =s u }

C[u]s
=s′ { hint why `

E
u =s v }

C[v]s

Justification of `
E
C[t]s =s′ C[v]s.
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Soundness and completeness

Soundness:
For all Σ-equations e and sets of Σ-equations E:

if `
E
e then |=

E
e

Completeness:
For all Σ-equations e and sets of Σ-equations E:

if |=
E
e then `

E
e
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Propositional logic

Sorts: S contains B
Functions: F0 contains true, false :→ B

F1 contains ¬ : B → B
F2 contains ∧,∨,⇒,⇔: B× B → B

Σ-equations: E contains, for certain variables p, q, r ∈ XB:

¬¬p =B p p ∧ ¬p =B false
p ∧ false =B false p ∨ q =B ¬(¬p ∧ ¬q)
p ∧ true =B p p ∧ (q ∨ r) =B (p ∧ q) ∨ (p ∧ r)
(p ∧ q) ∧ r =B p ∧ (q ∧ r) p⇒ q =B ¬p ∨ q
p ∧ q =B q ∧ p p⇔ q =B (p⇒ q) ∧ (q ⇒ p)
p ∧ p =B p

The above equations can be derived for any term p, q, r ∈ T (Σ, X)B.
All desirable properties of true , false , ∨,⇒ and⇔ can be derived.
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Conditional equations

For every s ∈ S:
- F3 contains ite : B× s× s→ s
- E contains, for certain variables x, y ∈ XB:

ite(true, x, y) =s x
ite(false, x, y) =s y

Equations of the form
t =s ite(b, u, t)

are abbreviated to
t =s u, if b

This abbreviation will also be used in the context of the derivation symbol `
E

and in derivations.
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Binding

Lambda calculus with abstractions to booleans only.

S is partitioned into disjoint sets S0 and S0→B of equal size, with:
- every s ∈ S0 has a corresponding sort s→ B ∈ S0→B
- S0 does not contain sorts with suffix→ B

Basic elements, for all sorts s ∈ S0:
- variables of sort s
- abstractions of terms in T (Σ, X)B over terms in T (Σ, X)s

- applications of terms in T (Σ, X)s→B to terms in T (Σ, X)s
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Basic elements

Positive numbers:
- S0 contains N+

- functions 1 :→ N+, +1 : N+ → N+ and eq : N+ × N+ → B

We assume the following functions, for each s ∈ S0:
variables: var s of type N+ → s
abstraction: λs_._ of type N+ × B → (s→ B)
application: _._ of type (s→ B)× s→ B

var s(m) will be written asms

λsm.p binds all free variables ns in p, where `E
eq(m,n) =B true

α-conversion and β-reduction need substitution.
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Substitution

Substitution needs a way to:
- tell if variables occur free in terms
- calculate fresh variables

We assume the following functions, for each s ∈ S0 and s′ ∈ S:
substitution: _[_/_] of type s′ × s× N+ → s′

free occurrences: occs of type N+ × s′ → B
fresh variables: fresh of type s× B → N+

gfresh of type N+ × s× B → N+
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Substitution (2)

E contains, for all s ∈ S0 and s′ ∈ S, certain t ∈ Xs,m,n ∈ XN+ and p ∈ XB,
and all c ∈ F0 of type→ s′, and f ∈ Fk+1 of type t0 × · · · × tk → s′, except for
variables and lambda abstractions, for all k ∈ N and s′′ ∈ S0 different from s:

ns[t/m] =s t, if eq(m,n)
ns[t/m] =s ns, if ¬eq(m,n)
(λsn.p)[t/m] =s→B λsn.p, if eq(m,n)
(λsn.p)[t/m] =s→B λsn.p, if ¬eq(m,n) ∧ ¬occs(m, p)
(λsn.p)[t/m] =s→B λsn.p[t/m],

if (¬eq(m,n) ∧ occs(m, p)) ∧ ¬occs(n, t)
(λsn.p)[t/m] =s→B λsfresh(t, p).p[fresh(t, p)

s
/n][t/m],

if (¬eq(m,n) ∧ occs(m, p)) ∧ occs(n, t)
ns′′[t/m] =s′′ ns′′

(λs′′n.p)[t/m] =s′′→B λs′′n.p[t/m]
c[t/m] =s′ c
f (t0, . . . , tk)[t/m] =s′ f (t0[t/m], . . . , tk[t/m])
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α-conversion and β-reduction

E contains, for certainm,n ∈ XN+, p ∈ XB and t ∈ Xs:

λsm.p =s→B λsn.p[ns/m], if ¬occs(n, p)
(λsm.p).t =B p[t/m]

Example: For all m,n ∈ T (Σ, X)N+, the term λBm.(λBn.(nB ∧mB)).mB ex-
presses the identity function of sort B.

Question: Is this representation of the lambda calculus confluent and terminat-
ing?
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Quantifications

Functions ∀ and ∃, both of type (s→ B) → B, for all s ∈ S0.

Terms of the form ∀(λsm.p) and ∃(λsm.p) are abbreviated to ∀sm.p and ∃sm.p.

E contains, for certainm ∈ XN+, p, q ∈ XB and t ∈ Xs:

∀sm.false =B false
∀sm.p =B ∀sm.p ∧ p[t/m]
∀sm.(p ∧ q) =B ∀sm.p ∧ ∀sm.q
∀sm.(p ∨ q) =B p ∨ ∀sm.q, if ¬occs(m, p)
∃sm.p =B ¬∀sm.¬p

The definition of the first equation is correct, because every sort s is sensible, i.e.
it has at least one ground term.
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Quantifications (2)

Lemma’s, for all s ∈ S0 and certainm,n ∈ XN+, p, q ∈ XB and t ∈ Xs:

`
E
∀sm.p =B ∀sn.p[ns/m], if ¬occs(n, p)

`
E
∀sm.p =B p, if ¬occs(m, p)

`
E
∃sm.true =B true

`
E
∃sm.p =B ∃sm.p ∨ p[t/m]

`
E
∃sm.(p ∨ q) =B ∃sm.p ∨ ∃sm.q

`
E
∃sm.(p ∧ q) =B p ∧ ∃sm.q, if ¬occs(m, p)

`
E
∃sm.p =B ∃sn.p[ns/m], if ¬occs(n, p)

`
E
∃sm.p =B p, if ¬occs(m, p)

`
E
p[t/m] =B p[t/m] ∧ ∃sm.p
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Completeness

Theorem: For all p ∈ T (Σ, X)B:

if |=
E
p =B true then `

E
p =B true

Indirect proof: For all formulae φ and sequents Γ from the system of natural
deduction ND and a certain translation function tr:

`
E
tr (Γ, φ) |=

E
tr (Γ, φ)

‘⇑’ (C1) ‘⇓’ (C2)

Γ `
ND
φ ‘⇐’ (C3) Γ |=

ND
φ

There must exist a corresponding tr (Γ, φ) for each p
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Natural deduction: formulae

Formulae are built from the following elements:
- a set of domains Dom ;
- a set of free variables FV and a set of bound variables BV ;
- a set of predicates Pred ranging over elements from FV ∪ BV ;
- the symbols true , false , ¬, ∧, ∨,⇒ and⇔;
- quantifier symbols ∀ and ∃;
- punctuation symbols ( and ).

Inductive definition of Form :
- P (a0, . . . , an) ∈ Form , for any n-ary P ∈ Pred and ai ∈ FV ;
- true, false ∈ Form ;
- if φ ∈ Form , then ¬φ ∈ Form ;
- if φ, ψ ∈ Form , then (φ ∧ ψ), (φ ∨ ψ), (φ⇒ ψ), (φ⇔ ψ) ∈ Form ;
- if φ ∈ Form , then ∀xd.φ[ad := xd],∃xd.φ[ad := xd] ∈ Form ,

for any ad ∈ FV d, xd ∈ FV d and d ∈ Dom .
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Natural deduction: sequents and validity

The set of sequents is P(Form).

Definition of validity |=
ND
, for all ‘consistent’ Γ ∈ P(Form), φ, ψ ∈ Form ,

P ∈ Pred , d ∈ Dom and xd ∈ BVd:

Γ |=
ND
P iff IΓ (P ) = true ;

Γ |=
ND

true is valid;
Γ |=

ND
false is not valid;

Γ |=
ND
¬φ iff Γ |=

ND
φ is not valid;

Γ |=
ND
φ ∧ ψ iff both Γ |=

ND
φ and Γ |=

ND
ψ are valid;

Γ |=
ND
φ ∨ ψ iff either Γ |=

ND
φ or Γ |=

ND
ψ is valid, or both;

Γ |=
ND
φ⇒ ψ iff either Γ |=

ND
φ is not valid or Γ |=

ND
ψ is valid, or both;

Γ |=
ND
φ⇔ ψ iff both Γ |=

ND
φ and Γ |=

ND
ψ are either valid or not valid;

Γ |=
ND
∀xd.φ iff Γ |=

ND
φ[xd := ad] is valid for any ad ∈ FV d;

Γ |=
ND
∃xd.φ iff Γ |=

ND
φ[xd := ad] is valid for at least one ad ∈ FV d.
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Natural deduction: derivability

Definition of `
ND
, for all Γ,∆ ∈ P(Form) and φ, ψ ∈ Form :

Axiom: φ,Γ `
ND
φ

Thinning:
Γ `

ND
φ

Γ,∆ `
ND
φ

(false):
Γ `

ND
false

Γ `
ND
φ

(¬ I):
φ,Γ `

ND
ψ φ,Γ `

ND
¬ψ

Γ `
ND
¬φ

(¬ E):
Γ `

ND
¬¬φ

Γ `
ND
φ
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Natural deduction: derivability (2)

For all Γ ∈ P(Form) and φ, φ0, φ1, ψ, θ ∈ Form :

(∧ I):
Γ `

ND
φ Γ `

ND
ψ

Γ `
ND
φ ∧ ψ

(∧ E):
Γ `

ND
φ0 ∧ φ1

Γ `
ND
φi

, i = 0, 1

(∨ I):
Γ `

ND
φi

Γ `
ND
φ0 ∨ φ1

, i = 0, 1

(∨ E):
Γ `

ND
φ ∨ ψ φ,Γ `

ND
θ ψ,Γ `

ND
θ

Γ `
ND
θ
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Natural deduction: derivability (3)

For all Γ ∈ P(Form) and φ, φ0, φ1, ψ ∈ Form :

(⇒ I):
φ,Γ `

ND
ψ

Γ `
ND
φ⇒ ψ

(⇒ E):
Γ `

ND
φ⇒ ψ Γ `

ND
φ

Γ `
ND
ψ

(⇔ I):
φ,Γ `

ND
ψ ψ,Γ `

ND
φ

Γ `
ND
φ⇔ ψ

(⇔ E):
Γ `

ND
φ0 ⇔ φ1

φi,Γ `ND
φ1−i

, i = 0, 1



12

/ department of mathematics and computer scienceJJ J N I II 25/31JJ J N I II 25/31

Natural deduction: derivability (4)

For all Γ ∈ P(Form), φ, ψ ∈ Form , d ∈ Dom , xd ∈ BVd and ad ∈ FVd:

(∀ I):
Γ `

ND
φ

Γ `
ND
∀xd.φ[ad := xd]

, where ad does not occur in Γ

(∀ E):
Γ `

ND
∀xd.φ

Γ `
ND
φ[xd := ad]

(∃ I):
Γ `

ND
φ[xd := ad]

Γ `
ND
∃xd.φ

(∃ E): Γ `
ND
∃xd.φ φ[xd := ad],Γ `ND

ψ
Γ `

ND
ψ

, where ad does not occur in Γ, φ, ψ
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Natural deduction: soundness and completeness

Soundness:
For all Γ ∈ P(Form) and φ ∈ Form :

if Γ `
ND
φ then Γ |=

ND
φ

Completeness:
For all Γ ∈ P(Form) and φ ∈ Form :

if Γ |=
ND
φ then Γ `

ND
φ

This is proof obligation (C3).
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Translation from ND to E

Assumptions:
- every domain d ∈ Dom has a corresponding sort sd ∈ S0;
- every variable ud ∈ FV d ∪ BV d has a corresponding termmu

sd,
wheremu ∈ T (Σ, X)N+, for any d ∈ Dom ;

- every predicate P ∈ Pred has a corresponding term bP ∈ T (Σ, X)B.

Translation of formulae, for all φ, ψ ∈ Form , P ∈ Pred , d ∈ Dom and
xd ∈ BV d:

P =B b
P φ ∨ ψ =B φ ∨ ψ

true =B true φ⇒ ψ =B φ⇒ ψ
false =B false φ⇔ ψ =B φ⇔ ψ
¬φ =B ¬φ ∀xd.φ =B ∀sdmx.φ
φ ∧ ψ =B φ ∧ ψ ∃xd.φ =B ∃sdmx.φ
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Translation from ND to E (2)

Property, for all φ ∈ Form , d ∈ Dom and ud, vd ∈ FV d ∪ BV d:

φ[ud := vd] =B φ[mv
sd/mu]

Translation of sequents, for all Γ ∈ P(Form):

∅ =B true φ,Γ =B φ ∧ Γ

Definition of tr:
tr (Γ, φ) iff Γ =B φ,Γ

Translation of ‘variable ud may not occur in the sequent Γ’:

`
E
¬occsd(mu,Γ) =B true
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Proof of (C1)

We need to prove, for all Γ ∈ P(Form) and φ ∈ Form :

if Γ `
ND
φ then `

E
Γ =B φ ∧ Γ

Proof by induction on the structure of the derivability relation `
ND
.
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Proof of (C2)

We need to prove, for all Γ ∈ P(Form) and φ ∈ Form :

if |=
E

Γ =B φ ∧ Γ then Γ |=
ND
φ

Proof is still under construction.
Idea: proof by induction on the structure of φ.
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Conclusions

Algebraic specification is a powerful formalism for specifying data types and
properties of functions on these data types.

It is possible to specify a complete first-order logic.

Consequence of the proof of (C1): we can adopt every proved case of the proof as
a lemma, such that we get more intuitive derivations of boolean Σ-equations.

The main problem of quantifications lies in the binding.

Use the results of the implementation of the lambda calculus and quantifications
to implement other data types such as sets and tables.


